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Marsh organ — a bioassay designed to measure
the plant’s response to relative elevation or
hydroperiod.
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Figure 6. End-of-season aboveground standing biomass from
marsh organs operating at North Inlet. Biomass is plotted
against depth below mean high water (MHW). Mean sea level
is about 70 cm below MWH.
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Fertilized plots (high biomass) had
rates of sediment accretion that
were significantly greater than
controls.

Epiphany!



Sediment accretion is proportional to depth : dY,/dt =D

Sediment accretion is proportional to biomass:  dY,/dt
«(q+kB) Where B=biomass, q & k are consts.

Combining these yields: dY,/dt =D(q+kB) for D>0 (1)

Biomass is a function of D: B=aD+bD2%+c (2)
where a, b and ¢ are constants.



If the marsh surface is in equilibrium with sea level change, then:
dY,/dt =dY,/dt=r (3)

Substitute from Eqs 1 & 2 :
kbD? + kaD? + (q+kc)D—r = 0  (4)

Equation 4 has two real roots over a limited range of r (rate of
change of sea level), depending on values of a, b, ¢, q and k.
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There is an equilibrium depth
(bottom figure) that Is a
function of the rate of sea-level
rise.

Depth affects primary
production.

There Is an optimum rate of
sea-level rise for primary
production.

The dynamic range of response
Increases with increasing tidal
amplitude.
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North Inlet salt marsh
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Figure 2. A) Simulated standing biomass of North Inlet S. alterniflora over time at three scenarios of sea
level rising to 40, 80, and 100 cm in the next century; B) the corresponding marsh elevations relative to
MSL and C) the simulated standing biomass in A plotted against the relative elevation in B, and the
theoretical vertical growth distribution.
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Northeast Florida pioneer Avicennia
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Figure 3. A) Simulated standing biomass of A. germinans in Northeast Florida over time at three
scenarios of sea level rising to 40, 80, and 100 cm in the next century; B) the corresponding wetland
elevations relative to MSL and C) the simulated standing biomass in A plotted against the relative
elevation in B, and the theoretical vertical growth distributions of 1°' year mangroves and mature
mangroves.



Northeast Florida mature Avicennia

SLR End
8000 7 A MNortheast FL _- 607 B @ 40 cM 80007 C Start
mature Avicennia _ < : \
-’ ~ End
& &
£ 6000 - L g5 £ 6000 - \
B - B
0 2 @
@ < S
5 4000 - 2 50 - S 4000 -
2 S 0 End
g m N2 2
2 g V2 S
< 2000 1 = 45 - & 2000 - %
N T ) - ®
%
0 : - - - - 40 . . . . . 0 -
0 20 40 60 80 100 0 200 40 60 80 100 30 40 50 60 70
Time (years) Time (years) Relative Elevation (rel MSL)

Figure 4. A) Simulated standing biomass of mature A. germinans in Northeast Florida over time at three
scenarios of sea level rising to 40, 80, and 100 cm in the next century; B) the corresponding wetland
elevations relative to MSL and C) the simulated standing biomass in A plotted against the relative
elevation in B, with the theoretical vertical growth distributions of mature mangroves.



Vertical Accretion Rate (mm/yr)

C Avicennia @ 100 cm SLR
as a starting pioneer or
mature canopy

' R

10
)
a) Age premium
0 b) Growth premium
—  Florida Pioneer
-5 —  Florida Mature
-10

0 S 10 15

Sea-Level Rise (mm/yr)

Mature canopies enjoy an age
premium, pioneers enjoy a growth
premium. The relative advantage
depends on the starting elevation.

When mangroves fail they fail
spectacularly.
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Table 1. Vertical accretion rates and carbon sequestration rates averaged over the 2" and 4™ quarters of the simulation, total carbon (live
and dead) inventory in the top 25 cm (or top 50 cohorts if < 25¢cm) at the end of the 2" and 4™ quarters, and carbon sequestration
integrated over the entire 100-yr simulation at different sea-level rise scenarios (40, 80, and 100 cm in 100 yr) for different habitats: S.
alterniflora in North Inlet, SC, young and mature A. germinans in NE Florida, and hypothetical A. germinans in North Inlet.

NE Florida
NE Florida pioneer A. mature A.
North Inlet S. alterniflora germinans germinans
@40 @80 @ 100 @40 @80 @ 100
cm cm cm cm cm cm @ 100 cm
Second Quarter Summary
avg vertical accretion (cm/yr) 0.21  0.24 0.25 049 0.75 0.87 0.84
C sequestration (g C m2yrl) 52 52 52 166 206 224 335
Surface inventory (C g/m?) 6655 6411 6322 8841 8778 8861 8929
Fourth Quarter Summary
avg vertical accretion (cm/yr) 0.26  0.28 0.26 055 111 0.82 1.41
C sequestration (g C m2yrt) 52 34 16 174 300 360 415
Surface inventory (C g/m?) 5709 3802 2854 9069 8884 8805 8848

Integrated over the century
C sequestration (g C m2yrl) 50 45 39.6 154.3 215.3 2444 358.3




Preliminary Conclusions

Tidal mangroves consistently have higher rates of vertical accretion and greater rates of
carbon sequestration than salt marshes. The ES value of mangroves is greater!

Mature mangroves are more resilient than young mangroves. They have a significant
head-start that endows them with greater vertical accretion rates. To successfully
transgress, growth of young mangroves will need to outpace SLR.

The limiting factor for mangrove northward migration is seed transport. We could
proactively accelerate migration, which would offer greater protection of our coasts
from rising sea level, greater carbon sequestration, and greater protection from coastal
storms.

However, when mangroves drown they do so with significant loss of elevation due to the
large volume of labile organic matter and roots in their soils. Mangrove coasts will
change episodically, salt marshes will transgress gradually.



