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A hybrid dynamical-statistical analog
downscaling technique to efficiently
explore changes in extreme precipitation
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Jupiter FloodScore Planning provides physical
flood risk at street-level resolution
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Physical hazards that drive flooding in S. Florida

e Extreme rainfall

e C(Coastal surge
resulting from tropical cyclones

e Seasonal (‘king-tide’) flooding



Jupiter Method Overview

Goal: How are extreme precipitation events expected to
change in frequency and magnitude in a future climate?
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Jupiter Method Overview

Goal: How are extreme precipitation events expected to
change in frequency and magnitude in a future climate?

1. Definecriteriafor candidate “extreme precipitation” events

2. Produce and tune dynamically-downscaled simulations (to ~1 km
resolution) for historical events that meet these criteria
Project changes in event frequency with analog method

4. Project changes in event magnitude with statistical scaling

Produce climate statistics and feed into flood models
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Selection of extreme events



Selection of Extreme Events

All events where either Miami-Dade or Miami Beach ASOS/GHCN stations

show at least 30 mm of precipitation in 24 hours
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Dynamical downscaling of
historic events



WRF Downscaled Simulations

Downscale historic events from reanalyses to 1km grid spacing

Choose WRF configuration suited to
South Florida’s climate

D

e Convection-allowing model

resolution N
o Can captureindividual thunderstorms ] \}
e Goddard Microphysics ;;jﬁ
o Designed for subtropical warm rain - i%

e Noah Land Surface scheme with

National Land Cover Dataset
o Satellite-based estimates of land D
surface properties 20km
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WRF Downscaled Simulations
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Choose configurations for
WRF best suited to South
Florida’s climate (e.g. warm
rain processes dominate)
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Obs 24-hr Precip [mm]

WRF 24-hr Precipitation Distribution

Q-Q Plot -- 24-hr Precipitation >= 1mm
nStations=13 | nDays=1265
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WRF underdoes more extreme hourly
and 24-hour precipitation amounts

Bias correction through quantile
mapping can alleviate much of this



Changes in event frequency
with an analog finder



Analog Finder
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LENS precip Low-res

LENS precip Low-res

Use a global climate model
(here, the CESM-LENS; Kay
et al. 2015) and match future
days to historic ones

Representative analog
precipitation field “matches”

Cross-validation technique
to determine optimum
predictors for analog
matches



Analog Event Durations
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Mostly 1-2 day events, afew
5-7 day events
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Length of Precipitation Events
MIAMI INTERNATIONAL AIRPORT, FL US | Total Events: 593 | Events per year: 15.2

Event Length [days]



Analog Finder

% of Unique Analogs Across Time
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Analogs are found after bias
correcting the climate model and
are computed based on anomalies

The analog finder samples the
historical spectrum of possible
extreme precipitation events well



Annual Number of Candidate Events

Analog Events Selected per Year

Analog-Based Annual Number of Candidate Extreme Precipitation Events
CESM-LENS | 1920-2050
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Analog resampling alone does not
find an increase in the annual
frequency of extreme precipitation
events

-> Most extreme precipitation events
in South Florida is determined by
localized thunderstorms/convection
and not by large-scale atmospheric
patterns



Changes in event magnitude
with statistical scaling



Future Scaling
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Future Scaling

1-hr Precipitation Distributions Leverage existing dynamically-downscaled
Liu et al. Dataset | Non-zero Times
datasets to explore these changes

o e Liuetal.(2017)dynamically downscaled
dataset over North America

e “Recent” climate (2000-2013) and

® “End-of-Century” climate (~2090)

Same sequence of large-scale weather
patterns, but with end-of-century climate
e Cancompute scaling factors for localized
precipitation
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o Increase in extreme (>93rd percentile; ~10 mm) hourly
6 5 0 1 2 2 » & 4 precipitation amounts

Current Climate 1-hr Precipitation [mm]
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Projections and applications



Future Projections
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Applications at Jupiter

We use our library of analog-draw and amplitude scaled precipitation events as
inputs to hydraulic models to translate precipitation changes to flood risk changes

Precipitation Event
0000 UTC 28 Oct 2011

T tmecp e Can also search for
ot frequency of “design”
5 storms

Example: 5.7 inchesin 1 hr
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Jupiter Method Highlights

e Efficient -- computational expense is mainly limited to historical
simulations and analog search

e Calibrated -- rooting the method in historical events allows for
calibration against observations

e Projectionindependent -- any global climate model can be used in the
analog finder

e Builds on existing datasets and academic work -- previous work to build

dynamic downscaling datasets can be built upon and expanded with this
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Modeling street-level flood-peril with climate change:

Precipitation-based flooding

Extreme
precipitation
events

Event simulation:

WRF

We develop a
catalog of historic
extreme
precipitation
events in the local
area based on
observations

OJupimir

The Weather
Research and
Forecasting (WRF)
model is used to
simulate historical
events at kilometer
and hourly scales

Analog-based
resampling for future
frequency

Climate model
projections are used to
evaluate how frequently
events like this historical
events will occur in the
future

Scaled precipitation
distributions for future
intensity

Climate model
simulations are used to
determine how the
future intensity of
rainfall will change
locally

H&H modeling:
HEC-RAS

2D modeling
forced by
scaled WRF
precipitation
output




Overview of Flood Modeling

Extreme Rainfall Seasonal ('High-Tide’)
Conditions Flooding
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