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How does Climate Science Inform Decisions?
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Temperature Change (°C)

How to Use GCM Projections
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The Climate Scenario Dilemma

- GCM scenarios explore forcing uncertainty; not
designed to explore adaptation uncertainty

- Thus, GCM scenarios are neither true scenario
analysis nor predictions

- How would you design a risk assessment process
If you started from a blank slate?
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A Climate Informed Decision Analysis

To provide clear guidance for addressing climate change in

planning and operations using the best available science
and stakeholder inputs

Approach:

- Adopt “scenario neutral” approach within decision
analytic framework

- Stress test — multidimensional sensitivity analysis

reveals vulnerabilities and comparative advantage of
alternatives

- Climate projections enters at end of analysis, to
prioritize responses or evaluate best alternatives



o
Decision Scaling

3. Evaluate
Vulnerabilities

2. “Stress Test”

Define uncertain factors that

1. Identify Key
Uncertainties can affect the system

—

Brown and Wilby, EOS, 2012; Brown et al., WRR, 2012, Poff et al., 2015 Nature Climate Change
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Decision Scaling

3. Evaluate
Vulnerabilities
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Brown and Wilby, EOS, 2012; Brown et al., WRR, 2012, Poff et al., 2015 Nature Climate Change
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Decision Scaling
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Data mining to extract scenarios
for further analysis. Climate
projections inform vulnerabilities
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Brown and Wilby, EOS, 2012; Brown et al., WRR, 2012, Poff et al., 2015 Nature Climate Change
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1. Frame the Analysis for Actionable Science

unCertainties Consequences

Things that we cannot control [ How we measure success
but affect the ability to meet |and failure
objectives

Connections Choices

The definition of the system, |Policies, infrastructure, social
formalized as a model consciousness
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2. Stress Test to define system response

NonClimate Uncertainties
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Climate Vulnerability Assessment:

California DWR
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Decision Scaling

Deliveries
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3. Climate Projects define level of concern (risk)
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Decision Scaling

—— ldentify Vulnerability Space

SWP Deliveries Likelihocodspace
1996

2.Link to climate
conditions.

1. Determine the vulnerability domain
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Climate Change
Guidance Framework

Informed Decision Making for Transboundary Waters

Alec Bernstein, Casey Brown
LCRR Climate Change Workshop
Montreal, QC
March 19, 2019

AMHERST




Decision Scaling Climate Vulnerability
Assessment for the California Department of
Water Resources Final Report

A Collaborative Study of the Hydrosystems Research Group, University of
Massachusetts, Amherst and the California Department of Water Resources

“Snow White Mountains and Blue Watershed,” Dr. Qingin Liu, DWR Climate Change Program, 2017

May 2019



World Bank Water Global Practice

IDENTIFYING AND MANAGING CLIMATE RISKS

Confronting Climate CLIMATE RISK
g THE CLIMATE CHANGE MANAGEMENT PLAN
Uncertainty in Water Res DECISION TREE & CLIMATE RISK REPORT
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Planning and P]'()jeCt Des cost-efficient tool on climate risks project’s robustness are documented
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into account local realities and
climate sensitivity
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Combining historic data, global climate
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ATE P low
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a (simplified) water resources system PHASE 2 Ielinate N0 Climate
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population growth, etc.
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water.worldbank.org/wpp
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Great Lakes “System”
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Climate Change Projections of Net Basin Supply -
Lake Superior, 2050
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Contours of “Robustness” to a Given Level of Hazard
(Historical = 1)

Contours of Equal Expected Value of Zone C Occurrences on Lake Superior with Plan P77A
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Vulnerability and Climate Projections
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Residual Risk according to Projections
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0
Summary Thoughts

Scenario Definition?

- GCM derived scenarios are neither mutually exclusive nor collectively
exhaustive

> Climate Stress Test — systematic sampling to create mutually exclusive and
collectively exhaustive scenarios

> Carefully preserve connections to climate drivers to infer insights on
change

> Allows clear identification of vulnerabilities

Use of GCM Simulations?

- Forecasts of climate change considered unreliable but can be useful
>Define sampling ranges

>Used to assess level of concern of the vulnerabilities identified

> Assign subjective probabilities to ex post scenarios when needed
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Thank You

Questions: casey@umass.edu




STEINSCHNEIDER AND BROWN : WEATHER GENERATOR FOR CLIMATE RISK
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RELIABILITY
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Adaptation via Operations?

Reliability versus precipitation changes (%)
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Framing the Analysis for Actionable
Science

Uncertainties Investment and Policy Options
Natural Uncertainties Upper Arun HP

Precipitation (intensity, duration, frequency, timing) 335 MW (Q70) - original design
Temperature (melt/evapotranspiration) 750 MW (Q40) - possible alternative
Sedimentation 2000 MW (Q25) - possible alternative

Seismic risk and disasters

Nepal Future System and Operations

National markets; International agreements; Prices
Project Variables

Capital costs; Lifetime of the projects; Discount rate

Metrics of Success Models and Data
Hydropower Performance Hydrological model

Net Present Value UMass Glacio-Hydrologic Model
Power generation (Dry season; Wet season; Total Annual) Watershed System

Run of River Hydropower in R

Nepal Hydroelectricity Project - Upper Arun
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Family Tree of GCMs

a) Control state b) Projected change RCP8.5
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GCMs are not Independent and it Matters!
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