Implementing The Texas Disaster Information System
Dashboard 1
Resilient-Texas.com

- Developed in support of the Governor's Commission to Rebuild Texas following Hurricane Harvey
- Highlights key impacts of Hurricane Harvey, as well as general information on local flood risks
- Customized experience based on the user’s role within the community
How it Works

- Homeowner/ Resident / Concerned Citizen
- Local Business Owner
- Local Government Official
- Researcher

Select Role
Choose Layers
Explore Data
An interactive, web-based spatial data system designed to support Preparedness, Response, Recovery and Mitigation for the State of Texas.

- Statewide system will employ cutting-edge data analytics and mapping technologies.
- Provide residents, policy makers, local jurisdictions, and other stakeholders with the most current and accurate information available to assess related disaster risks, impacts, and mitigation strategies.
- Enable secured sharing of Texas disaster data information across public networks.
- Preserve the data products generated during disaster response, recovery and planning missions.
Texas Disaster Information System

- Collaborating with subject-matter experts
- Securing data sharing agreements
- Developing and implementing security protocols
- Harvesting, archiving and curating critical disaster data
- Building database architecture, acquiring hardware
- Developing applications tools to analyze pertinent data
- Developing a user-friendly, interactive web portal
We organized this project into six workstreams:

<table>
<thead>
<tr>
<th>Data Strategy</th>
<th>Stakeholder Coordination</th>
<th>Technical Infrastructure Planning</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Identify data sources, levels of sensitivity,</td>
<td>- Identify key technical stakeholders and establish contact.</td>
<td>- Develop data governance process.</td>
</tr>
<tr>
<td>and data owners.</td>
<td>- Manage data sharing agreements.</td>
<td>- Develop system architecture plan.</td>
</tr>
<tr>
<td>- Develop data governance process.</td>
<td>- Determine quality of partner data.</td>
<td>- Align technical plan with GLO.</td>
</tr>
<tr>
<td>- Evaluate data sources and determine gaps.</td>
<td>- Develop national advisory committee.</td>
<td>- Web portal SOPs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- User management</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>User Experience Planning</th>
<th>Project Administration</th>
<th>Ongoing Program Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Usability assessments</td>
<td>- Project status meetings and updates</td>
<td>- Creating SOPs for data management</td>
</tr>
<tr>
<td>- Data visualization tools and styles</td>
<td>- Create a team to ID and pursue new data sources</td>
<td>- Monitor user roles for compliance</td>
</tr>
<tr>
<td>- Develop web portal</td>
<td></td>
<td>- Develop plan to maintain and improve</td>
</tr>
<tr>
<td>- Determine user roles</td>
<td></td>
<td>- Run day-to-day technical operations</td>
</tr>
</tbody>
</table>
Lessons Learned

- TDIS is more about human values and relationships than anything else.
- Early steering committee formation enables participation and sense of ownership.
- Hiring a communicator as important as data architect.
- Partnering with legacy organizations.
- Human-centered design and implementation.
- Building a system that is agile and adaptive.