

A hybrid dynamical-statistical analog downscaling technique to efficiently explore changes in extreme precipitation

Dr. Luke Madaus -- 16 May 2019 -- Sea Level Solutions Center Rainfall Workshop

Jupiter FloodScore Planning provides physical flood risk at street-level resolution

Physical hazards that drive flooding in S. Florida

 Coastal surge resulting from tropical cyclones

• Seasonal ('king-tide') flooding

Jupiter Method Overview

Goal: How are extreme precipitation events expected to change in frequency and magnitude in a future climate?

Jupiter Method Overview

Goal: How are extreme precipitation events expected to change in frequency and magnitude in a future climate?

- 1. Define criteria for candidate "extreme precipitation" events
- 2. Produce and tune *dynamically-downscaled* simulations (to ~1 km resolution) for historical events that meet these criteria
- 3. Project changes in **event frequency** with *analog method*
- 4. Project changes in **event magnitude** with *statistical scaling*
- 5. Produce climate statistics and feed into flood models

Selection of extreme events

Selection of Extreme Events

All events where either Miami-Dade or Miami Beach ASOS/GHCN stations show at least 30 mm of precipitation in 24 hours

Flood reports to NCEI/NCDC rare below this level

Dynamical downscaling of historic events

WRF Downscaled Simulations

Downscale historic events from reanalyses to 1km grid spacing

Choose WRF configuration suited to South Florida's climate

- Convection-allowing model resolution
 - Can capture individual thunderstorms
- Goddard Microphysics
 - Designed for subtropical warm rain
- Noah Land Surface scheme with National Land Cover Dataset
 - Satellite-based estimates of land surface properties

WRF Downscaled Simulations

Choose configurations for WRF best suited to South Florida's climate (e.g. warm rain processes dominate)

WRF 1-hr Precipitation Distributions

WRF 24-hr Precipitation Distribution

WRF underdoes more extreme hourly and 24-hour precipitation amounts

Bias correction through quantile mapping can alleviate much of this

Changes in event frequency with an *analog finder*

Analog Finder

Use a global climate model (here, the CESM-LENS; Kay et al. 2015) and match future days to historic ones

Representative analog precipitation field "matches"

Cross-validation technique to determine optimum predictors for analog matches

Analog Event Durations

Event Length [days]

Analog Finder

Analogs are found after bias correcting the climate model and are computed based on *anomalies*

The analog finder samples the historical spectrum of possible extreme precipitation events well

Analog Events Selected per Year

Analog resampling alone does not find an increase in the annual frequency of extreme precipitation events

-> Most extreme precipitation *events* in South Florida is determined by localized thunderstorms/convection and not by large-scale atmospheric patterns

Changes in event magnitude with statistical scaling

Future Scaling

Analog-based sampling only samples historical events

- Given the same "historical" event in the future, we expect the event to evolve differently in a future climate
- Need to correct for local thermodynamic changes

Future Scaling

1-hr Precipitation Distributions Liu et al. Dataset | Non-zero Times

Leverage existing dynamically-downscaled datasets to explore these changes

- Liu et al. (2017) dynamically downscaled dataset over North America
- "Recent" climate (2000-2013) and "End-of-Century" climate (~2090)
- Same sequence of large-scale weather patterns, but with end-of-century climate
- Can compute scaling factors for localized precipitation

Increase in extreme (>93rd percentile; ~10 mm) hourly precipitation amounts

Projections and applications

Future Projections

Combine analog and scaling methods to produce downscaled future projections

<- Example: Number of days with non-zero precipitation decrease, but days with >30 mm of precipitation can possibly increase

Applications at Jupiter

We use our library of analog-draw and amplitude scaled precipitation events as inputs to hydraulic models to translate precipitation changes to flood risk changes

Can also search for frequency of "design" storms

Example: 5.7 inches in 1 hr

Jupiter Method Highlights

- Efficient -- computational expense is mainly limited to historical simulations and analog search
- **Calibrated** -- rooting the method in historical events allows for calibration against observations
- **Projection independent** -- any global climate model can be used in the analog finder
- Builds on existing datasets and academic work -- previous work to build dynamic downscaling datasets can be built upon and expanded with this

References

- Liu, C., Ikeda, K., Rasmussen, R., Barlage, M., Newman, A.J., Prein, A.R., Chen, F., Chen, L., Clark, M., Dai, A., Dudia, J., Eidhammer, T., Gochis, D., Gutmann, E., Kurkute, S., Li, Y., Thompson, G., Yates, D., 2017. Continental-scale convection-permitting modeling of the current and future climate of north america. Clim. Dynam. 49, 71–95.
- Kay, J.E., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G., Arblaster, J., Bates, S., Danabasoglu, G., Edwards, J., Holland, M., Jushner, P., Lamarque, J.F., Lawrence, D., Lindsay, K., Middleton, A., Munoz, E., Neale, R., Oleson, K., Polvani, L., Vertenstein, M., 2015. The Community Earth System Model CESM Large Ensemble Project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc. 96, 1333–1349.
- Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Liu, Z., Berner, J., Wang, W., Powers, J.G., Duda, M.G., Huang, D.M.B.X.Y., 2019. A description of the advanced research WRF Version 4. Technical Report TN-556. National Center for Atmospheric Research. doi:DOI:http://dx.doi.org/10.5065/1dfh-6p97

Modeling street-level flood-peril with climate change: Precipitation-based flooding

Extreme precipitation events	Event simulation: WRF	Analog-based resampling for future frequency	Scaled precipitation distributions for future intensity	H&H modeling: HEC-RAS
We develop a catalog of historic extreme precipitation events in the local area based on observations	The Weather Research and Forecasting (WRF) model is used to simulate historical events at kilometer and hourly scales	Climate model projections are used to evaluate how frequently events like this historical events will occur in the future	Climate model simulations are used to determine how the future intensity of rainfall will change locally	2D modeling forced by scaled WRF precipitation output

Overview of Flood Modeling

