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Appendix I.  Development of average May-October groundwater level 
maps under future sea level rise scenarios (Task I) 
 

This appendix describes the work performed to develop average May-October groundwater level maps 
under future sea level rise scenarios as part of Task I. The Urban Miami-Dade (UMD) MODFLOW model 
was used for this purpose. It is a peer-reviewed model developed by the USGS (Hughes and White, 2016) 
which uses MODFLOW-NWT and the Surface-Water Routing (SWR1) Process to simulate surface water 
stages, discharges, and surface water/groundwater interaction. It also uses the Sea Water Intrusion 
(SWI2) Package to simulate saltwater intrusion into the surficial aquifer.  

As part of this task, we performed two main future scenario runs and three additional sensitivity runs 
using the calibrated Miami-Dade MODFLOW model developed by the USGS. This appendix starts by 
describing each of the model data files that were modified from the original UMD model for use in these 
future scenario and sensitivity runs. This is followed by a discussion on the model setup for these five runs, 
model results, and finally a list of model limitations and recommendations.    

 

Future land use 
 

The future scenarios previously simulated by the USGS using the Urban Miami-Dade (UMD) MODFLOW 
model used 2008 land use data to develop direct surface-water runoff, agricultural water demand, 
recreational irrigation, and monthly crop coefficient values (Hughes and White, 2016). However, for this 
project, we were able to obtain 2030 predicted land use from the Adopted 2020-2030 Comprehensive 
Development Master Plan (CDMP) for Miami-Dade County (Jerry H. Bell, Department of Regulatory and 
Economic Resources, Planning Division, pers. comm.). The map can be found at: 
https://www.miamidade.gov/planning/library/reports/planning-documents/cdmp/cdmp-land-use-map-
2020-2030.pdf.  

Jenifer Barnes at the South Florida Water Management District (SFWMD) assisted with cross-walking the 
land use categories in the 2030 CDMP into Florida Land Use, Cover, and Forms Classification System 
(FLUCCS) codes. In addition, since the 2030 CDMP does not provide detailed land use in natural and 
agricultural areas, Ms. Barnes added more details in these areas by intersecting the dataset with the 
SFWMD’s 2018 permitted land use dataset. Subsequently, we added the 2018 permitted extent of quarry 
lakes from a shapefile provided by SFWMD which was used in the 2018 base case scenario for their RSMGL 
model. The FLUCCS codes were subsequently re-classified into the South Florida Water Management 
District’s basic land use types (BLU) (Figure 1) as described in Table 1 of Hughes and White (2016). Finally, 
each MODFLOW grid cell was assigned its predominant BLU code (Figure 2). Table 1 (Figure 4) below 
shows the percentage of cells on the onshore part of the model that had a predominant land use equal to 
a given BLU category in the year 2008 (Figure 3) and 2030 (Figure 2). Note that this table differs from Table 

https://www.miamidade.gov/planning/library/reports/planning-documents/cdmp/cdmp-land-use-map-2020-2030.pdf
https://www.miamidade.gov/planning/library/reports/planning-documents/cdmp/cdmp-land-use-map-2020-2030.pdf
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2 in Hughes and White (2016) in that their table shows overall polygon areas in each BLU category as 
opposed to percentage of cells with that BLU as predominant shown here. 

 

Table 1. Percentage of cells on the onshore part of the model with predominant land use in each basic land use category. 

Basic 
Land Use 

Code Description 

Year 

2008 2030 
1 Low Dens. Urban (LDU) 3.58% 3.97% 
3 Med. Dens. Urban (MDU) 23.45% 24.48% 

11 High Dens. Urban (HDU) 12.25% 13.58% 
2 Citrus (CIT) 5.31% 4.90% 
7 Row Crops (ROW) 4.39% 3.92% 
8 Sugar Cane (SUG) 0.00% 0.00% 
9 Irrigated pasture (IRR) 0.19% 0.11% 
6 Shrubland (SHR) 2.24% 1.83% 

18 Marl Prairie 4.60% 4.50% 
4 Sawgrass 25.55% 25.72% 

15 Cattail 0.00% 0.00% 
19 Mix Cattail/Sawgrass 0.00% 0.00% 
5 Wet Prairie 2.19% 1.77% 

12 Forested Wetland 3.18% 2.72% 
16 Forested Upland 0.39% 0.26% 
13 Mangroves 3.85% 3.72% 
14 Melaleuca 2.73% 2.33% 
20 Open Water 5.55% 3.83% 
30 Offshore 0.31% 0.31% 
31 Rock Quarries 0.24% 2.06% 

Total onshore area in square miles = 1094 
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Figure 1. Polygon-scale basic land use codes for 2030. 
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Figure 2. Predominant basic land use codes for model grid cells in 2030. 
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Figure 3. Predominant basic land use codes for model grid cells in 2008. 
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Figure 4. Number of onshore model cells with predominant basic land use category as given. 
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Future directly-connected impervious areas 
 

Keith and Schnars (2004) provides a table of total impervious area (TIA) for each Level II/III land use code 
from the Miami-Dade County Department of Planning. After converting these land use codes into the 
equivalent FLUCCS codes, the TIA values were used to develop maps of directly-connected impervious 
area fractions (DCIA) based on a methodology similar to that of Hughes and White (2016). First, each land 
use polygon (Figure 1) was assigned a TIA based on its FLUCCS code (Table 2). Then DCIA was assumed to 
be 25% of TIA. Finally, an area-weighted average DCIA value was computed for each model grid cell based 
on the area of each grid cell occupied by each land use polygon on the grid cell. All open water, 
agricultural, and natural land uses were assigned TIA and DCIA values of 0. 

Comparisons of DCIA fractions between the 2008 and 2030 land uses (Figure 5 and Figure 6) show that 
DCIA is expected to increase in the future as urban areas expand and densify. In the Miami-Dade 
MODFLOW model, DCIA * Rainfall is sent to the closest surface water feature in the SWR1 package (Figure 
7), while (1 – DCIA) * Rainfall recharges the surficial aquifer.  

Table 2. Total impervious area by FLUCCS code. 

TIA (%) FLUCCS CODES 

0 

1630 1660 1900 1920 2000 2110 2120 2140 2150 2160 
2210 2230 2240 2410 2420 2430 2500 2510 2540 2610 
3100 3200 3220 3300 4110 4200 4220 4240 4270 4340 
4370 4410 5000 5110 5120 5200 5300 5410 5420 5430 
5710 6110 6111 6120 6170 6172 6180 6191 6210 6215 
6216 6250 6300 6410 6411 6420 6430 6440 6500 6510 
7200 7400 7430 7470 1650 1810         

3 1480 1820 1850 1860 1890 8115     
27 1460 8110 8113 8200 8300 8310 8320 8330 8340 8360 

56.1 1700 1710 1730 1760       
64.62 1100 1110 1130 1180             
69.63 1330 1340         

70.5 1200 1210 1220 1230 1300 1310 1320 1350     
74.55 1500 1550 1560 1620       
74.71 1423 1840 8350               
78.42 1830 1870         
79.73 8120 8140 8150               

82.6 1400 1410 1411 8100       
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Figure 5. DCIA fractions for model grid cells in 2030. 
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Figure 6. DCIA fractions for model grid cells in 2008. 
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Figure 7. Cell-->SWR1 mapping. Cells with the same color have their DCIA * Rainfall routed to the same SWR1 reach.  
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Future groundwater properties 
 

Due to the existence of additional quarry lakes in 2030 land use (based on 2018 permitted quarry lake 
coverage) compared to the 2008 land use (which assumed 1999 quarry lake coverage), the groundwater 
properties at quarry lake cells have to be modified for the future scenario model. Based on the Miami-
Dade MODFLOW model documentation, it appears that the groundwater properties such as specific yield 
(Sy), specific storage (Ss), and hydraulic conductivity (Kh=Kv) for model layers 1-3 were first calibrated 
using PEST with pilot points and subsequently modified to reflect the presence of quarry lakes as of the 
year 1999. The following equation was likely used in estimating the effective Sy and Ss for model grid cells 
with some portion occupied by quarry lakes: 

𝑆𝑆𝑦𝑦𝑒𝑒𝑓𝑓𝑓𝑓 =
(𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝐴𝐴𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) ∗ 𝑆𝑆𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐴𝐴𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∗ 1

𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
    

Equation 1 

Where𝑆𝑆𝑦𝑦𝑒𝑒𝑒𝑒𝑒𝑒 is the effective specific yield for the cell, 𝑆𝑆𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the calibrated cell specific yield, 1 is the 
assumed quarry lake specific yield, 𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  is the total cell area, and 𝐴𝐴𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is the surface area occupied by 

quarry lakes. By defining 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝐴𝐴𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐� , the fraction of the cell occupied by quarry lakes, the 

above equation simplifies to the following: 

𝑆𝑆𝑦𝑦𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑆𝑆𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∗ (1 − 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) + 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿   

Equation 2 

The variable Lakefrac (based on 1999 quarry lake coverage) is given in file umd_frclake.ref and is shown 
in Figure 8. 

Solving the above equation for 𝑆𝑆𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, one can back-calculate the original calibrated specific yield for the 
cell for cells with Lakefrac smaller than 1: 

𝑆𝑆𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 =
𝑆𝑆𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 − 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

(1− 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿)
    

Equation 3 

The resulting 1999 𝑆𝑆𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 map showed the bullseye pattern typical of pilot points. In areas with quarry 
lakes, the pattern seems consistent with nearby cells (Figure 10) and among the different model layers. 
Therefore, the above methodology seems reasonable in estimating 𝑆𝑆𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 . 

A total of 28 cells had Lakefrac equal to 1. Therefore, 𝑆𝑆𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 was undefined for these 28 cells (white cells 
in Figure 10). However, 24 of these 28 cells also have a 2018 permitted Lakefrac of 1.0 (Figure 9); 
therefore, the 1999 𝑆𝑆𝑦𝑦𝑒𝑒𝑒𝑒𝑒𝑒 can still be used for these 24 cells. For cells with a 2018 permitted Lakefrac of 

1, 𝑆𝑆𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is set to 1 for 2018. For cells with a 2018 permitted Lakefrac between 0 and 1 (exclusive), the 2018 
𝑆𝑆𝑦𝑦𝑒𝑒𝑒𝑒𝑒𝑒 was computed based on Equation 2 using the 2018 Lakefrac.  
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For the 4 cells with a 1999 Lakefrac value of 1 (shown with ‘+’ marks in Figure 10), and a 2018 Lakefrac 
value different from 1, 𝑆𝑆𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 was averaged for surrounding cells and used in Equation 2 to obtain the 2018 
𝑆𝑆𝑦𝑦𝑒𝑒𝑒𝑒𝑒𝑒. Inspection of recent aerial imagery shows no mining lakes present in two of these cells (R17C43, 

R17C44 on Figure 11). The two remaining cells (R34C40, R34C41) had 2018 Lakefrac of 0.92 and 0.96, 
respectively. These are different from 1 due to accounting for berms and rock washing facilities as 
separate from deep mining areas. 

The above Equation 1-Equation 3 were used for Sy and Ss for all layers. A similar methodology was used 
for the hydraulic conductivity with the following modifications (in units of ft/d), although it is unclear 
whether this type of equation was used by the original model developers. Alternatively, an equation based 
on assuming strata (cell/lake) being perpendicular or parallel to predominant groundwater flow direction 
may have been used by the original model developers. This approach would require detailed layer 
thickness/length information and due to its complexity was likely not used. 

𝐾𝐾𝑒𝑒𝑒𝑒𝑒𝑒 =
(𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝐴𝐴𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)𝐾𝐾𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∗ +𝐴𝐴𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∗ max (3.3 ∗ 105,𝐾𝐾𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)

𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
   

Equation 4 

Equations equivalent to Equation 2-Equation 3 were derived and applied to estimate the 2030 hydraulic 
conductivity starting from Equation 4. As discussed in the MODFLOW model documentation, the 
minimum hydraulic conductivity for lakes was set as 3.3E5 ft/d. Therefore, this minimum limit remained 
in the derivation. Missing values for the 4 cells identified above were filled in a similar manner but using 
Equation 4. The resulting 1999 𝐾𝐾𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  map shows consistency with nearby cells in areas with quarry lakes 
(Figure 12). 

Please note that the Miami-Dade MODFLOW model uses metric units, but the documentation and the 
figures presented herein are in English units. 
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Figure 8. 1999 Lake fraction 
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Figure 9. 2030 Lake fraction 
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Figure 10. Back-calculated calibrated specific yield Sy_cell. 
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Figure 11. Model grid cells R17C43 and R17C44 (row from north, column from west) are occupied by an urban lake and an urban 
development. This was confirmed by inspection of mine boundary maps at the FLDEP Mining and Mitigation Program website 
(https://ca.dep.state.fl.us/mapdirect/?focus=bmr). 

 

https://ca.dep.state.fl.us/mapdirect/?focus=bmr


27 
 

 

Figure 12. Back-calculated calibrated hydraulic conductivity for layer 1, K_cell. 



28 
 

Future ocean boundary condition 
 

The Miami-Dade MODFLOW model uses daily historical water level data at Virginia Key (ft NAVD88) for 
the period 1996-2010 as the ocean boundary condition. The historical water level data includes both tidal 
forcing and sub-tidal forcing (i.e. meteorological effects, current effects, etc.), as well as land subsidence 
effects which are considered minimal in south Florida. We performed an initial investigation to assess the 
relative importance of wind-, ocean current-, and rain-driven departures of ocean water levels from the 
predicted tides on model results. That is, we wanted to know if using the predicted Virginia Key tide as a 
key model input would be adequate to simulate the historical response of the groundwater system. If so, 
then simpler predicted-tide-only projections of the future ocean water levels would be adequate for 
groundwater simulations of the future. 

To asses this, we downloaded two sets of Virginia Key tide station data from the NOAA website: the 
observed water levels and the predicted water levels. The observed data were downloaded as hourly 
levels in feet (NAVD 88) and Local Standard Time (LST) zone from 1/1/1996 through 12/31/2018. We 
found that data were missing from 10/3/1997 through 11/8/1997 and from 2/13/2016 through 
2/25/2016. We used predicted tidal data to fill these data gaps. The data are plotted along with a fitted 
linear trend in Figure 13.  

 

 

Figure 13. Daily observed data from Virginia Key tide station represented by blue line and linear trend represented by red line. 

 

The linear trend is 

Water level (feet NAVD) = 5.18575 * 10-5 feet/d * x + 2.78591 feet,    
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where x is the number of days since 1/1/1900. This trend corresponds to a rate of 5.8 mm/year between 
January 1996 and December 2017. 

The predicted tide water levels were also downloaded as hourly water levels in feet (NAVD 88) and LST 
time zone from 12/31/1995 through 1/1/2026. These predictions do not have a significant sea level rise 
trend (Figure 14, dashed black line). To include the sea level rise in the prediction, we added the sea level 
rise trend from the observed data. Because the NOAA tidal epoch for the predicted tide data begins in 
1992, we began adding the sea level rise on 6/15/1992. The predicted trend-only stage for the 6/15/1992 
date was -0.9628 feet, and the stage for 12/31/1995 date, where our chart and simulations begin, was -
0.8952 feet. The difference d = 0.06752 feet corresponds to the amount of sea level increase between 
6/15/1992 and 12/31/1995. This was added to the predicted tide on 12/31/1995 and to all subsequent 
dates along with the overall trend. Figure 15 shows the result. As expected, the predicted water level with 
the added trend has the same trend (dashed green line in Figure 15) as the observed sea level rise trend 
(dashed brown line in Figure 14). 

 

 

Figure 14. Blue line represents predicted water level at Virginia Key tide station and dashed black line represents its small trend. 
Green line represents water level with added sea level rise trend and the dotted red line represents its trend.  

 

Figure 15 compares the observed tide data and the predicted tides plus SLR trend. This analysis was 
followed by an initial sensitivity analysis in order to determine whether the average May-October 
groundwater table elevations are sensitive to the exclusion of the sub-tidal forcing component. This 
sensitivity analysis will be discussed in the next section. 
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Figure 15. Comparison between observed Virginia Key tide data and predicted tide plus trend. 

 

Sensitivity analysis of ocean boundary condition 
 

1. For the model runs, we converted Virginia Key tide data to meters by multiplying them by 0.3048 m/ft 
and created .smp files starting with 1/1/1996 and ending with 12/31/2025. We had three sets of data: 
observed tide, predicted tide, and predicted tide with added sea level rise trend. Before running the 
model, we ran the UMD_scenario_BND python script. In the code we adjusted the paths, so it reads and 
creates outputs in the correct folders. This script created binary data for GHB and DRN model input files. 
This code also created umd_current.ghb and umd_current.drn files, which direct the model to read the 
binary files. We also created swr1 files for Virginia Key with the starting date 12/31/1995 and ending date 
1/1/2026. In these files, the units are feet NAVD 88 because the model is set up to convert to meters 
NAVD 88. With these changes, we ran the model for the current sea level scenario. The results of the 
model runs are shown below.  

Figure 16 shows 2017 simulated wet season heads in feet NAVD. The heads are based on observed tide 
water level input (left), predicted tide without trend input (center), and predicted tide with added trend 
(right). Overall, the maps show that the heads simulated based on the predicted tides without the added 
trend (center) are slightly lower than those simulated with the observed tides (left) and with the predicted 
tides plus the SLR trend (right). Comparing the simulations with the observed tides and with the predicted 
tides plus the SLR trend (left and right panels of Figure 17), indicates that heads simulated with the 
predicted tides plus the SLR trend are almost indistinguishable. This is reasonable considering the 
generally small difference in the 2017 wet season observations and predictions in Figure 16; a key 
exception is when Hurricane Irma and a weaker Florida Current led to higher observed water levels for a 
short time. Similarly, Hurricane Joaquin is likely responsible for the observed water level peak in 2015, 
and Hurricane Nicole – together with a weak Florida Current – likely contributed to the observed water 
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level peak in October of 2016. The impact of these differences between predicted and observed tide water 
levels is the key issue we seek to address here. On the basis of these sensitivity simulations, it appears 
that the use of the predicted tides plus an SLR trend in the simulations captures the wet season heads 
adequately consistent with the original approach of the Urban Miami-Dade model of Hughes and White 
(2016), which used the observed tides.  

 

Figure 16. 2017 simulated average wet season heads in feet NAVD. Heads based on observed tide water level input (left), 
predicted tide without trend input (center), and predicted tide with added trend (right). Red dots are salinity control structures. 
White boxes with blue outlines are water supply/flood control structures.  

 

Figure 17 shows the same results as Figure 16 displayed in terms of the depth to water. As expected, there 
are in general subtle increases in the simulated depth to water in case of the predicted tide without trend 
input (center), and the depths to water based on the observed tide water level input (left) and those based 
on the predicted tide with added trend (right) are nearly indistinguishable at this scale. 
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Figure 17. 2017 simulated average wet season depths to water in feet. Depths to water based on observed tide water level input 
(left), predicted tide without trend input (center), and predicted tide with added trend (right). Red dots are salinity control 
structures. White boxes with blue outlines are water supply/flood control structures. 

 
Figure 18 gives time series of observed and simulated heads for select wells (same wells as Figure 5-3 of 
Hughes and White (2016)) from 1996 through 2018 based on observed-tide water level input (green), 
predicted-tide-without-trend input (red), and predicted-tide-with-added-trend input (blue). Wells G-3549 
and G-3550 are closest to the tidal boundary and, as expected, show the greatest differences in the 
simulated heads as a function of the boundary type. The simulation based on the predicted tide-with-
trend input tracks the simulation based on observations more closely. The deviation of the tide-without-
trend input from the other simulations grows with time as the effect of the trend grows stronger. These 
results are consistent with the more generalized observations based on Figure 16. 
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Figure 18. Time series showing observed (gray dotted) and simulated heads for select wells (same wells as Figure 5-3 of Hughes 
and White (2016)) from 1996 through 2018 based on observed tide water level input (green), predicted tide without trend input 
(red), and predicted tide with added trend input (blue). Wells G-3549 and G-3550 are closest to the tidal boundary. Remainder of 
wells show observations through 2010 only.  
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In conclusion, the simulations conducted for this ocean boundary sensitivity analysis suggest that the use 
of predicted tides with an added sea level rise trend as key model input is adequate for the purpose of 
this project. The use of the predicted tides plus an SLR trend in the simulations reproduces the wet season 
heads in a way that is adequately consistent with the original approach of the Urban Miami-Dade model 
of Hughes and White (2016), which used the observed tides as input. 
 

 

Development of future ocean boundary condition timeseries 
 

Future (2055-2069) ocean boundary conditions reflecting sea level rise for modeling were obtained from 
the Unified Sea Level Rise (SLR) Projections developed by the Southeast Florida Regional Climate Change 
Compact (2015) for both the IPCC AR5 RCP8.5 Median curve and the USACE High curve. These future 
conditions reflect the effect of sea level rise on the predicted tides (based on harmonic analysis and fitting) 
for the two selected SLR scenarios. In other words, sub-tidal forcing is neglected due to uncertainties in 
predicting this component of the total ocean water levels. The sensitivity analysis discussed in the 
previous section showed that the choice of excluding sub-tidal forcing from the ocean boundary condition 
has only minor effects and is adequate for the purpose of this project. 

The procedure to derive projected daily projected tides at NOAA primary harmonic station 8723214 
(Virginia Key) for 2055-2069 was as follows: 

1. Hourly tide predictions for 1965-2016, based on harmonic analysis done by NOAA and a 1983-
2001 National Tidal Datum Epoch (NTDE; with a mid-point in 1992) mean sea level (MSL = 0.67 ft 
NGVD29 = -0.90 ft NAVD88; Figure 22), were obtained from the NOAA website based on meters 
above the local MLLW datum and GMT time zone. In other words, the 1965-2016 data reflects 
mean sea level around the year 1992. This work was previously done by the sub-contractor at the 
South Florida Water Management District (SFWMD). This is reasonably close to the -0.808 ft 
NAVD88 average of calibration period (1996-2010; centered on ~2003) total water levels 
mentioned in the Miami-Dade MODFLOW documentation (p. 7). This gives a linear SLR rate of 
0.00836 ft/yr (2.5 mm/yr), which is close to the SLR rate assumed in the model documentation on 
p. 94 (0.0073 ft/yr = 2.2 mm/yr). 

2. Scripts were used to convert the hourly tide predictions from 1965-2016 to ft NGVD29. According 
to VDatum tool, at Virginia Key (lat: 25o 43.9’ N, lon: 80o 9.7’ W), the offset from MLLW datum to 
NGVD29 datum is 0.430 ft, and the offset from MLLW datum to NAVD88 datum is 1.994 ft. 
Therefore, Water level in MLLW – offset value (NGVD29 or NAVD88) = water level (in NGVD29 or 
NAVD88). This work was also previously done at the SFWMD. 

3. The 1965-2016 hourly tide predictions in ft NGVD29 and GMT time zone were input into 
MATLAB/Octave script proj_allstas.m, which calls projecttides_new.m, both are included in 
Appendix A. MATLAB/Octave code for future tidal prediction. These programs do the following: 

a. First the tidal analysis and prediction code, UTIDE (Codiga, 2011), is run to fit harmonics 
to the hourly tide predictions at Virginia Key.  
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b. Then the harmonics are used by UTIDE to predict the hourly tide for the period 2055-2069 
(Figure 19) based on the 1983-2001 NTDE (i.e. based on a 1992 MSL). Predicting the hourly 
tides for 1965-2016 result in almost the same timeseries as the input timeseries, 
confirming that the harmonic fit is adequate for future prediction. Note that UTIDE is run 
with lunar nodal corrections which affect daily tidal range and diurnal inequalities. This is 
important for accurate future predictions. However, the effect of the lunar nodal cycle 
(LNC) on mean sea level (sinusoidal of 18.61-year period) is neglected. 

c. Finally, the hourly tide predictions for 2055-2069 based on 1992 MSL are shifted along a 
selected sea level rise curve. The SLR curve can be user-defined or based on one of the 4 
curves defined in the Unified Sea Level Rise Projections by the Southeast Florida Regional 
Climate Compact (2015), which are based on sea level increase from a 1992 MSL and 
hardcoded in the program. For the Florida Building Commission Miami-Dade modeling 
effort, we selected two SLR curves: the IPCC AR5 RCP8.5 Median SLR curve (with linear 
coefficient (a) = 1.7 mm/yr, and quadratic acceleration coefficient (b) = 0.047 mm/yr2; 
Figure 20), and the USACE High SLR curve (a = 1.7 mm/yr, b = 0.113 mm/yr2; Figure 21). 
The final hourly tide predictions output by the code are in ft NGVD29, EST time zone and 
represent the sea level rise expected to occur from 2055-2069 under the two SLR 
scenarios. 

4. The 2055-2069 hourly tide predictions in ft NGVD29 and EST time zone were imported into EXCEL 
and converted to daily averages using pivot tables. Finally, the datum was converted from ft 
NGVD29 to ft NAVD88 by subtracting 1.57 ft from elevations in ft NGVD29. The daily timeseries 
were saved as: Virg_Key_daily_tide_IPCC_AR5_Med_ftNAVD88.csv and 
Virg_Key_daily_tide_USACE_High_ftNAVD88.csv.   

a. The timeseries based on IPCC AR5 RCP8.5 Median SLR curve reflects MSL of 1.63 ft 
NGVD29 (0.06 ft NAVD88; Figure 23), for a SLR of 0.96 ft from 1/1/1992 to 1/1/2055. The 
MSL on 12/31/2069 is 2.04 ft NGVD29 (0.47 ft NAVD88; Figure 24), for a SLR of 1.37 ft 
from 1/1/1992 to 12/31/2069. 

b. The timeseries based on USACE High SLR curve reflects MSL of 2.49 ft NGVD29 (0.92 ft 
NAVD88; Figure 25), for a SLR of 1.82 ft from 1/1/1992 to 1/1/2055. The MSL on 
12/31/2069 is 3.36 ft NGVD29 (1.79 ft NAVD88; Figure 26), for a SLR of 2.69 ft from 
1/1/1992 to 12/31/2069. 
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Figure 19. Raw hourly tidal predictions at Virginia Key for 1965-2016, and predicted tides for 2055-2069. Both are in ft NGVD29 
and based on 1983-2001 NTDE (without SLR). 
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Figure 20. Hourly predicted tides (ft NGVD29) at Virginia Key for 2055-2069 without SLR (blue trace) and with IPCC AR5 RCP8.5 
Medium SLR curve (red trace). Note: The amplitude of the blue trace is similar to that of the red trace, the data is just hidden 
behind the red. The 1983-2001 NTDE MSL at Virginia Key is 0.67 ft NGVD29, while the MSL at the end of 2069 is 2.04 ft NGVD29 
after considering SLR. Daily averages were computed and the datum converted to ft NAVD88 prior to input into the model. 
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Figure 21. Hourly predicted tides (ft NGVD29) at Virginia Key for 2055-2069 without SLR (blue trace) and with USACE High SLR 
curve (red trace). Note: The amplitude of the blue trace is similar to that of the red trace, the data is just hidden behind the red. 
The 1983-2001 NTDE MSL at Virginia Key is 0.67 ft NGVD29, while the MSL at the end of 2069 is 3.36 ft NGVD29 after 
considering SLR. Daily averages were computed and the datum converted to ft NAVD88 prior to input into the model. 
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Figure 22. Topography and extent of flooding (cells with ‘+’ black markers) based on 1983-2001 NTDE mean sea level at Virginia 
Key (-0.90 ft NAVD88). X and Y coordinates in meters, UTM17N, NAD83. 
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Figure 23. Topography and extent of flooding (cells with ‘+’ black and white markers) for mean sea level on 1/1/2055 at Virginia 
Key for the IPCC AR5 RCP8.5 scenario (0.06 ft NAVD88). A total of 947 additional model grid cells would be flooded compared to 
the cells flooded based on 1983-2001 NTDE MSL. X and Y coordinates in meters, UTM17N, NAD83. 
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Figure 24. Topography and extent of flooding (cells with ‘+’ black and white markers) for mean sea level on 12/31/2069 at 
Virginia Key for the IPCC AR5 RCP8.5 scenario (0.47 ft NAVD88). A total of 1290 additional model grid cells would be flooded 
compared to the cells flooded based on 1983-2001 NTDE MSL. X and Y coordinates in meters, UTM17N, NAD83. 
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Figure 25. Topography and extent of flooding (cells with ‘+’ black and white markers) for mean sea level on 1/1/2055 at Virginia 
Key for the USACE High scenario (0.92 ft NAVD88). A total of 1773 additional model grid cells would be flooded compared to the 
cells flooded based on 1983-2001 NTDE MSL. X and Y coordinates in meters, UTM17N, NAD83. 
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Figure 26. Topography and extent of flooding (cells with ‘+’ black and white markers) for mean sea level on 12/31/2069 at 
Virginia Key for the USACE High scenario (1.79 ft NAVD88). A total of 2231 additional model grid cells would be flooded 
compared to the cells flooded based on 1983-2001 NTDE MSL. X and Y coordinates in meters, UTM17N, NAD83. 
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Future rainfall 
 

In the past, Irizarry evaluated the ability of various climate model outputs to capture the historical 
distribution of rainfall extremes for durations of 1-7 days in the state of Florida. In particular, the following 
statistically-downscaled data products, based on the World Climate Research Programme (WCRP) 
Coupled Model Intercomparison Project (CMIP) phase 5 (CMIP5), were evaluated: 

• US Bureau of Reclamation bias-corrected and statistically-downscaled climate projections 
(Maurer et al., 2007; Reclamation, 2013), which used daily Bias-Correction Constructed Analogues 
(BCCA) technique for statistical downscaling. 

• University of California (San Diego)’s Localized Constructed Analogs (LOCA) product (Pierce et al., 
2014). 

SFWMD staff had previously evaluated these same statistically downscaled data products in terms of their 
ability to capture historical rainfall temporal and spatial patterns in south Florida. As part of this work, it 
was observed that LOCA generally did a better job than BCCA at capturing rainfall patterns in the state 
(Irizarry et al., 2016). For this reason and also due to the fact that the LOCA product was used to guide the 
4th US National Climate Assessment report (https://scenarios.globalchange.gov/), this dataset was chosen 
and further evaluated for this project. A description of the LOCA dataset is included below. 

Localized Constructed Analogues technique (LOCA) is a statistical downscaling technique that uses past 
history to add improved fine-scale detail to global climate models (Pierce et al., 2014). First, a pool of 
candidate observed analog days is chosen by matching the model field to be downscaled to observed days 
over the region that is positively correlated with the point being downscaled, which leads to a natural 
independence of the downscaling results to the extent of the domain being downscaled. Then the one 
candidate analog day that best matches in the local area around the grid cell being downscaled is the 
single analog day used there. 

Most grid cells are downscaled using only the single locally selected analog day, but locations whose 
neighboring cells identify a different analog day use a weighted combination of the center and adjacent 
analog days to reduce edge discontinuities. By contrast, existing constructed analog methods typically use 
a weighted average of the same 30 analog days for the entire domain. By reducing this averaging, LOCA 
produces better estimates of extreme days, constructs a more realistic depiction of the spatial coherence 
of the downscaled field, and reduces the problem of producing too many drizzle (light-precipitation) days. 

The University of California at San Diego has used LOCA to downscale 32 global climate models from the 
CMIP5 archive at a 1/16th degree (approx. 4.3 miles; 6.9 km) spatial resolution, covering North America 
from central Mexico through Southern Canada. The historical period is 1950-2005, and there are two 
future scenarios available: RCP 4.5 and RCP 8.5 over the period 2006-2100 (although some models stop 
in 2099). RCP stands for representative concentration pathways (RCP). RCP 4.5 represents medium-low 
year 2100 radiative forcing (4.5 W/m2), while RCP 8.5 represents high radiative forcing (8.5 W/m2). 

The variables currently available daily minimum and maximum temperature and relative humidity, and 
daily precipitation. In the future, they will be running the VIC hydrological model with the downscaled 

https://scenarios.globalchange.gov/
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data, which will give many more variables, such as snow cover, soil moisture, runoff, and humidity, all at 
a 1/16th degree spatial resolution on a daily timescale. For more information see http://loca.ucsd.edu/.  

Statistically downscaled daily rainfall timeseries from LOCA for 30 climate models were evaluated for 
mainland grid cells in Miami Dade County in terms of their ability to match historical data. The analysis 
described hereafter only pertains to MODFLOW model grid cells in the mainland. As described in the 
Miami-Dade MODFLOW model documentation, the model uses daily historical rainfall from NEXRAD at 2-
km x 2-km for the calibration/verification period 1996-2010. In the model, a 1.05 multiplicative correction 
factor is applied to the NEXRAD rainfall due to previous evidence of bias compared to gage data. This data 
would have been ideal for evaluating and bias-correcting LOCA rainfall timeseries since the model was 
calibrated/verified to it. However, the LOCA historical period ends in 2005, which limits the comparison. 
For this reason, daily historical rainfall obtained from the South Florida Water Management Model 
(SFWMM) v4.7 binary file on a 3.2-km x 3.2-km (2-mi x 2-mi) grid for the period 1991-2005 was used in 
evaluating LOCA historical performance for the same period. 

Two analyses of LOCA performance were done to cull the LOCA models. One analysis looked at the annual 
total rainfall and the other one was based on wet season (May-October) precipitation. The analysis was 
only based on MODFLOW model grid cells in the mainland. This was due to the fact that the LOCA and 
SFWMM grids did not fully cover active model grid cells in the barrier islands. The R code is included in 
Appendix B. R code for rainfall bias correction. Table 3 and Table 4 show the performance of each LOCA 
model run for the two periods of interest. It can be noticed that all models are negatively biased for annual 
total rainfall with biases ranging from -7.4 to -0.13 in/yr (average of -4.2 in/yr) over Miami-Dade County. 
In the wet season, 28/30 models are negatively biased with biases ranging from -6.4 in/season to +0.75 
in/season (average of -3.1 in/season). 

In order to account for these biases, the mean of future LOCA predictions for both the annual totals and 
wet season, were bias-corrected as follows: 

 

𝑅𝑅𝑚𝑚−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑅𝑅𝑚𝑚−𝑝𝑝 ∗
𝑅𝑅𝑜𝑜−𝑐𝑐
𝑅𝑅𝑚𝑚−𝑐𝑐

 

Equation 5 

where 𝑅𝑅𝑚𝑚−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝is the adjusted future predicted annual total or wet season rainfall, 𝑅𝑅𝑚𝑚−𝑝𝑝 is the future 
predicted annual total or wet season rainfall, 𝑅𝑅𝑜𝑜−𝑐𝑐  is the observed current (historical) annual total or wet 
season rainfall, and 𝑅𝑅𝑚𝑚−𝑐𝑐 is the current (historical) predicted annual total or wet season rainfall. This 
equation is analogous to the Multiplicative Quantile Delta Mapping (MQDM) technique used for bias-
correction of daily rainfall data, which will be discussed later on. It assumes that the mean will also change 
in a multiplicative way, which is not necessarily the case. However, performing MQDM on daily rainfall 
data for all LOCA runs was found to be too computationally-intensive and the above simplified equation 
seems adequate as a first approximation for model evaluation. 

Figure 27 and Figure 29 show the distribution of changes from SFWMM historical (1991-2005) to future 
(2055-2069) bias-corrected annual total and wet season rainfall, respectively. It can be noticed that about 

http://loca.ucsd.edu/
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half of the models project a decrease in rainfall, while the other half project an increase in rainfall. The 
median projected change in annual total rainfall is slightly less than 0 (approximately -1.2 in/yr). During 
the wet season, 70% of models predict a decrease in rainfall, while 30% predict an increase. This is 
consistent with previous studies by Kirtman and others (FIU Rainfall Workshop, May 16, 2019) who 
evaluated the US Bureau’s BCSD data product and found that most models projected a drying of south 
Florida in the future. The median projected change in wet season rainfall is approximately -2.2 to -2.5 
in/yr. Figure 28 and Figure 30 show scatterplots of the annual total and wet season rainfall pre and post 
bias-correction of the mean based on Equation 5. 

It was decided that to be conservative in the estimation of average wet season water tables, a 90th-95th 
percentile of future bias-corrected rainfall (i.e. an increase from the baseline) should be selected for future 
modeling. Based on the analysis of annual total rainfall, the 95th percentile run was pr_MPI-ESM-
MR_r1i1p1_rcp85 with 5.2 in/yr (9.0%) of additional rainfall in the future period compared to 1991-2005 
SFWMM historical data. The run with the max change was pr_ACCESS1-0_r1i1p1_rcp45 with 8.7 in/yr 
(15.5%) extra rainfall. This run is shown with a red triangle marker on Figure 28 and Figure 30. 

Based on the analysis of wet season rainfall, the 95th percentile run was pr_MPI-ESM-LR_r1i1p1_rcp45 
with 3.6 in/season (8.2%) extra rainfall in the future period compared to 1991-2005 SFWMM historical 
data for wet season. The run with the max change was pr_MPI-ESM-MR_r1i1p1_rcp45 with 4.9 in/season 
(11.2%) extra rainfall. 

As shown in Figure 28 and Figure 30, there are other runs showing similar future bias-corrected annual 
total and wet season rainfall, but which had much smaller biases in the historical period. In this figure, the 
closer a LOCA model run point is to the 1:1 line, the smaller its historical bias and the smaller the bias-
correction of its future rainfall. LOCA run pr_MRI-CGCM3_r1i1p1_rcp85, shown as a yellow marker in 
these two figures, has similar bias-corrected annual total and wet season rainfall to the 95th percentile 
runs identified above. However, this run had a much smaller bias than the 95th percentile runs. Therefore, 
pr_MRI-CGCM3_r1i1p1_rcp85 was chosen for daily bias-correction for future scenario modeling. Figure 
31 shows the spatial distribution of the observed and simulated means prior to and post bias-correction 
of the means using Equation 5. Despite the coarseness of the LOCA dataset, it is evident how the historical 
spatial pattern of precipitation is generally well-captured by this LOCA run. As a final check, Figure 32 
shows that this LOCA model run does a decent job at capturing the historical seasonal cycle of rainfall in 
Miami-Dade County even prior to bias correction. It is evident that simulated variability is less in October, 
and the model overestimates variability in July and August.  
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Table 3. Comparison of LOCA run performance and predicted future annual total rainfall (in/yr). Note: SFWMM historical rainfall 
for 1991-2005 is 57.57 in/yr. 

LOCA model run/RCP Hist. 
(1991-
2005) 
mean 

Hist. bias Fut. 
(2055-
2069) 
mean 

Fut. 
(2055-
2069) 
B.C. mean 

Fut. 
(2055-
2069) B.C. 
mean 
minus 
hist. 
(1991-
2005) 
mean 

Percent 
change 
hist. to 
fut. B.C. 

Percentile 
fraction 

pr_ACCESS1-0_r1i1p1_rcp45 53.07 -4.5 61.06 66.23 8.66 15.04 1 

pr_ACCESS1-0_r1i1p1_rcp85 53.07 -4.5 52.74 57.23 -0.34 -0.59 0.559 

pr_ACCESS1-3_r1i1p1_rcp45 55.44 -2.13 52.86 54.99 -2.58 -4.48 0.457 

pr_ACCESS1-3_r1i1p1_rcp85 55.44 -2.13 57.17 59.44 1.87 3.25 0.711 

pr_CCSM4_r6i1p1_rcp45 52.54 -5.03 47.72 52.29 -5.28 -9.17 0.186 

pr_CCSM4_r6i1p1_rcp85 52.54 -5.03 47.93 52.5 -5.07 -8.81 0.22 

pr_CESM1-BGC_r1i1p1_rcp45 51.77 -5.8 50.71 56.4 -1.17 -2.03 0.491 

pr_CESM1-BGC_r1i1p1_rcp85 51.77 -5.8 47.06 52.38 -5.19 -9.02 0.203 

pr_CESM1-CAM5_r1i1p1_rcp45 52.33 -5.24 47.77 52.57 -5 -8.69 0.237 

pr_CESM1-CAM5_r1i1p1_rcp85 52.33 -5.24 49.38 54.34 -3.23 -5.61 0.423 

pr_CMCC-CMS_r1i1p1_rcp45 53.61 -3.96 54.6 58.7 1.13 1.96 0.661 

pr_CMCC-CMS_r1i1p1_rcp85 53.61 -3.96 46.47 49.92 -7.65 -13.29 0.084 

pr_CMCC-CM_r1i1p1_rcp45 53.22 -4.35 55.08 59.65 2.08 3.61 0.762 

pr_CMCC-CM_r1i1p1_rcp85 53.22 -4.35 49.41 53.47 -4.1 -7.12 0.338 

pr_CNRM-CM5_r1i1p1_rcp45 53.72 -3.85 56.24 60.28 2.71 4.71 0.83 

pr_CNRM-CM5_r1i1p1_rcp85 53.72 -3.85 53.79 57.65 0.08 0.14 0.576 

pr_CSIRO-Mk3-6-
0_r1i1p1_rcp45 

51.7 -5.87 53.82 59.92 2.35 4.08 0.813 

pr_CSIRO-Mk3-6-
0_r1i1p1_rcp85 

51.7 -5.87 54.65 60.85 3.28 5.70 0.898 

pr_CanESM2_r1i1p1_rcp45 54.45 -3.12 53.3 56.42 -1.15 -2.00 0.508 

pr_CanESM2_r1i1p1_rcp85 54.45 -3.12 48.7 51.53 -6.04 -10.49 0.152 

pr_EC-EARTH_r2i1p1_rcp85 53.86 -3.71 52.88 56.58 -0.99 -1.72 0.525 

pr_EC-EARTH_r8i1p1_rcp45 53.86 -3.71 49.72 53.2 -4.37 -7.59 0.288 

pr_FGOALS-g2_r1i1p1_rcp45 50.9 -6.67 52.56 59.48 1.91 3.32 0.728 

pr_FGOALS-g2_r1i1p1_rcp85 50.9 -6.67 47.46 53.69 -3.88 -6.74 0.355 

pr_GFDL-CM3_r1i1p1_rcp45 50.17 -7.4 53.32 61.23 3.66 6.36 0.915 

pr_GFDL-CM3_r1i1p1_rcp85 50.17 -7.4 56.79 65.2 7.63 13.25 0.983 

pr_GFDL-ESM2G_r1i1p1_rcp45 50.57 -7 46.25 52.64 -4.93 -8.56 0.254 

pr_GFDL-ESM2G_r1i1p1_rcp85 50.57 -7 44.34 50.48 -7.09 -12.32 0.118 

pr_GFDL-ESM2M_r1i1p1_rcp45 51.31 -6.26 47.51 53.38 -4.19 -7.28 0.322 

pr_GFDL-ESM2M_r1i1p1_rcp85 51.31 -6.26 51.45 57.78 0.21 0.36 0.593 

pr_GISS-E2-H_r2i1p1_rcp85 53.44 -4.13 50.58 54.55 -3.02 -5.25 0.44 
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LOCA model run/RCP Hist. 
(1991-
2005) 
mean 

Hist. bias Fut. 
(2055-
2069) 
mean 

Fut. 
(2055-
2069) 
B.C. mean 

Fut. 
(2055-
2069) B.C. 
mean 
minus 
hist. 
(1991-
2005) 
mean 

Percent 
change 
hist. to 
fut. B.C. 

Percentile 
fraction 

pr_GISS-E2-H_r6i1p3_rcp45 53.44 -4.13 52.55 56.63 -0.94 -1.63 0.542 

pr_GISS-E2-R_r2i1p1_rcp85 50.89 -6.68 52.6 59.5 1.93 3.35 0.745 

pr_GISS-E2-R_r6i1p1_rcp45 50.89 -6.68 48.85 55.27 -2.3 -4.00 0.474 

pr_HadGEM2-AO_r1i1p1_rcp45 56.95 -0.62 50.93 51.54 -6.03 -10.47 0.169 

pr_HadGEM2-AO_r1i1p1_rcp85 56.95 -0.62 53.54 54.12 -3.45 -5.99 0.406 

pr_HadGEM2-CC_r1i1p1_rcp45 52.47 -5.1 53.46 58.7 1.13 1.96 0.661 

pr_HadGEM2-CC_r1i1p1_rcp85 52.47 -5.1 52.69 57.81 0.24 0.42 0.61 

pr_HadGEM2-ES_r1i1p1_rcp45 53.42 -4.15 54.18 58.37 0.8 1.39 0.644 

pr_HadGEM2-ES_r1i1p1_rcp85 53.42 -4.15 49.2 53.02 -4.55 -7.90 0.271 

pr_IPSL-CM5A-LR_r1i1p1_rcp45 57.44 -0.13 53.88 54 -3.57 -6.20 0.389 

pr_IPSL-CM5A-LR_r1i1p1_rcp85 57.44 -0.13 49.64 49.77 -7.8 -13.55 0.067 

pr_IPSL-CM5A-
MR_r1i1p1_rcp45 

54.66 -2.91 50.51 53.2 -4.37 -7.59 0.288 

pr_IPSL-CM5A-
MR_r1i1p1_rcp85 

54.66 -2.91 56.4 59.4 1.83 3.18 0.694 

pr_MIROC-ESM-
CHEM_r1i1p1_rcp45 

54.71 -2.86 43.84 46.19 -11.38 -19.77 0.016 

pr_MIROC-ESM-
CHEM_r1i1p1_rcp85 

54.71 -2.86 42.47 44.74 -12.83 -22.29 0 

pr_MIROC-ESM_r1i1p1_rcp45 50.35 -7.22 50.9 58.2 0.63 1.09 0.627 

pr_MIROC-ESM_r1i1p1_rcp85 50.35 -7.22 47.1 53.84 -3.73 -6.48 0.372 

pr_MIROC5_r1i1p1_rcp45 51.99 -5.58 53.89 59.69 2.12 3.68 0.779 

pr_MIROC5_r1i1p1_rcp85 51.99 -5.58 54.86 60.76 3.19 5.54 0.881 

pr_MPI-ESM-LR_r1i1p1_rcp45 54.74 -2.83 57.63 60.6 3.03 5.26 0.864 

pr_MPI-ESM-LR_r1i1p1_rcp85 54.74 -2.83 57.41 60.38 2.81 4.88 0.847 

pr_MPI-ESM-MR_r1i1p1_rcp45 51.11 -6.46 57.03 64.25 6.68 11.60 0.966 

pr_MPI-ESM-MR_r1i1p1_rcp85 51.11 -6.46 55.69 62.73 5.16 8.96 0.949 

pr_MRI-CGCM3_r1i1p1_rcp45 56.68 -0.89 59 59.9 2.33 4.05 0.796 

pr_MRI-CGCM3_r1i1p1_rcp85 56.68 -0.89 60.94 61.9 4.33 7.52 0.932 

pr_NorESM1-M_r1i1p1_rcp45 56.48 -1.09 49.14 50.11 -7.46 -12.96 0.101 

pr_NorESM1-M_r1i1p1_rcp85 56.48 -1.09 46.37 47.31 -10.26 -17.82 0.033 

pr_bcc-csm1-1-m_r1i1p1_rcp45 56.41 -1.16 48.6 49.59 -7.98 -13.86 0.05 

pr_bcc-csm1-1-m_r1i1p1_rcp85 56.41 -1.16 49.52 50.52 -7.05 -12.25 0.135 
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Table 4. Comparison of LOCA run performance and predicted future wet season rainfall (in/ wet season). Note: SFWMM 
historical rainfall for 1991-2005 is 43.61in/wet season. 

LOCA model run/RCP Hist. 
(1991-
2005) 
mean 

Hist. 
bias 

Fut. 
(2055-
2069) 
mean 

Fut. 
(2055-
2069) 
B.C. 
mean 

Fut. 
(2055-
2069) 
B.C. 
mean 
minus 
hist. 
(1991-
2005) 
mean 

Percent 
change 
hist. to 
fut. B.C. 

Percentile 
fraction 

pr_ACCESS1-0_r1i1p1_rcp45 41.66 -1.95 43.2 45.22 1.61 3.69 0.813 

pr_ACCESS1-0_r1i1p1_rcp85 41.66 -1.95 38.55 40.38 -3.23 -7.41 0.389 

pr_ACCESS1-3_r1i1p1_rcp45 41.66 -1.95 36.4 38.22 -5.39 -12.36 0.203 

pr_ACCESS1-3_r1i1p1_rcp85 41.66 -1.95 39.02 40.96 -2.65 -6.08 0.44 

pr_CCSM4_r6i1p1_rcp45 39.18 -4.43 36.21 40.3 -3.31 -7.59 0.355 

pr_CCSM4_r6i1p1_rcp85 39.18 -4.43 35.23 39.2 -4.41 -10.11 0.288 

pr_CESM1-BGC_r1i1p1_rcp45 39.29 -4.32 36.9 40.98 -2.63 -6.03 0.457 

pr_CESM1-BGC_r1i1p1_rcp85 39.29 -4.32 33.99 37.78 -5.83 -13.37 0.186 

pr_CESM1-CAM5_r1i1p1_rcp45 39.53 -4.08 33.31 36.76 -6.85 -15.71 0.084 

pr_CESM1-CAM5_r1i1p1_rcp85 39.53 -4.08 35.86 39.57 -4.04 -9.26 0.305 

pr_CMCC-CMS_r1i1p1_rcp45 40.57 -3.04 43.08 46.39 2.78 6.37 0.898 

pr_CMCC-CMS_r1i1p1_rcp85 40.57 -3.04 34.28 36.87 -6.74 -15.46 0.118 

pr_CMCC-CM_r1i1p1_rcp45 40.46 -3.15 43.37 46.84 3.23 7.41 0.915 

pr_CMCC-CM_r1i1p1_rcp85 40.46 -3.15 39.52 42.62 -0.99 -2.27 0.593 

pr_CNRM-CM5_r1i1p1_rcp45 41.55 -2.06 43.13 45.28 1.67 3.83 0.83 

pr_CNRM-CM5_r1i1p1_rcp85 41.55 -2.06 41.38 43.44 -0.17 -0.39 0.677 

pr_CSIRO-Mk3-6-0_r1i1p1_rcp45 39.76 -3.85 39.45 43.26 -0.35 -0.80 0.661 

pr_CSIRO-Mk3-6-0_r1i1p1_rcp85 39.76 -3.85 38.96 42.74 -0.87 -1.99 0.627 

pr_CanESM2_r1i1p1_rcp45 41.89 -1.72 38.17 39.81 -3.8 -8.71 0.322 

pr_CanESM2_r1i1p1_rcp85 41.89 -1.72 34.49 35.96 -7.65 -17.54 0.067 

pr_EC-EARTH_r2i1p1_rcp85 41.65 -1.96 38.32 40.14 -3.47 -7.96 0.338 

pr_EC-EARTH_r8i1p1_rcp45 41.65 -1.96 36.86 38.63 -4.98 -11.42 0.237 

pr_FGOALS-g2_r1i1p1_rcp45 39.16 -4.45 39.58 44.11 0.5 1.15 0.745 

pr_FGOALS-g2_r1i1p1_rcp85 39.16 -4.45 36.67 40.84 -2.77 -6.35 0.423 

pr_GFDL-CM3_r1i1p1_rcp45 37.92 -5.69 38.3 44.08 0.47 1.08 0.728 

pr_GFDL-CM3_r1i1p1_rcp85 37.92 -5.69 40.04 46.1 2.49 5.71 0.881 

pr_GFDL-ESM2G_r1i1p1_rcp45 37.2 -6.41 35.31 41.38 -2.23 -5.11 0.508 

pr_GFDL-ESM2G_r1i1p1_rcp85 37.2 -6.41 32.1 37.63 -5.98 -13.71 0.169 

pr_GFDL-ESM2M_r1i1p1_rcp45 38.88 -4.73 36.23 40.7 -2.91 -6.67 0.406 

pr_GFDL-ESM2M_r1i1p1_rcp85 38.88 -4.73 39.72 44.6 0.99 2.27 0.779 



50 
 

LOCA model run/RCP Hist. 
(1991-
2005) 
mean 

Hist. 
bias 

Fut. 
(2055-
2069) 
mean 

Fut. 
(2055-
2069) 
B.C. 
mean 

Fut. 
(2055-
2069) 
B.C. 
mean 
minus 
hist. 
(1991-
2005) 
mean 

Percent 
change 
hist. to 
fut. B.C. 

Percentile 
fraction 

pr_GISS-E2-H_r2i1p1_rcp85 40.18 -3.43 37.83 41.11 -2.5 -5.73 0.491 

pr_GISS-E2-H_r6i1p3_rcp45 40.18 -3.43 38.95 42.31 -1.3 -2.98 0.542 

pr_GISS-E2-R_r2i1p1_rcp85 38.27 -5.34 38.2 43.53 -0.08 -0.18 0.694 

pr_GISS-E2-R_r6i1p1_rcp45 38.27 -5.34 35.38 40.34 -3.27 -7.50 0.372 

pr_HadGEM2-AO_r1i1p1_rcp45 43.74 0.13 36.85 36.8 -6.81 -15.62 0.101 

pr_HadGEM2-AO_r1i1p1_rcp85 43.74 0.13 37.56 37.47 -6.14 -14.08 0.152 

pr_HadGEM2-CC_r1i1p1_rcp45 39.56 -4.05 38.47 42.47 -1.14 -2.61 0.576 

pr_HadGEM2-CC_r1i1p1_rcp85 39.56 -4.05 38.75 42.73 -0.88 -2.02 0.61 

pr_HadGEM2-ES_r1i1p1_rcp45 41.08 -2.53 41.98 44.53 0.92 2.11 0.762 

pr_HadGEM2-ES_r1i1p1_rcp85 41.08 -2.53 35.01 37.17 -6.44 -14.77 0.135 

pr_IPSL-CM5A-LR_r1i1p1_rcp45 43.37 -0.24 42.61 42.83 -0.78 -1.79 0.644 

pr_IPSL-CM5A-LR_r1i1p1_rcp85 43.37 -0.24 38.81 39.04 -4.57 -10.48 0.254 

pr_IPSL-CM5A-MR_r1i1p1_rcp45 41.16 -2.45 40.08 42.46 -1.15 -2.64 0.559 

pr_IPSL-CM5A-MR_r1i1p1_rcp85 41.16 -2.45 44.77 47.42 3.81 8.74 0.966 

pr_MIROC-ESM-
CHEM_r1i1p1_rcp45 

41.24 -2.37 30.18 31.96 -11.65 -26.71 0 

pr_MIROC-ESM-
CHEM_r1i1p1_rcp85 

41.24 -2.37 30.95 32.76 -10.85 -24.88 0.033 

pr_MIROC-ESM_r1i1p1_rcp45 38.06 -5.55 36.27 41.55 -2.06 -4.72 0.525 

pr_MIROC-ESM_r1i1p1_rcp85 38.06 -5.55 35.87 41.08 -2.53 -5.80 0.474 

pr_MIROC5_r1i1p1_rcp45 40.07 -3.54 40.15 43.71 0.1 0.23 0.711 

pr_MIROC5_r1i1p1_rcp85 40.07 -3.54 41.38 45.04 1.43 3.28 0.796 

pr_MPI-ESM-LR_r1i1p1_rcp45 41.04 -2.57 44.4 47.19 3.58 8.21 0.949 

pr_MPI-ESM-LR_r1i1p1_rcp85 41.04 -2.57 42.85 45.55 1.94 4.45 0.847 

pr_MPI-ESM-MR_r1i1p1_rcp45 38.87 -4.74 43.24 48.52 4.91 11.26 1 

pr_MPI-ESM-MR_r1i1p1_rcp85 38.87 -4.74 42.79 48 4.39 10.07 0.983 

pr_MRI-CGCM3_r1i1p1_rcp45 42.86 -0.75 44.83 45.6 1.99 4.56 0.864 

pr_MRI-CGCM3_r1i1p1_rcp85 42.86 -0.75 46.26 47.08 3.47 7.96 0.932 

pr_NorESM1-M_r1i1p1_rcp45 44.36 0.75 35.4 34.82 -8.79 -20.16 0.05 

pr_NorESM1-M_r1i1p1_rcp85 44.36 0.75 33.26 32.75 -10.86 -24.90 0.016 

pr_bcc-csm1-1-m_r1i1p1_rcp45 41.99 -1.62 37.66 39.08 -4.53 -10.39 0.271 

pr_bcc-csm1-1-m_r1i1p1_rcp85 41.99 -1.62 36.89 38.31 -5.3 -12.15 0.22 
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Figure 27. Distribution of changes from SFWMM historical to future bias-corrected annual total rainfall. 

 

Figure 28. Scatterplot of future annual total rainfall pre and post bias-correction. 
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Figure 29. Distribution of changes from SFWMM historical to future bias-corrected wet season rainfall. 

 

 

Figure 30. Scatterplot of future wet season rainfall pre and post bias-correction. 
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(a) (b) 

(c) (d) 
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(e) (f) 
  

Figure 31. Spatial distribution of (a) SFWMM historical rainfall (1991-2005), (b) Simulated historical rainfall (1991-2005), (c) 
Simulated future rainfall (2055-2069), (d) Bias-corrected simulated future rainfall, (e) = (d)/(a), (f) = (d) - (a). Note: Here, bias 
correction has been done on the annual total rainfall (mean) by applying Equation 5. 
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Figure 32. Seasonal cycle of domain-averaged monthly total precipitation for the historical period (1991-2005) and the future 
period (2055-2069). The historical SFWMM data is shown in blue, the simulated historical data for LOCA model pr_MRI-
CGCM3_r1i1p1 is in red, and the simulated future data for LOCA model pr_MRI-CGCM3_r1i1p1_rcp85 is in green. 

Quantile mapping (QM), a CDF matching method (Panofsky and Brier, 1968), has been typically applied to 
bias-correct precipitation timeseries from climate model simulations. To avoid some common limitations 
of QM, other methods have been developed such as Quantile Delta Mapping (QDM). As shown in Cannon 
et al. (2015), QM tends to inflate trends in precipitation extreme indices projected by GCMs, whereas 
QDM is not as prone to this problem. QDM preserves model-projected changes in quantiles, while 
simultaneously correcting for systematic biases across quantiles (Cannon et al., 2015). QDM also attempts 
to bridge the gap between point estimates for the observations vs. grid cell estimates in the model. 
However, it is important to note that changes in the mean may not be preserved by QDM.  

QDM can be applied in additive form or multiplicative form. Multiplicative QDM (MQDM) is better suited 
to correcting variables like precipitation where preserving relative changes is important in order to respect 
the Clausius-Clapeyron equation which relates the amount of atmospheric moisture to temperature 
changes simulated by the models. MQDM was used to bias-correct daily precipitation data for LOCA run 
pr_MRI-CGCM3_r1i1p1_rcp85 at every MODFLOW model grid cell independently. 
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The Multiplicative QDM (MQDM) method is described by 

 

 

Equation 6 

which is equivalent to: 

 

Equation 7 

 

where  is the adjusted quantile for the LOCA model (m) projections (p) for the future period 
(2055-2069),  is the CDF of the SFWMM observations (o) in the current (1991-2005) baseline period 
(c),  is the CDF of the LOCA model (m) in the current (1991-2005) baseline period (c),  is the 
CDF for the LOCA model (m) projections (p) for the future period (2055-2069), and  is the quantile 
for the LOCA model (m) projections (p) in the future (2055-2069) baseline period.  F-1 means the inverse 
of the CDF (i.e. the quantile function), G is the annual non-exceedance probability (CDF value) and is equal 
to 1-P, P is the annual exceedance probability (AEP) which is related to the return period T by 1/P = T (i.e. 
G=1-1/T). Figure 33 shows MQDM application for hypothetical data. 

As part of this project, MQDM was applied to bias-correct future daily rainfall data for LOCA run pr_MRI-
CGCM3_r1i1p1_rcp85 for each month of the year separately. In other words, twelve (12) CDFs were 
developed for each cumulative function shown in Equation 6 and Equation 7. The analysis was done for 
all model grid cells in the mainland. For active model grid cells in the barrier islands, data from the closest 
SFWMM or LOCA grid cell was used. 

Figure 34 shows quantile-quantile plots of observed and simulated daily rainfall for the historical period 
(1991-2005) in the top panel, simulated historical (1991-2005) vs. future (2055-2069) projected daily 
rainfall in the middle panel, and the respective CDFs in the bottom panel, considering all daily values at a 
particular MODFLOW model grid cell together. As a reminder, MQDM was applied for different months 
of the year separately, but looking at all daily values lumped together is still helpful. It is evident that this 
LOCA run underestimates daily extremes at this location in the historical period, while it simulates an 
increase in future precipitation. Similar behavior is observed at most MODFLOW model grid cells in Miami-
Dade County. Figure 35 shows how MQDM bias-correction fixes the extremes in the historical period (top 
panel), while still simulating increased precipitation in the future period (middle panel). The top panel in 
this figure shows the daily data points almost exactly on the 1:1 line; however, since MQDM is applied 
separately for different months of the year, there may be some small excursions from the 1:1 line at other 
model grid cells when plotting all daily values together. 

Figure 36 shows the spatial distribution of the observed and simulated means prior to and post daily bias-
correction using Equation 6. It is evident how daily bias correction corrects the mean historical spatial 
pattern to match that of the observed data (top 2 panels). The bias-corrected future precipitation (Figure 
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36d) has a similar spatial pattern to that of the historical period, as expected. The spatial pattern in Figure 
36d is very similar to the case when the long-term mean was bias-corrected (Figure 31d). However, the 
magnitude of the rainfall is larger in the daily bias-correction case (63.9 in/yr or 11% higher than historical) 
than in the mean bias-correction case (61.9 in/yr or 7.5% higher than historical) due to non-linearities in 
the daily bias-correction process. Figure 37 shows the same maps as in Figure 36 but including the barrier 
islands. 

 

 

 

Figure 33. Diagram showing the Multiplicative Quantile Delta Method for hypothetical data. 

F is the non-exceedance probability of interest. The quantiles corresponding to F are given by CDF1-1: F-1o-c(F) for the observed 
current baseline, CDF2-1: F-1m-c(F) for the model current baseline, CDF3-1: F-1m-p(F) for the model projected (future) period. The 
corresponding adjusted quantile for the model projected (future) period is CDF4-1: F-1m-p adjust(F) = F-1m-p(F)*{F-1o-c(F)/F-1m-c(F)}. The 
distances a and b are different in MQDM due to the use of a ratio in the bias correction equation.  However, a and b would be 
equal in Additive Quantile Delta Method. 
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Figure 34. Pre-bias correction: (a) Quantile-quantile plot of daily observed vs. simulated precipitation for the historical period 
(1991-2005), (b) Quantile-quantile plot of simulated historical (1991-2005) vs. simulated future (1991-2005) precipitation, (c) 
Cumulative distribution functions. 
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Figure 35. Pre-bias correction: (a) Quantile-quantile plot of daily observed vs. simulated precipitation for the historical period 
(1991-2005), (b) Quantile-quantile plot of simulated historical (1991-2005) vs. simulated future (1991-2005) precipitation, (c) 
Cumulative distribution functions. 
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(a) (b) 

(c) (d) 
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(e) (f) 
  

(e) (f) 
Figure 36. Spatial distribution of (a) SFWMM historical rainfall (1991-2005), (b) Bias-corrected simulated historical rainfall 
(1991-2005), (c) Simulated future rainfall (2055-2069), (d) Bias-corrected simulated future rainfall, (e) = (d)/(a), (f) = (d) - (a). 
Note: Here, bias correction has been done on the annual total rainfall (mean) by applying Equation 6. 
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(a) (b) 

(c) (d) 
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(e) (f)   
(e) (f) 

Figure 37. As in Figure 36, but including the barrier islands. 
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Figure 38. Seasonal cycle of domain-averaged monthly total precipitation for the historical period (1991-2005) and the future 
period (2055-2069). The historical SFWMM data is shown in blue, the simulated historical data for LOCA model pr_MRI-
CGCM3_r1i1p1 after daily bias-correction is in red, and the simulated future data for LOCA model pr_MRI-CGCM3_r1i1p1_rcp85 
after daily bias correction is in green. 

 

Figure 38 shows the seasonal cycle of domain-average rainfall after daily bias-correction for the historical 
and future periods. It is evident how daily-bias correction makes the domain-average simulated monthly 
mean rainfall match that of the observations. However, the method is not always able to improve the 
monthly variability. For example, the variability of the bias-corrected historical simulated rainfall improves 
during the month of June, but is even larger than prior to bias-correction during August and October 
(Figure 32).  This is due to the fact that the daily MQDM bias-correction method corrects only one grid cell 
at a time without considering the spatial and temporal variability of rainfall. This limitation is addressed 
by other bias-correction methods such as Bias-Corrected Stochastic Analogs (BCSA; Hwang and Graham, 
2013). Comparison of Figure 38 with Figure 32 shows that the pattern of increased future precipitation at 
the end of the wet season (September-October) and slight decreases in January and August precipitation 
remain after daily bias-correction.  
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Future Everglades water levels 
 

Future water levels in the Everglades are expected to be different from historical due to implementation 
of the Comprehensive Everglades Restoration Plan (CERP) and possibly due to increased rainfall as a result 
of climate change. For that purpose, simulated water levels in the Everglades for two modeling scenarios 
simulated by the South Florida Water Management Model (SFWMM) were evaluated: (1) the updated 
full-CERP implementation (CERP0 scenario; Figure 39), which uses projected future land use, historical 
rainfall, and includes CERP restoration components such as partial decompartmentalization of Water 
Conservation Area 3 (WCA3) and Everglades National Park (ENP), Water Preserve Areas (Lakebelt 
Storage), etc., and (2) A current baseline scenario with 2010 land use and a 10% increase in rainfall.  

The stage data for these two modeling scenarios were obtained from the South Florida Water 
Management District (J. Barnes, pers. comm.). The stage data was provided at all SFWMM 2-mile x 2-mile 
grid cells across the MODFLOW model domain, and interpolated to the MODFLOW model resolution using 
bilinear interpolation tool from R’s {akima} package (Appendix C. R code for calculating average Everglades 
water levels by Julian day). Due to the coarse resolution of the SFWMM, the boundary between WCA-
3B/ENP and the urban areas east of the Lower East Coast (LEC) protective levee is represented by the 
SFWMM in a way that water levels in the LEC were affecting interpolated stages in MODFLOW cells 
representative of WCA3/ENP. Therefore, as shown in Figure 40, MODFLOW grid cells located in 
WCA3/ENP, but east of the SFWMM representation of the WCA3/ENP-LEC boundary (blue line on this 
figure) were assigned the interpolated stage data from the closest MODFLOW grid cell west of the 
SFWMM representation of the WCA3/ENP-LEC boundary. 

Figure 41 shows the average historical stages used in the original USGS MODFLOW model for the 
calibration/verification period 1996-2010 (ft NGVD29). The data is from the Everglades Depth Estimation 
Network (EDEN) database (USGS, 2012) and was interpolated to the MODFLOW model grid using bi-linear 
interpolation as described in Hughes and White (2016). Figure 42 and Figure 43 show the average 
simulated stages for the CERP0 and the 10% increased rainfall scenarios, respectively.  

Figure 44 shows the differences between the average simulated stages in the two SFWMM scenarios. The 
differences reflect not only changes in rainfall, but also differences in the configuration of the water 
resource management system. For example, the reduction in stages in WCA-3A and WCA-3B, and the 
increased stages in northeastern Everglades National Park are a result of the partial 
Decompartmentalization component of CERP0. Figure 45 and Figure 46 show the differences between the 
simulated stages in the two scenarios (1965-2005) and the historical stages from the EDEN network (1996-
2010). A SFWMM scenario run with both CERP0 features and 10% increased rainfall (CERP0+10%RF) 
performed by Obeysekera et al. (2010; Figure 15 in that publication) showed only slightly increased 
average water levels in the Everglades and Water Conservation Areas in the order of about 0.1 ft or less. 
This small difference is likely due to CERP0 management features, such as rain-driven operations, being 
able to compensate for the rainfall increase and move water out of the system.  Output from this 
CERP0+10%RF run was not available; therefore, water levels from the CERP0 scenario with historical 
rainfall was chosen for inclusion in future (2055-2069) modeling scenarios. It is notable that the CERP0 
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simulation assumes historical predicted tides as boundary conditions and does not reflect the expected 
increases in sea level rise in the future. This is a limitation of using this model run to provide boundary 
conditions for this modeling effort. 

The CERP0 modeling scenario simulates 1965-2005 water levels based on historical rainfall. However, the 
future modeling scenarios that will be simulated using the Miami-Dade MODFLOW model as part of this 
project encompass the period 2055-2069 (with the first 5 years thrown out). Therefore, a decision was 
made to use average simulated water levels from the CERP0 run for each day of the year (1-365) at each 
Everglades/WCA model grid cell, and repeat this 365-day timeseries for every year of the future simulation 
period (2055-2069). This would provide a more reasonable future Everglades water level boundary 
condition than simply using the historical stage time series.  

The resulting timeseries of water levels at each model grid cell was converted from ft NGVD29 to m 
NAVD88, which are the vertical datum and units used in the MODFLOW model. The U.S. Army Corps of 
Engineers Corpscon 6.0.1 software with vertcon05 was used to obtain offsets from ft NGVD29 to ft 
NAVD88 at each MODFLOW model grid cell (Figure 47). The resulting offsets were corroborated by 
comparison against offsets published by the South Florida Water Management District 
(https://www.arcgis.com/home/item.html?id=4ffd84bc93ce4862bcd642bdb023668e). The final dataset 
was saved in netCDF format in R and read by a Python notebook to generate daily binary files of water 
levels in the format required by the model (e.g. CERP0_stage_20101209.bin). 

https://www.arcgis.com/home/item.html?id=4ffd84bc93ce4862bcd642bdb023668e
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Figure 39. Comprehensive Everglades Restoration Plan components. Source: 
https://www.sfwmd.gov/sites/default/files/documents/rog_scenariodev_2010_0127.pdf  

https://www.sfwmd.gov/sites/default/files/documents/rog_scenariodev_2010_0127.pdf
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Figure 40. Boundary MODFLOW cells in WCA3/ENP. Stage data for MODFLOW cells in yellow were interpolated from data at 
SFWMM cells representing WCA3/ENP (SFWMM cells inside or touching the polygon shown by the blue line). MODFLOW cells in 
red were assigned the interpolated value for the closest MODFLOW cell in yellow. X and Y coordinates in meters, UTM17N, 
NAD83. 
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Figure 41. Average historical stages for 1996-2010 based on data from the EDEN network. X and Y coordinates in meters, 
UTM17N, NAD83. 
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Figure 42. Average simulated stages for the CERP0 scenario (1965-2005). X and Y coordinates in meters, UTM17N, NAD83. 
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Figure 43. Average simulated stages for the 10% increased rainfall scenario (1965-2005). X and Y coordinates in meters, 
UTM17N, NAD83. 
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Figure 44. Differences in average simulated stages between the CERP0 scenario and 10% increased rainfall scenario (1965-
2005). X and Y coordinates in meters, UTM17N, NAD83. 
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Figure 45. Differences between simulated stages in the CERP0 scenario (1965-2005) and the EDEN dataset (1996-2010). X and Y 
coordinates in meters, UTM17N, NAD83. 
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Figure 46. Differences between simulated stages in the 10% increased rainfall scenario (1965-2005) and the EDEN dataset 
(1996-2010). X and Y coordinates in meters, UTM17N, NAD83. 
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Figure 47. Datum shift offsets for the MODFLOW model domain (elevation in ft NAVD88 = elevation in ft NGVD29 + offset). X 
and Y coordinates in meters, UTM17N, NAD83. 
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Future freshwater/saltwater source 
 

The saltwater intrusion package (SWI2) in the Miami-Dade MODFLOW model requires input of an array 
called isource, which defines the density of sources and sinks in each model grid cell. In addition, the 
isource array is used by a boundary condition pre-processing script in conjunction with the variable ibound 
(Appendix D. Description of boundary condition file (ibound)) to define whether each model grid cell is 
computationally active or is assigned a GHB or drain boundary condition. 

In this model, only two density zones are simulated: zone 1 is the freshwater zone, while zone 2 is the 
seawater zone. “If isource > 0, sources and sinks have the same fluid density as the zone given by isource.  
If such a source is not present in the cell, then sources and sinks have the same fluid density as the active 
zone at the top of the aquifer. When isource = 0, sources and sinks have the same fluid density as the 
active zone at the top of the aquifer. When isource < 0, source have the same fluid density as the zone 
with a number equal to |isource|, while sinks have the same fluid density as the active zone at the top of 
the aquifer. This option is used when simulating the ocean bottom where infiltrating water is salt while 
exfiltrating water is of the same type as water at the top of the aquifer.” (Bakker et al., 2013).  

In the Miami-Dade MODFLOW model, land areas are assigned an isource of 0, ocean areas are given an 
isource of -2, while the Turkey Point cooling canals are given an isource of 2 to reflect that water in the 
cooling canals is currently as dense as seawater (Figure 48). Analysis of the calibration and scenario runs 
performed by the USGS shows that ocean areas, which are given an isource of -2, are defined based on 
the mean sea level during the last year of the simulation period. Therefore, a similar approach was 
followed in developing isource arrays for the two future sea level rise scenarios to be modeled as part of 
this project. That is, ocean areas are defined based on the predicted mean sea level at 2069. 

Figure 49 shows the model topography and extent of flooding for the IPCC AR5 RCP8.5 SLR scenario based 
on a 2069 MSL of 0.47 ft NAVD88. A total of 1,290 additional cells are below the 2069 MSL beyond the 
1,246 cells that are flooded based on the 1983-2001 National Tidal Datum Epoch of 1983—2001. In 
defining the ocean cells (Figure 50) for this scenario, a total of 44 isolated cells below sea level and cells 
near the Lower East Coast protective levee were excluded. Figure 51 shows the model topography and 
extent of flooding for the USACE High SLR scenario based on a 2069 MSL of 1.79 ft NAVD88. A total of 
2,231 additional cells are below the 2069 MSL beyond the 1,246 cells that are flooded based on the 1983-
2001 National Tidal Datum Epoch of 1983—2001. In defining the ocean cells (Figure 52) for this scenario, 
a total of 42 isolated cells below sea level and cells near the Lower East Coast protective levee were 
excluded as well. Eight (8) additional cells below the 2069 MSL that are located inside the Turkey Point 
power plant cooling canals, also keep the original isource value of +2. The assumption is that the power 
plant and its cooling canals will be protected by levees in the future. 
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Figure 48. Freshwater/saltwater source (isource) for the 1996-2010 calibration run. Cells marked with white '+' are below the 
2010 historical mean sea level at Virginia Key and their isource value is (for the most part) equal to -2 (blue). X and Y coordinates 
in meters, UTM17N, NAD83. 
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Figure 49. Topography and extent of flooding (cells with ‘+’ black and white markers) for mean sea level on 2069 at Virginia Key 
for the IPCC AR5 RCP8.5 SLR scenario (0.47 ft NAVD88). A total of 1290 additional model grid cells would be below MSL 
compared to the cells flooded based on 1983-2001 NTDE MSL. X and Y coordinates in meters, UTM17N, NAD83. 
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Figure 50. Freshwater/saltwater source (isource) based on the mean sea level on 2069 at Virginia Key for the IPCC AR5 RCP8.5 
SLR scenario (0.47 ft NAVD88). X and Y coordinates in meters, UTM17N, NAD83. 
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Figure 51. Topography and extent of flooding (cells with ‘+’ black and white markers) for mean sea level on 2069 at Virginia Key 
for the USACE High SLR scenario (1.79 ft NAVD88). A total of 2231 additional model grid cells would be below MSL. X and Y 
coordinates in meters, UTM17N, NAD83. 
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Figure 52. Freshwater/saltwater source (isource) based on the mean sea level on 2069 at Virginia Key for the USACE High SLR 
scenario (1.79 ft NAVD88). X and Y coordinates in meters, UTM17N, NAD83. 
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Initial elevation of the freshwater/saltwater interface 
 

The saltwater intrusion package in the Miami-Dade MODFLOW model requires input of an array called 
izeta, which defines the initial elevation of the freshwater/saltwater interface. The izeta array can be 
defined for each model layer, in which case “the zeta surface is placed at the top of the model layer when 
a value is entered that is above the top of the model layer and it is placed at the bottom of the model 
layer when a value is entered that is below the bottom of the model layer. For the case of a surface that 
is present at only one point in the vertical everywhere, the same grid of zeta values may be entered for 
every model layer and the SWI2 package will determine in which cells, the elevation of the zeta surface 
falls between the top and bottom of each layer.” (Bakker et al., 2013).  

This second approach was used in the calibration/verification model simulation by the USGS. Figure 53 
shows the starting elevation of the freshwater/saltwater interface used in the model 
calibration/verification. It is based on the position of the interface at the base of the Biscayne Aquifer, 
defined as the location with a chloride concentration of 100 mg/L in 1995 (Sonenshein, 1997). Model grid 
cells to the west of the location of the interface at the bottom of the aquifer were assigned an izeta value 
equal to the bottom of model layer 3 (i.e. bottom of the aquifer) whereas most ocean grid cells were 
assigned an izeta value equal to the bathymetry. It is unclear how the initial elevation of the interface was 
interpolated for model cells in between these two regions. 

An izeta surface needs to be developed for the future modeling scenarios with sea level rise, which start 
in the year 2055. Ideally, the source of the initial elevation of the freshwater/saltwater interface should 
come from observations or from a long-term simulation up to the year 2055 with sea levels rising along 
the selected sea level rise curve. The future scenario run based on the IPCC AR5 RCP8.5 SLR curve has an 
initial mean sea level of 0.06 ft NAVD88, which is close to the final mean sea level (0.05 ft NAVD88) in the 
USGS Scenarios 2 and 3 (Hughes and White, 2016). Given that we will be using the increased well pumpage 
file from Scenario 3 in our future scenario model runs, the final zeta surfaces for model layers 1-3 from 
the USGS Scenario 3 were used as initial zeta surfaces for our IPCC AR5 RCP8.5 SLR scenario run. 
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Figure 53. Starting elevation of the freshwater/saltwater interface in 1996. X and Y coordinates in meters, UTM17N, NAD83. 
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Main future scenario and sensitivity runs 
 

As part of this project, we performed two main future scenario runs and three additional sensitivity runs 
using the calibrated Miami-Dade MODFLOW model developed by the USGS. The future scenario and 
sensitivity runs were run for the period 2055-2069 with the intent of using the first five years of the 
simulation as a spin-up period and dropping them from the analysis. The model input and output files for 
these future runs often use the same timestamps as in the calibration/verification period (1996-2010); 
however, they represent input and simulated conditions between 2055-2069. 

 

Main modeling assumptions 
 

The following are common assumptions in all five (5) future scenario and sensitivity runs: 

• 2030 land use and directly-connected impervious areas (DCIA), 2018 permitted quarry lakes, 
calibrated crop coefficients 

• 2010 septic return flow from the USGS scenarios  
• The western boundary condition consists of water levels in Water Conservation Area 3 (WCA3) 

and Eastern Everglades National Park (ENP) from CERP0 SFWMM run obtained from J. Barnes 
(average for Julian day at each cell is repeated every year) 

• The 1-D surface water network, structures, effective gate openings, and specified pump 
discharges remain the same as in the USGS 1996-2010 calibration/verification of the model 
(Figure 88). 

 

The two main scenario runs (runs 1 and 2 on Table 5) are identical except that they use two different tidal 
boundary conditions which represent tidal predictions plus two different sea level rise curves (IPCC AR5 
RCP8.5 Median curve, and USACE High curve, respectively). Runs 3-5 are variations of the first two runs.  

All runs, with the exception of run 3, use 2030-2040 wellfield pumpage from USGS Scenario 1 for Miami 
Dade Water and Sewer Department (MDWASD) wells (372.58 MGD), and 2010 wellfield pumpage for 
other wells (52.65 MGD) for a total wellfield pumpage of 425.23 MGD (Table 6).  Pumpage at a particular 
wellfield (Figure 89) is distributed equally among all wells and the 2030-2040 daily pumpage timeseries is 
repeated during every year of the scenario runs. All pumpage is removed from the bottom layer of the 
model (layer 3), which is the primary production zone for the Biscayne Aquifer in this area.  

Figure 54 shows the average wellfield pumpage by model grid cell in the 1996-2010 
calibration/verification run, which adds up to an average annual total pumpage of 385.27 MGD. Figure 55 
shows the average 2030-2040 wellfield pumpage for the future scenario runs, which totals 425.23 MGD. 
Differences in pumpage between the future scenario runs and the calibration/verification run are shown 
in Figure 56, where the addition of the South Miami Heights wellfield is evident as well as the removal of 
the Leisure, Naranja, Elevated Tank, Everglades Labor and Newton wellfields. Increased pumpage at the 
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Southwest, Northwest, and West wellfields are also evident. In addition, some decreases are observed in 
the Miami Springs-Hialeah-Preston wellfield and the Alexander Orr wellfield. See Hughes and White 
(2016) for more details on the source of future wellfield pumpage. 

Run 3 is a worse-case scenario for flooding due to its use of a high SLR curve and no pumpage. The main 
future scenario runs (runs 1 and 2) use a rainfall timeseries from a bias-corrected LOCA model run with 
increased rainfall when compared to historical conditions, and assumes a 5% increase in RET resulting 
from increased future temperatures (Obeysekera et al., 2014). Runs 4 and 5 are the same as 1 and 2, but 
using historical rainfall and reference ET (RET).  More details on these assumptions and a description of 
the MODFLOW input files modified for these runs can be found in Appendix E. MODFLOW input file 
modifications for scenario simulations.  

Table 5. Assumptions for two main scenario runs (1 and 2) and the three additional scenario sensitivity runs (3-5). 

Run short-name 
(1)  

LOW SLR 
(2) 

HIGH SLR 

(3) 
HIGH SLR 

+ NO 
PUMPAGE 

(4) 
LOW SLR + 

HIST 
RAIN/RET 

(5) 
HIGH SLR + 

HIST 
RAIN/RET 

Run description 

Low SLR 
scenario 
(IPCC 
median) 

High SLR 
scenario 
(USACE 
High) 

High SLR 
scenario 
with no 
pumpage 

Low SLR 
scenario 
with 
historical 
rainfall/RET 

High SLR 
scenario 
with 
historical 
rainfall/RET 

Rainfall and recharge           
1996-2010 NEXRAD rainfall with 
1.05 correction factor       X X 
Bias-corrected LOCA rainfall for 
2055-2069 (no correction factor 
applied) X X X     
Reference evapotranspiration 
(RET)           
1996-2010 RET from the USGS       X X 
1996-2010 RET from the USGS with 
1.05 adjustment factor due to 
future temperature increase X X X     
PWS pumpage           
No pumpage     X     
Future Pumpage as in USGS Scen. 1 
for 2030-2040 X X   X X 
Tidal boundary condition           
Predicted sea levels for 2055-2069 + 
SLR from IPCC AR5 RCP8.5 median 
curve X     X   
Predicted sea levels for 2055-2069 + 
SLR from USACE High curve   X X   X 
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Table 6. Wellfield pumpage from USGS Scenario 1 run in million gallons per day (MGD).  

Wellfield Wellfield 
pumpage rate 

(MGD) 
Hialeah 3.1 
Preston 37.2 
Miami Springs 29.7 
Northwest 85.4 
Alexander Orr 40 
Snapper Creek 21.9 
Southwest 137.28 
West 15 
South Miami Heights 3 
TOTAL for MDWASD 
wells 

372.58 

Other wells 52.65 
TOTAL pumpage 425.23 
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Figure 54. Average wellfield pumpage during the calibration/verification period (1996-2010) in MGD. Higher pumpage values 
are indicated by dark red colors (i.e. higher negative recharge). 
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Figure 55. Average wellfield pumpage in the future scenario and sensitivity runs in MGD. Higher pumpage values are indicated 
by dark red colors (i.e. higher negative recharge). 
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Figure 56. Differences in average wellfield pumpage in the future scenario and sensitivity runs minus the calibration run in MGD. 
Higher pumpage values in the future scenario runs are indicated by red colors (i.e. higher negative recharge). Differences range 
from -21 to +16 MGD at individual model cells, but -5 to +5 MGD range chosen for display purposes. 
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Initial condition runs 
 

In order to provide a reasonable set of initial conditions for modeling these scenarios, a couple of long-
term simulations for the period 1996-2054 were performed. In particular the initial location of the 
saltwater/freshwater interface in 2055 is critical and difficult to derive analytical methods. The simulations 
were broken into three periods (1996-2025, 2026-2040, and 2041-2054) so that the isource variable, 
which defines the density (saltwater vs. freshwater) of sources and sinks in each model layer in the SWI2 
package, could vary throughout this relatively long period. The two long-term simulations were based on 
a repetition of the stresses (rainfall, RET, irrigation, wellfield pumpage, structure operations) during the 
1996-2010 calibration/verification period; however,  the eastern boundary condition at Virginia Key was 
based on future tidal predictions plus sea level rise along one of the two SLR curves of interest (IPCC AR5 
RCP8.5 median or USACE High SLR curves). 

These two long-term model runs provide the initial conditions required by the Urban Miami-Dade 
MODFLOW model, which consist of initial heads for each of the three groundwater layers, stages on the 
surface water reaches, and the location of the saltwater/freshwater interface (izeta surface).  The scenario 
runs will be run for the period 2055-2069 with the intent of using the first five years of the simulation as 
a spin-up period, which will be dropped from the analysis. This should minimize the influence of errors in 
the initial condition on the simulated groundwater levels for the 2060-2069 period of interest. The model 
set up and results for these long-term runs are described in the next sections. In some cases, results from 
the main modeling runs for the period 2055-2069 are presented as well. 

 

Input file modifications 
 

Figure 57 summarizes the input file structure of the model and files that had to be updated. The folder 
named “model” has two green subfolders that were updated. These subfolders split into 6 yellow 
subfolders and 3 pink subfolders. The red square represents the updated “nam” file, which contains the 
list of directories where the model is directed to read the remaining input files. Cyan squares represent 
files for specific processes (e.g., ghb = general head boundaries) that contain model details such as 
discretization, surface and saltwater package information or path information for files that change on a 
daily basis through the simulation period. Finally, ochre/brown squares represent updated files with the 
data. Full lines arrows on the figure represent where the model is directed to, and dotted lines join folders 
with their subfolders and files.   
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Figure 57. Model structure of folders and files updated for the first three simulation period runs. Folders in green, yellow, and 
pink. Files in red, cyan, and ochre/brown. 

 

Freshwater/saltwater source (isource variable) 
 

We computed the isource variable for the year 2025 using average Virginia Key daily tide predictions plus 
sea level rise for the year 2025 compared to the land surface elevation to determine if a particular location 
was flooded with sea water. Similar calculations were made for 2040 and 2054.  

Figure 58 shows the isource maps for the low sea level rise scenario run 1996-2025 (a), 2026-2040 (b), 
2041-2054 (c) and 2055-2069 (d), and Figure 59 for the high sea level scenario run 1996-2025 (a), 2026-
2040 (b), 2041-2054 (c) and 2055-2069 (d). Green indicates fresh water, blue is salt water, and brown is 
elevated salinity water in the Turkey Point Nuclear Plant cooling canals. Isource for each run is different, 
especially in the southern area of the map where seawater overtops the land surface. Greater differences 
in the isource occur in the high sea level rise scenario.  
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(a) ISOURCE LOW SLR FOR 1996-2025  (b) ISOURCE LOW SLR FOR 2026-2040 

 

(c) ISOURCE LOW SLR FOR 2041-2054  (d) ISOURCE LOW SLR FOR 2055-2069 

 

Figure 58. Isource for Low SLR (a) run (1996-2025), (b) run (2026-2040), (c) run (2041-2054) and (d) run (2055-2069). Green 
indicates fresh water, blue is seawater, and brown is elevated salinity water in the Turkey Point Nuclear Plant cooling canals. 
Water control structures are shown as blue squares and salinity control structures are shown as red dots. 
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(a) ISOURCE HIGH SLR FOR 1996-2025              (b) ISOURCE HIGH SLR FOR 2026-2040 

  

(c) ISOURCE LOW HIGH FOR 2041-2054            (d) ISOURCE HIGH SLR FOR 2055-2069 

 

Figure 59. Isource for High SLR (a) 1996-2025 run, (b) 2026-2040 run, (c) 2041-2054 run, and (d) 2055-2069 run. Green indicates 
fresh water, blue is seawater, and brown is elevated salinity water in the Turkey Point Nuclear Plant cooling canals. Water 
control structures are shown as blue squares and salinity control structures are shown as red dots. 
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Step-wise model runs 
 

Initial conditions that were updated and passed to each subsequent run include the simulated final heads 
of layers 1 through 3, the simulated final zeta surfaces of layer 1 through 3, simulated final canal stages, 
and isource. The first run of the low SLR scenario was 30 years long, starting with the time step 12/31/1995 
and ended with time step 1/1/2026. With the python script “processumdfinalstageheadzeta.py”, we 
created files of the head, stage, and zeta from the last day (12/3/2025) of the run. Updated files were 
named the same as previous files, except that we added low_26_40, which is the name of the run for 
which the files were used as initial conditions. We updated directories for the model to read input files 
from and the scenarios.dis file which determines the length of the run.  

 
The second run was 15 years long. Before running the model, we created DRN and GHB binary files with 
the Python script UMD_Scenario_BND. We changed only the Virginia Key stage file and isource input files 
to create new DRN and GHB files. We used updated DRN, GHB, heads, zeta, stage, and isource files to re-
run the model starting with time step 12/31/2025 and ending with time step 1/1/2041. After the run, we 
again updated isource, GHB, DRN, head, zeta, and stage files, which we used as the initial condition for 
the third run. The third run was 14 years long starting on 12/31/2040 and ending on 1/1/2055. We used 
the same approach we used for the high SLR scenario. Table 7 shows values used to create isource for 
each run for low and high SLR scenarios and the run length for each run. The isource was created by 
averaging Virginia Key predicted tide plus SLR of the last year of the run. From the year 2005 to the year 
2054 for the low scenario, the average Virginia Key stage increased by 0.589 foot, and for the high scenario 
by 1.19 foot. The second part of the table indicates the number of time steps for each run. The longest 
run 1996-2025 has 10958 time steps, and the shortest run 2041-2054 has 5113 time steps.  

 

Table 7. Average values of Virginia Key stage for creating isource and length of the model in file scenarios.dis 

SCENARIO RUN 
 

ISOURCE SCENARIOS.DIS 
Number of time steps (days) 

Year Yearly average of 
Virginia Key 
(feet NAVD88) 

LOW 1996-2025 original -0.76 (2010 average-
original) 

10958 

2026-2040 2025 -0.54 5479 
2041-2054 2040 -0.27 5113 
2055-2069 2054 0.049 5479 

HIGH 1996-2025 original -0.30 (original highsl) 10958 
2026-2040 2025 -0.30 5479 
2041-2054 2040 0.24 5113 
2055-2069 2054 0.89 5479 
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Map results of step-wise model runs 
 

Wet season heads in Layer 1 are plotted below for each of the three simulations. The days selected for 
comparison are evenly spaced every 15 years, so the heads can be compared when the repeated tidal 
(plus SLR), rainfall, and other time series inputs cause groundwater levels to be on the same trend in their 
cycles. Figure 60 shows simulated wet season heads of Layer 1 in feet NAVD88 for the low SLR scenario 
on 12/31/2024 (a), on 12/31/2039 (b) and on 12/31/2054 (c). Figure 61 shows depth to water maps for 
the same heads as in Figure 60. Figure 62 shows simulated wet season heads of layer one in feet NAVD88 
for the high SLR scenario on 12/31/2024 (a), on 12/31/2039 (b) and on 12/31/2054 (c). Figure 63 shows 
depth to water maps for the same heads as in Figure 62. 

 

 

Figure 60 . Simulated heads of Low SLR scenario on (a) 12/31/2024, (b) 12/31/2039 and (c) 12/31/2054. 

(a) (b) (c) 
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Figure 61. Simulated depth to water of Low SLR scenario on (a) 12/31/2024, (b) 12/31/2039 and (c) 12/31/2054. 

 

 

Figure 62. Simulated heads of High SLR scenario on (a) 12/31/2024, (b) 12/31/2039 and (c) 12/31/2054. 

(a) (b) (c) 

(a) (b) (c) 
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Figure 63. Simulated depth to water of High SLR scenario on (a) 12/31/2024, (b) 12/31/2039 and (c) 12/31/2054 

 

The changes in the heads at different times for the low SLR scenario are shown in Figure 64; the changes 
are shown between (a) 12/31/2039 and 12/31/2024, (b) 12/31/2054 and 12/31/2039 and (c) 12/31/2054 
and 12/31/2024. Similarly, the changes in the heads for the high SLR scenario are shown in Figure 65. The 
heads are increasing everywhere on the map except in small portions of the south area of the map, where 
head elevation has decreased.  

 

 

 

 

 

 

 

 

 

(a) (b) (c) 
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Figure 64. Simulated difference in heads for low SLR scenario between (a) 12/31/2039 and 12/31/2024, (b) 12/31/2054 and 
12/31/2039 and (c) 12/31/2054 and 12/31/2024. 

 

Figure 65. Simulated difference in heads for high SLR scenario between (a) 12/31/2039 and 12/31/2024, (b) 12/31/2054 and 
12/31/2039 and (c) 12/31/2054 and 12/31/2024. 

(a) (b) (c) 

(a) (b) (c) 
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The greatest difference at any model grid cell in the low SLR scenario between 12/31/2024 and 
12/31/2069 with updated rainfall data is 4.85 feet, and between 12/31/2024 and 12/31/2069 with 
historical rainfall is 4.06 feet. The greatest difference in the high SLR scenario between 12/31/2024 and 
12/31/2069 with updated rainfall data is 3.96 feet, between 12/31/2024 and 12/31/2069 with historical 
rainfall is 3.95 feet, and between 12/31/2024 and 12/31/2069 with no pumpage is 9.03 feet. 

 

Cross-section results of step-wise and final model runs 
 

We plotted cross-sections of head changes through the years by choosing model Column 51 (north-to-
south section at 564750 UTM meters East) and model Row 95 (west-to-east section at 2832750 UTM 
meters North) as shown in Figure 66.  

 

Figure 66. Cross-section location map. Blue color represents hydrography and red lines represent cross-sections. 
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The cross-sections for the low SLR scenario are shown in Figure 67 from (a) west-to-east and (b) north-to-
south. As above, the days selected for comparison are evenly spaced every 15 years, so the heads are at 
the same time in their trend cycle. The green line represents topography. The red line represents day 
12/31/2024, and it has the lowest head elevation of all lines. As the simulations progress in time, the head 
elevation increases. The blue line represents day 12/31/2039, and the yellow line represents day 
12/31/2054. The purple color represents day 12/31/2069 with the updated rainfall data, the maroon color 
represents day 12/31/2069 with the historical rainfall. The cross-section for the high SLR scenario is shown 
in Figure 68  from (a) west-to-east and (b) north-to-south and, in addition to the times and scenarios 
depicted in Figure 67, includes a gray line representing day 12/31/2069 with no water supply wells 
operating. This is the most conservative scenario in terms of high groundwater levels that is considered 
in this report. 
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Figure 67. Cross-section for low SLR scenario and sensitivity runs (a) West to East and (b) North to South. 
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Figure 68. Cross-section for high SLR scenario and sensitivity runs (a) West to East and (b) North to South. 
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Saltwater intrusion zeta surfaces 
 

The Saltwater Intrusion Package (SWI) utilizes a sharp-interface approximation to simulate the position of 
the subsurface interface between seawater and freshwater. The position of the interface is given by the 
steepest region of the Zeta surface, which separates seawater and freshwater. In areas where an aquifer 
layer is filled with all seawater or all freshwater, the Zeta surface has the same elevation as the top or 
bottom of the layer respectively. Landward motion of the steep part of the Zeta elevation surface reflects 
seawater intrusion. Zeta surfaces can be used to convert the equivalent freshwater head model results 
into actual heads by accounting for the density difference between saltwater and freshwater. This was 
not done in this report because the difference is expected to be small at the water table and the equivalent 
freshwater head is higher and therefore gives conservatively high estimates of the water table’s impact 
on flooding. In general, the zeta surface maps show some landward progression of the saltwater interface. 
Figure 69, Figure 70, Figure 71, Figure 72, Figure 73, and Figure 74 show the Zeta surfaces for the 3 
sequential time periods for each of the 3 model layers, under the low and high SLR scenarios. In general, 
the zeta surface maps show some landward progression of the saltwater interface. 

 

Figure 69. Zeta surfaces of layer 1 low SLR scenario for (a) 12/31/2024, (b) 12/31/2039, (c) 12/31/2054. 
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Figure 70. Zeta surfaces of layer 2 low SLR scenario for (a) 12/31/2024, (b) 12/31/2039, (c) 12/31/2054. 

 

Figure 71. Zeta surfaces of layer 3 low SLR scenario for (a) 12/31/2024, (b) 12/31/2039, (c) 12/31/2054. 
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Figure 72. Zeta surfaces of layer 1 high SLR scenario for (a) 12/31/2024, (b) 12/31/2039, (c) 12/31/2054. 

 

Figure 73. Zeta surfaces of layer 2 high SLR scenario for (a) 12/31/2024, (b) 12/31/2039, (c) 12/31/2054. 
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Figure 74. Zeta surfaces of layer 3 high SLR scenario for (a) 12/31/2024, (b) 12/31/2039, (c) 12/31/2054. 

 

 

Saltwater intrusion zeta surface cross-sections 
 

It can be helpful to view the Zeta surfaces in cross section. The sections show the extent of saltwater 
intrusion, with saltwater to the south and east of the near-vertical dashed lines near the centers of the 
sections. 
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Figure 75. Cross sections showing Land elevation, bottom elevations of Layers 1, 2, and 3, and 2069 Zeta surfaces of Layers 1, 2, 
and 3 for high SLR scenario with updated rain. (a) West to East. (b) North to South. Location of cross-sections shown in Figure 
66.  
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Results from main future scenario and sensitivity runs 
 

Results from the main five model runs are summarized hereafter in terms of three major variables: (1) 
wet season average heads in the top layer of the model, (2) wet season average depth to the groundwater 
table, and (3) the spatial location of the freshwater/saltwater interface at the bottom of the three model 
layers at the end of the last dry season (May 31st) in the simulation. These results are presented as 
absolutes as well as differences from the calibration/verification run. Differences between the sensitivity 
runs and the two main scenario runs are also presented. Additional results are presented in the Initial 
conditions section. 

The calibration/verification run encompasses a 15-year period from 1996-2010 where the first year was a 
warm-up period to reduce the influence of initial conditions, the period 1997-2004 was the model 
calibration period, and the period 2005-2010 was the model verification period. Results for the two main 
future scenario runs and the three sensitivity runs are presented for the 10-year period from 2060-2069. 
Wet season averages are over 2,760 simulation days in the calibration/verification run, and over 1,840 
days in the future scenario and sensitivity runs. 

Figure 76-Figure 77 and Table 8 show the simulated wet season average heads on the model’s top layer 
on the left panels and the corresponding wet season average depth of the water table on the right panels 
for the calibration run and the two main future scenario runs with low and high sea level rise. Figure 78 
and Table 8 show differences in the wet season average heads with respect to the calibration for each of 
these runs. Figure 79 and Table 9 show differences in the wet season average heads in the sensitivity runs 
(runs 3-5) compared to the base future scenario runs (runs 1 and 2). 

The average wet season head map (Figure 76a) for the calibration period shows higher water levels in the 
Everglades as expected with heads up to 6.43 ft NAVD88 in the area, and a gradient towards the east-
southeast reaching the wet season mean sea level of -0.70 ft NAVD88 downstream of the salinity control 
structures. The lowest simulated stages are at the cones of depression near the wellfields with the lowest 
simulated wet season average head of about -4.23 ft NAVD88. The areas where the water table is deeper 
is on the coastal ridge as expected, with lower depths to water table near the coast and the Southern 
Glades area and other areas of the Everglades that are ponded on average during the wet season. 

The average wet season head map for the low SLR scenario (Figure 76c) shows the highest water levels in 
the Everglades of up to 7.07 ft NAVD88 decreasing towards the east-southeast and reaching the wet 
season mean sea level of 0.41 ft NAVD88 downstream of the salinity control structures. As shown in Figure 
78a, heads are increased throughout the Everglades, especially in Northeast Shark River Slough on the 
northeastern side of Everglades National Park compared to the calibration run. This is due to the increased 
heads simulated for this area in the CERP0 run of the South Florida Water Management Model (SFWMM), 
which are being used as the western boundary condition in the future scenario runs. An exception is the 
Southern Glades region of ENP where heads are lower in the future scenario runs, consistent with CERP0 
simulation. It is notable that the CERP0 simulation assumes historical predicted tides as boundary 
conditions and does not reflect the expected increases in sea level rise in the future. The model pre-
processor takes the maximum of the local topography, Virginia Key stage, and CERP0 stages (or historical 
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EDEN stages in the case of the calibration run) in this area, converts them to equivalent freshwater heads 
if appropriate and uses this head in developing GHB or drain boundary conditions for each model grid cell.  

As shown in Figure 82, it is evident how the EDEN timeseries (red trace) was controlling for the majority 
of the calibration run for this sample cell (row 160, column 5) due it being much higher than the Virginia 
Key historical water levels (green trace). However, in the low SLR run, both the CERP0 water levels (black 
trace) and the Virginia Key predicted tide (blue trace for IPCC AR5) are relatively close to each other and 
quite often lower than historical EDEN stages. Therefore, the heads used in defining GHB and drain 
boundary conditions are often lower in the low SLR scenario than in the original calibration run.   

A decrease in heads with respect to the calibration run is also simulated in areas northeast of the C-111 
canal near the S-197 structure in the low SLR scenario run. After further investigation, it was found that 
simulated heads in this region were greatly overestimated in the calibration run (Figure 83), whereas the 
low SLR scenario run often used GHBs and drain boundary conditions in this area due to most of it being 
inundated at the mean sea level for the last year of the simulation. For more information, see section  
Future freshwater/saltwater source regarding the model’s isource variable. Therefore, caution is required 
when interpreting head changes in this area. Changes in simulated heads can also be observed near 
wellfields (Figure 89). Heads in the vicinity of the Southwest wellfield decrease due to increased pumpage, 
while heads in the vicinity of the Alexander Orr and Miami Springs-Hialeah-Preston wellfields increase due 
to decreased pumpage (Figure 56). Figure 67 shows the evolution of simulated heads for the initial 
condition runs and the low SLR scenario and sensitivity runs as east-west and nort-south cross-sections of 
simulated heads on the last day of each simulation. 

The spatial location of the freshwater/saltwater interface at the bottom of the three model layers on May 
31st of the last year of simulation are presented in Figure 80 for each future scenario and sensitivity run 
using the calibration run as a reference (base) run. There is a caveat that the LOCA run used in the future 
scenario and sensitivity runs was chosen as the 95th percentile of all future model runs; therefore, it is 
bound to underestimate the inland migration of the saltwater front if actual future rainfall were to 
decrease especially in the dry season. In addition, the two main future scenario runs and the no pumpage 
sensitivity run have a different rainfall sequence and RET than the calibration run. However, as observed 
in Figure 81b and d, the differences in the location of the interface are small between the two sensitivity 
runs with the same historical rainfall and RET as in the calibration run, and the corresponding future 
scenario runs using the corresponding SLR curve.  

From Figure 80a, one can see how under the low SLR scenario, the salinity control structures are often 
able to hold the saltwater intrusion front to the east at the bottom of the top model layer (layer 1). 
However, saltwater starts intruding into this top layer near salinity control structures S-20G and S-20F in 
eastern portions of the C-103 and C-103N basins and into the Model Lands area (Figure 87 and Figure 88). 
The Aerojet canal and the C-111 canal seem to also be able to control the migration of the saltwater 
intrusion front at the bottom of this top layer. Significant inland migration of the saltwater intrusion line 
at the bottom of the aquifer (bottom of layer 3) is simulated in the Southern Glades, C-111 Basin, Model 
Lands, and eastern portions of the C-102, C-103 and C-103N basins. Some migration of the front at the 
bottom of the aquifer is also observed near canals in other areas of the model, especially near the Miami 
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Springs-Hialeah-Preston wellfields. Keeping those canals at higher stages might keep the saltwater front 
at bay in these areas at the expense of flood control capacity.  

The average wet season head map for the high SLR scenario (Figure 76d) shows the highest water levels 
in the Everglades of up to 7.07 ft NAVD88 decreasing towards the east-southeast and reaching the wet 
season mean sea level of 1.57 ft NAVD88 downstream of the salinity control structures. As shown in Figure 
78b, heads are increased throughout the Everglades, especially in Northeast Shark River Slough on the 
northeastern side of Everglades National Park compared to the calibration run. This is due to the increased 
heads simulated for this area in the CERP0 run of the South Florida Water Management Model (SFWMM), 
which are being used as the western boundary condition in the future scenario runs. As explained above, 
heads in the southern Glades region southwest of the C-111 canal are also likely underestimated in the 
high SLR scenario even when stages at Virginia Key under USACE High SLR scenario are much higher than 
those simulated by CERP0 and most historical EDEN stages (Figure 82). The simulated head increase in 
areas northeast of the C-111 canal near the S-197 structure with respect to the calibration run is likely 
underestimated for the same reasons discussed above for the low SLR scenario. Changes in simulated 
heads with respect to the calibration run can also be observed near particular wellfields (Figure 89) in the 
same direction as in the low SLR scenario. Figure 68 shows the evolution of simulated heads for the initial 
condition runs and the high SLR scenario and sensitivity runs as east-west and nort-south cross-sections 
of simulated heads on the last day of each simulation. 

Figure 79a shows the difference in wet season average heads in the high SLR scenario minus the low SLR 
scenario. As expected, differences in head are zero on the Everglades, where both scenarios use the same 
CERP0 boundary condition, increasing to about 1.26 ft near the coast, reflecting the different tidal 
boundary conditions used in the two SLR scenarios. 

From Figure 80b, one can see how under the high SLR scenario, the salinity control structures are generally 
able to hold the saltwater intrusion front to the east at the bottom of the top model layer (layer 1). 
However, saltwater starts intruding into this top layer near salinity control structures S-21A, S-20G and S-
20F in the eastern portions of the C-102, C-103, C-103N basins and into the Model Lands area (Figure 87 
and Figure 88). From Figure 81a, it is evident that the saltwater front migrates even further inland than in 
the low SLR run. Contrary to the low SLR scenario, the Aerojet canal and the C-111 canal do not seem to 
be able to control the migration of the saltwater intrusion front at the bottom of this top model layer in 
the high SLR scenario. Significant inland migration of the saltwater intrusion line at the bottom of the 
aquifer (bottom of layer 3) is simulated in the Southern Glades, C-111 Basin, Model Lands, and eastern 
portions of the C-102, C-103 and C-103N basins. The simulated migration of the saltwater intrusion front 
at the bottom of the aquifer in the high SLR scenario is very similar to that of the low SLR scenario run for 
areas north of the S-123 structure. Figure 75 shows cross sections showing the location of the 
freshwater/saltwater interface in the three model layers at the end of the simulation period for the high 
SLR scenario. 

Comparison of Figure 76c versus Figure 77c, and Figure 76e versus Figure 77e for the low and high SLR 
scenarios and corresponding historical rainfall and RET sensitivity runs, respectively, show very small 
differences. This can be confirmed from Figure 79b and d, and Table 8. Average wet season heads are 
lower throughout the mainland in both the low SLR and high SLR sensitivity runs with historical rainfall 
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and RET. This means that the increase in rainfall imposed on the base low and high SLR future scenario 
runs is able to counteract the 5% imposed increase in RET for a net increase in available water in the 
system compared to historical conditions in the calibration/verification run. Heads do increase in the 
Miami Beach-Key Biscayne area as a result of the historical rainfall; however, we caution about 
interpretations in this region due to both the LOCA grid and the SFWMM grids not including this area and 
some extrapolations being performed in developing a rainfall timeseries for this area.  

As mentioned previously, the changes in the location of the saltwater/freshwater interface between the 
runs with historical rainfall and RET and the base future scenario runs (Figure 81b and d) are negligible. 
There is a caveat that the LOCA run used in the future scenario and sensitivity runs was chosen as the 95th 
percentile of all future model runs; therefore, it is bound to underestimate the inland migration of the 
saltwater front if actual future rainfall were to decrease especially in the dry season. 

Results for the worst-case sensitivity run (run 3) with high SLR and no pumpage can be seen in Figure 77a 
and the differences with respect to the calibration and high SLR run with future pumpage are shown in 
Figure 78c and Figure 79e, respectively. Large increases in heads are observed near the now non-existent 
cones of depression near wells with differences up to 6.0 ft. Increased heads of 0.5 ft or more compared 
to the high SLR scenario run persist quite a large distance from the wells. Surprisingly, Figure 81e shows a 
very small effect of wellfield pumpage on the location of the freshwater/saltwater interface at the end of 
the last modeled last season. As mentioned earlier, decreased rainfall especially during the dry season, 
could have major impacts on the location of the interface, so these figures should be interpreted with 
caution and not used in future planning or policy decisions. 

 

Table 8. Spatial range and spatial average of wet season average heads in the calibration and future scenario runs. 

Run short-name Range of wet 
season average 

head (ft NAVD88) 

Average of wet 
season average 

head (ft NAVD88) 

Range of 
difference in 
wet season 

average heads 
with respect to 
calibration (ft) 

Average 
difference in 
wet season 

average heads 
with respect to 
calibration (ft) 

CALIBRATION -4.23 to +6.43 +1.67 - - 
(1) LOW SLR -2.58 to +7.07 +2.50 -0.71 to +3.01 +0.69 

(2) HIGH SLR -1.83 to +7.07 +3.19 -0.20 to +3.57 +1.27 
(3) HIGH SLR + NO 
PUMPAGE 

+0.77 to +7.07 +3.34 -0.16 to +8.50 +1.38 

(4) LOW SLR + HIST 
RAIN/RET 

-2.86 to +7.05 +2.43 -1.14 to +2.61 +0.63 

(5) HIGH SLR + HIST 
RAIN/RET 

-2.11 to +7.06 +3.14 -0.59 to +3.21 +1.22 



112 
 

Table 9. Spatial range of differences in wet season average heads between future scenario and sensitivity runs. 

Runs compared Range of difference in 
wet season average 

heads (ft) 

Average difference in 
wet season average 

heads (ft) 
HIGH SLR – LOW SLR -0.13 to +1.26 +0.58 
(LOW SLR + HIST RAIN/RET) – LOW SLR -0.43 to +0.58 -0.06 
(HIGH SLR + HIST RAIN/RET) – (LOW SLR + HIST 
RAIN/RET) 

-0.06 to +1.22 +0.59 

(HIGH SLR + HIST RAIN/RET) – (HIGH SLR) -0.40 to +0.51 -0.05 
(HIGH SLR + NO PUMPAGE) – HIGH SLR -0.12 to +6.10 +0.12 
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(a) (b) 

(c) (d) 

Wet season average heads (ft NAVD88) 
CALIBRATION (1996-2010) 

 

Wet season average depth to water table (ft) 
CALIBRATION (1996-2010) 

 
Wet season average heads (ft NAVD88) 

LOW SLR (2060-2069) 

 

Wet season average depth to water table (ft) 
LOW SLR (2060-2069) 
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(e) (f) 

Wet season average heads (ft NAVD88) 
HIGH SLR (2060-2069) 

 

Wet season average depth to water table (ft) 
HIGH SLR (2060-2069)

 
Figure 76. Left panel: Average wet season heads (ft NAVD88) for (a) Calibration run (1996-2010), (c) Low SLR run (2060-2069), 
(e) High SLR run (2060-2069). Right panel (b), (d), (f): Average wet season depth to water table (ft) for the same runs.  
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(a) (b) 

(c) (d) 

Wet season average heads (ft NAVD88) 
HIGH SLR + NO PUMPAGE (2060-2069) 

 

Wet season average depth to water table (ft) 
HIGH SLR + NO PUMPAGE (2060-2069) 

 
Wet season average heads (ft NAVD88) 
LOW SLR + HIST RAIN/RET (2060-2069) 

 

Wet season average depth to water table (ft) 
LOW SLR + HIST RAIN/RET (2060-2069) 
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(e) (f) 

Wet season average heads (ft NAVD88) 
HIGH SLR + HIST RAIN/RET (2060-2069) 

 

Wet season average depth to water table (ft) 
HIGH SLR + HIST RAIN/RET (2060-2069) 

 
Figure 77. Left panel: Average wet season heads (ft NAVD88) for (a) High SLR + no pumpage run (2060-2069), (b) Low SLR + 
historical rainfall and RET run (2060-2069), (e) High SLR + historical rainfall and RET run (2060-2069). Right panel (b), (d), (f): 
Average wet season depth to water table (ft) for the same runs.  
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(a) (b) 

(c) 
(d) 

Difference in Wet season average heads (ft) 
LOW SLR – CALIBRATION 

 

 Difference in Wet season average heads (ft) 
HIGH SLR – CALIBRATION 

 
Difference in Wet season average heads (ft) 
HIGH SLR + NO PUMPAGE – CALIBRATION 

 

Difference in Wet season average heads (ft) 
LOW SLR + HIST RAIN/RET – CALIBRATION 
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(e) 

Difference in Wet season average heads (ft) 
HIGH SLR + HIST RAIN/RET – CALIBRATION  

 

 

Figure 78. Difference in average wet season heads (ft) between each of the following runs (2060-2069) and the calibration run 
(1996-2010): (a) Low SLR run, (b) High SLR run, (c) High SLR + no pumpage run, (d) Low SLR + historical rainfall and RET run, (e) 
High SLR + historical rainfall and RET run. Note different scale in panel (c). Cool colors reflect higher heads in the scenario run 
than in the calibration run. 
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(a) (b) 

(c) (d) 

Difference in Wet season average heads (ft) 
HIGH SLR – LOW SLR 

 

 Difference in Wet season average heads (ft) 
(LOW SLR + HIST RAIN/RET) – LOW SLR  

 
Difference in Wet season average heads (ft) 

(HIST SLR + HIST RAIN/RET) – (LOW SLR + HIST RAIN/RET) 

 

Difference in Wet season average heads (ft) 
(HIGH SLR + HIST RAIN/RET) – HIGH SLR  
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(e) 

Difference in Wet season average heads (ft) 
(HIGH SLR + NO PUMPAGE) – HIGH SLR  

 
 

 

Figure 79. Difference in average wet season heads (ft) between the following runs (2060-2069): (a) High SLR run minus Low SLR 
run, (b) Low SLR + historical rainfall and RET minus Low SLR run, (c) High SLR + historical rainfall and RET minus Low SLR + 
historical rainfall and RET, (d) High SLR + historical rainfall and RET minus High SLR run, and (e) High SLR + no pumpage minus 
High SLR. Note different scale in panel (e). Cool colors reflect higher heads in the first run than in the second run. 
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(a) (b) 

(c) (d) 

Difference in freshwater/saltwater interface 
LOW SLR vs. CALIBRATION 

 

 Difference in freshwater/saltwater interface 
HIGH SLR vs. CALIBRATION 

 
Difference in freshwater/saltwater interface 
HIGH SLR + NO PUMPAGE vs. CALIBRATION 

  

Difference in freshwater/saltwater interface 
LOW SLR + HIST RAIN/RET vs. CALIBRATION 
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(e) 

Difference in freshwater/saltwater interface 
HIGH SLR + HIST RAIN/RET vs. CALIBRATION  

 

 

Figure 80. Simulated change in the position of the freshwater-saltwater interface from the calibration run (1996-2010, labelled 
as ‘Base’) in the following runs (each labelled as ‘Scen’ in their own plot): (a) Low SLR run, (b) High SLR run, (c) High SLR + no 
pumpage run, (d) Low SLR + historical rainfall and RET run, (e) High SLR + historical rainfall and RET run, at the end of the dry 
season (May 31st). Note that the runs in panels (a), (b) and (c) have a different rainfall sequence and RET than the calibration 
run. The observed position in 1996 of the interface at the bottom of the Biscayne aquifer (Sonenshein, 1997), corresponding to 
the bottom of layer 3 in the model, is shown in black. 
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(a) (b) 

(c) (d) 

Difference in freshwater/saltwater interface 
HIGH SLR vs. LOW SLR 

 

 Difference in freshwater/saltwater interface 
(LOW SLR + HIST RAIN/RET) vs. LOW SLR  

 
Difference in freshwater/saltwater interface 

(HIST SLR + HIST RAIN/RET) vs. (LOW SLR + HIST RAIN/RET) 

 

Difference in freshwater/saltwater interface 
(HIGH SLR + HIST RAIN/RET) vs. HIGH SLR 
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(e) 

Difference in freshwater/saltwater interface 
(HIGH SLR + NO PUMPAGE) vs. HIGH SLR  

 

 

 

Figure 81. Simulated change in the position of the freshwater-saltwater interface for: (a) High SLR run versus Low SLR run, (b) 
Low SLR + historical rainfall and RET versus Low SLR run, (c) High SLR + historical rainfall and RET versus Low SLR + historical 
rainfall and RET, (d) High SLR + historical rainfall and RET versus High SLR run, and (e) High SLR + no pumpage versus High SLR, 
at the end of the dry season (May 31st). The first run is labelled ‘Scen.’ in each respective plot, the 2nd run is labelled ‘Base.’ The 
observed position in 1996 of the interface at the bottom of the Biscayne aquifer (Sonenshein, 1997), corresponding to the 
bottom of layer 3 in the model, is shown in black. 
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Figure 82. Comparison of various water levels used in setting boundary conditions in the southern Glades for a particular model 
grid cell (row 160, column 5). Red line represents the historical EDEN water levels, the black line represents the annually-
repeating CERP0 timeseries for this cell, the green line represents historical tidal water levels at Virginia Key. The blue and grey 
lines represent the projected tidal timeseries with sea level rise for the low SLR (IPCC AR5) and high SLR (USACE High) scenarios, 
respectively. Units are m NAVD88. 

 

 
Figure 83. Observed and simulated water levels in the calibration/verification run for wells in the C-111 Basin. From Figure 5-5 
Hughes and White (2016), with permission. Vertical units are ft NAVD88. 

  



126 
 

Model limitations and recommendations 
 

The following modeling limitations and recommendations may improve future modeling: 

1. There is a caveat that the LOCA run used in the future scenario and sensitivity runs was chosen as 
the 95th percentile of all future model runs; therefore, it is bound to underestimate the inland 
migration of the saltwater front if actual future rainfall were to decrease (especially in the dry 
season). It is notable that 70% of the LOCA model runs evaluated predict a decrease in wet season 
rainfall, while 30% predict an increase. This is consistent with previous studies by Obeysekera et 
al. (2014). It is also consistent with findings by Kirtman and others (FIU Rainfall Workshop, May 
16, 2019) who evaluated the US Bureau’s BCSD statistically-downscaled climate data product and 
found that most models projected a drying of south Florida in the future. 

2. There are various limitations in using the CERP0 SFWMM run to provide the western boundary 
conditions in the future scenario and sensitivity runs performed as part of this project. First, CERP0 
assumes no sea level rise, which results in the simulated stages in the Southern Glades being too 
low. Second, CERP0 uses a historical rainfall timeseries, which is different from the LOCA rainfall 
being used in the future scenario and sensitivity runs. For this reason, we used Julian-day-average 
water levels repeated every year of the simulation as boundary conditions in our run. This 
smooths out peaks and valleys. It would be advisable to partner with the South Florida Water 
Management District (SFWMD) in the future to make various runs of CERP0 using various future 
sea level rise and rainfall projections. The Unified Sea Level Rise (SLR) Projections developed by 
the Southeast Florida Regional Climate Change Compact (2015), some of which are used in this 
project, should be used as boundary conditions in future CERP0 SFWMM scenario runs. Rainfall 
from LOCA or other downscaled model products (after going through a model culling exercise 
based on retrospective run performance) could be used to define scenarios bracketing future 
projected changes in rainfall. The recent rainfall workshop at FIU (sponsored by the SFWMD) on 
May 16, 2019, aims to provide a strategy for the development of a unified set of rainfall scenarios 
for the state. 

3. The Virginia Key timeseries used in this project are only future tidal predictions shifted along one 
of two sea level rise curves and do not include meteorological effects. In the future, it would be 
advisable to incorporate meteorological effects in the oceanic boundary timeseries, which could 
be provided from hydrodynamic models or be synthetically derived. 

4. The 1-D surface water network, structures, effective gate openings, and specified pump 
discharges remain the same as in the USGS 1996-2010 calibration/verification of the model. Other 
than directing the directly-connected impervious area fraction (DCIA) of rainfall from the grid cells 
to the canal system (as a pre-processed timeseries), the only other interaction between the canals 
and the model grid is through canal bed leakance into and from the groundwater.  At the moment 
there is no 2-D surface water modeling capability in this model and no overbank or structure flows 
are allowed from ponded areas to the 1-D surface water network. Therefore, as the groundwater 
levels go up, water levels in the canals are expected to go up since the structure gates and tidal 
tailwater conditions are constraining flows out of the system (see Figure 90 for an example). 
Although conservative, this may be constraining the simulated future changes in heads 
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throughout the county since adaptation measures may be implemented in the future to increase 
the canal system capacity.  For example, structure gates may be operated differently than 
historically, structures may be retrofitted to increase their capacities, forward pumps may be 
installed at the salinity control structures, and canals and structures may be protected by 
impermeable levees or dikes. In addition, the northern boundary condition is based on historical 
stages, which constrains head increases in the northern portion of the model.  
 
In the future, canals may also have to be operated at higher levels in order to keep saltwater 
intrusion at bay especially in the dry season, which might affect groundwater heads and flood 
control capabilities of the system. The surface water package (SWR1) used in this model could, in 
theory, be set up to maintain canal stages at certain user-specified levels, instead of using 
historical effective gate opening information. However, this feature has not been tested and is 
likely to require much smaller timesteps than the current daily model timestep for stability, which 
would result in much longer run times. In addition, SWR1 could also be used with the unsaturated 
zone package UZF1 to send groundwater discharge to the land surface and excess infiltration to 
the canal reaches. Modeling these potential future adaptation and policy changes to the water 
management system is beyond the scope of this modeling effort. 
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Appendix A. MATLAB/Octave code for future tidal prediction 
 

The code was developed under contract with the SFWMD. MATLAB/Octave code was developed to 
facilitate tide predictions at tide stations of interest for future periods based on UTIDE output adjusted by 
parameterized quadratic (or linear) sea level rise projection curves. The main script is proj_allstas.m and 
it calls projecttides_new.m. Both are included later in this appendix. To adjust all the data by a single SLR 
value (i.e. MSL constant in time) as described above, use adjtype=1 in call to proj_allstas.m.  To adjust all 
the data along a SLR curve use adjtype=2. The header to the main function proj_allstas.m is: 
 
  
function 
proj_allstas(outflag,csvname,fbase,nyrs,scen,RegRate,RegAccel,adjtype) 
 
This function is used to project tides into the future for ALL stations of interest. It will typically be run 
using tidal predictions as input for NOAA stations and using raw water levels as input for ENP and 
SFWMD tailwater stations. It calls UTIDE codes ut_solv.m and ut_reconstr.m. 
 
The input arguments to proj_allstas are: 
 
 outflag: 1 to output plots, 0 not to 
csvname: name of CSV file with hourly tidal pred. and water level data for all stations (input times must 
be in GMT timezone but output from code will be in EST timezone). The code assumes data in ft 
NGVD29. If not, check conversion factors in code. Format: Year, Mo, Day, Hour, station 1 data, station 2, 
etc. 
fbase: if(adjtype==1) future base MIDDLE year to project tides 
                        (i.e. this is the year at which one single SLR value 
                        will be computed to adjust MSL for ALL data) 
                        Note: Must be >=1992 
           if(adjtype==2) future base STARTING year to project tides. Note: Must be >=1992 
nyrs: if(adjtype==1) Number of years around fbase to project tides 
                      (i.e. tides will be predicted for fbase+/-(nyrs/2)) 
           if(adjtype==2) Number of years AFTER fbase to project tides 
                       (i.e. tides will be predicted for fbase+nyrs) 
scen: SLR scenario for future tide projections from SE FL Reg. Compact Climate Change (Oct. 2015): 
                        0: User-defined SLR linear trend and acceleration 
          Pre-defined scenarios from SE FL Reg. Compact Climate Change (Oct. 2015): 
                       1: USACE Low/NOAA Intermediate-Low 
                       2: IPCC AR5 median 
                       3: USACE High 
                       4: NOAA High 
RegRate (a): + regional SLR trend rate, linear part (mm/yr) 
           set to [] to use global rate instead (1.7 mm/yr) 
RegAccel (b): + regional accel trend rate (mm/yr^2) 
           set to [] to use the global acceleration given by scen 
Note: If Regional SLR rate and acceleration are empty, then corresponding global values are used. This 
could mix and match regional and global rate and acceleration. Proceed with caution!!! 
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adjtype: 1: To shift entire timeseries by a certain SLR value (i.e. MSL constant in time) 
                2: To shift the timeseries ALONG a SLR curve (i.e. MSL varies with time) 
 
 The code proj_allstas.m reads a csv file with station metadata with the filename hardcoded as 
station_metadata.csv. This file is used for filtering data based on some criteria. It has one line per station 
and the columns are as follows: 
 
1st column: station: station name 
2nd column: minyr: minimum year, i.e. only data for years beyond the minyr will be considered 
3rd column: minvald: minimum value--i.e. values less than that will be set to missing. Useful to eliminate 
low outliers from analysis. 
4th column: byear: base year of data--i.e. 1992 for NOAA data which is the middle of 1983-2001 tidal 
epoch or -999 to allow code to determine it based on the mid-point of the raw water level data. 
 
The general steps followed by this code are summarized in Figure 84 and briefly described below: 
 

• Read station_metadata.csv. 
• Read raw water level data and/or tidal prediction data for ALL stations of interest from csvname 

file. 
• Based on fbase and nyrs it determines timestamps for future projection times of interest (on an 

hourly timestep). 
• It then loops through each station in csvname file and does the following. 
• It calls UTIDE function ut_solv.m with default settings but with no SLR trend, using OLS instead 

of the default IRLS and linearized confidence interval method with white noise floor assumption 
instead of Monte Carlo. For details see Codiga (2011). 

• It calls UTIDE function ut_reconstr for projection times of interest to properly account for effects 
of lunar/nodal corrections (on daily tidal range and diurnal inequalities). However, the effect of 
lunar nodal cycle (LNC) on mean sea level (sinusoidal with 18.61-year frequency) is neglected. 

• At stations with byear not equal to -999 (e.g. NOAA tidal stations), it calls project_tides_new.m 
to move the projected tide levels from ut_reconstr up on a SLR curve. The SLR curve is defined 
based on scen and the values of RegRate and RegAccel which are hardcoded in proj_allstas.m. 
See the description of project_tides_new.m below for more information. 

• At non-NOAA stations, prior to project_tides_new.m being called, the mean fit by UTIDE based 
on all the available raw water level data at the station is adjusted to the mean for only the last 
19 years of data (to average out effects of LNC). If less than 19 years of data are available, the 
adjustment=0. In general, this adjustment is minimal compared to subsequent SLR adjustment. 

• Output is hourly projected tides with sea level rise adjustment. Time is local time (EST) and units 
are ft NGVD29. These are written to proj_tide_all.csv which can be imported into Excel and 
saved as DSS file using the DSS EXCEL Add-in and then averaged to daily within HEC-DSSVue. 

 
The header to the function projecttides_new.m, which is called by proj_allstas.m, is: 
 
function pred = 
projecttides_new(outflag,station,csvf,fac,byear,fbase,scen,RegRate,Reg
Accel,adjtype) 
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The input arguments to projecttides_new are: 
outflag: 1 to output plots, 0 not to 
station: name of station to process 
csvf: name of CSV file with current hourly or daily tidal data to be projected into the future 
        Format should be year,mo,day,[hr],tidal_value 
fac: conversion factor from meters to match units in csv file (csvf) 
byear: base year for historical raw water level data from which tidal predictions were made (e.g. 
1992=middle of 1983-2001 tidal epoch for NOAA stations; must be >=1992) 
fbase: future base year to project tides 
scen: SLR scenario for future tide projections:             
          0: User-defined SLR linear trend and acceleration 
          Pre-defined scenarios from SE FL Reg. Compact Climate Change (Oct., 2015): 
          1: USACE Low/NOAA Intermediate-Low 
          2: IPCC AR5 RCP8.5 median 
          3: USACE High 
          4: NOAA High 
        See Table 10 below for more details. 
RegRate (a): + regional SLR trend rate, linear part (mm/yr) 
           set to [] to use global rate instead (1.7 mm/yr) 
RegAccel (b): + regional accel trend rate (mm/yr^2) 
          set to [] to use the global acceleration given by scen 
Note: If Regional SLR rate and acceleration are empty, then corresponding global values are used. This 
could mix and match regional and global rate and acceleration. Proceed with caution!!! 
adjtype: 1: To shift entire timeseries by a certain SLR value (i.e. MSL constant in time) 
                2: To shift the timeseries ALONG a SLR curve (i.e. MSL varies with time) 
 
 projecttides_new.m uses the following quadratic equation to adjust predicted tides with sea level rise 
from a period centered at byear to a future period centered at fbase: 
 
 

𝛥𝛥ℎ𝑆𝑆𝑆𝑆𝑆𝑆(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) = 𝑏𝑏[(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 − 1992)2 − (𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 1992)2] + 
𝑎𝑎[(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑒𝑒 − 1992) − (𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 1992)] 

Equation 8 

 
Table 10. Coefficients for pre-defined quadratic SLR scenarios from SE FL Reg. Compact Climate Change (Oct., 2015). These 
equations give global sea level trends. For local trends could use a=0.0022 m/yr based on Key West data. 

SLR Scenario SLR Rate a (m/yr) SLR acceleration b 
(m/yr^2) 

∆𝒉𝒉𝑺𝑺𝑺𝑺𝑺𝑺(𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏,𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐) 
(m) 

1:USACE Low/NOAA 
Intermediate-Low 
 

0.0017 2.71262*10-5 0.5 

2: IPCC AR5 RCP8.5 
median 

0.0017 4.684499*10-5 0.73 

3: USACE High 0.0017 1.13*10-4 1.5 
4: NOAA High 0.0017 1.56*10-4 2.0 
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Figure 84. Step-by-step procedure for projecting tides into the future based on quadratic sea level rise curves. Boxes and ovals in 
red and dashed lines are only performed for stations with byear initially defined as -999 in station_metadata.csv.  
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Scripts to develop tidal timeseries for future scenarios considering quadratic sea level rise curve: 

proj_allstas.m: 

function proj_allstas(outflag,csvname,fbase,nyrs,scen,RegRate,RegAccel,adjtype)  
  %function to project tides into the future for ALL stations 
  %Will be run with tidal predictions as input for NOAA stations 
  %and with raw water levels as input for ENP and SFWMD TW stations 
  %Utide must be run for period centered around fbase to correctly 
  %account for effects of lunar/nodal corrections (on daily tidal range 
  %and diurnal inequalities). Effect of lunar nodal cycle (LNC) on 
  %mean sea level (sinusoidal with 18.61 year frequency) is neglected. 
  %However, at non-NOAA stations, the mean fit by Utide based on all the 
  %available raw data at the station is adjusted to the mean for only the  
  %last 19 years of data (to average out effects of LNC). If less than 19 
  %years of data are available, adjustment=0. In general, this adjustment 
  %is minimal compared to subsequent SLR adjustment. 
  %There are two options to project tides into the future. In the first option, 
  %the entire timeseries is raised by a certain SLR projection (a single value). 
  %In the second option, the timeseries is adjusted in time by shifting it 
  %ALONG a SLR curve. 
   
  %outflag: 1 to output plots, 0 not to  
  %csvname: name of CSV file with hourly tidal pred. and water level data 
  %         for all stations (times must be in GMT timezone) 
  %Assumes data in ft NGVD29. If not, check conversion factors in code 
  %      Format: Year, Mo, Day, Hour, station 1 data, station 2, etc. 
  %fbase: if(adjtype==1) future base MIDDLE year to project tides  
  %                      (i.e. this is the year at which one single SLR value 
  %                      will be computed to adjust MSL for ALL data) 
  %                      Note: Must be >=1992 
  %       if(adjtype==2) future base STARTING year to project tides  
  %                      Note: Must be >=1992 
  %nyrs: if(adjtype==1) Number of years around fbase to project tides  
  %                     (i.e. tides will be predicted for fbase+/-(nyrs/2)) 
  %      if(adjtype==2) Number of years AFTER fbase to project tides 
  %                     (i.e. tides will be predicted for fbase+nyrs) 
  %scen: SLR scenario for future tide projections: 
  %      from SE FL Reg. Compact Climate Change (Oct 2015): 
  %      1: USACE Low/NOAA Intermediate-Low 
  %      2: IPCC AR5 median 
  %      3: USACE High 
  %      4: NOAA High 
  %RegRate: + regional SLR trend rate (mm/yr) 
  %         set to [] to use global rate instead (1.7 mm/yr) 
  %RegAccel: + regional accel trend rate (mm/yr^2) 
  %         set to [] to use the global accel. given by scen 
  %If Regional SLR rate and accel. are empty, then corresponding global  
  %values are used.  
  %Note: This could mix and match regional and global rate and accel.  
  %Proceed with caution!!! 
  %adjtype: 1: To shift entire timeseries by a certain SLR value 
  %            (i.e. MSL constant in time) 
  %         2: To shift the timeseries ALONG a SLR curve  
  %            (i.e. MSL varies with time) 
   
  %outflag=1; csvname='stations_35.csv'; fbase=1992; nyrs=109; scen=3; 
  %adjtype=2;RegRate=[];RegAccel=[]; 
   
  %outflag=1; csvname='stations_35.csv'; fbase=2016; nyrs=52; scen=3; 
  %adjtype=1;RegRate=4.2;RegAccel=0; 
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  pkg load statistics  
  disp(adjtype) 
   
  %Read starting year and minimum value for filtering 
  %from a csv file (one line per station, 1st column is the  
  % station name; 2nd column is minimum year-- 
  %i.e. only data for years beyond the minyr will be considered; 
  %3rd column is minimum value--i.e. values less than that will be set 
  %to missing; 4th column is base year of data--i.e. 1992 for NOAA data 
  %which is the middle of 1983-2001 tidal epoch or -999 to determine it 
  %based on the mid-point of the raw water level data) 
  [station,minyr,minvald,byear]=textread('station_metadata.csv',... 
      '%s %f %f%f','headerlines',1,'delimiter',','); 
   
  %Read water level data 
  wl = csvread(csvname,1,0); %miriza-add c0=0 for octave 
  nstas = size(wl,2)-4; 
   
  %Prediction dates tt (GMT) and local dates tt2 
  if (adjtype==1) 
    fb=round(fbase-(nyrs-1)/2); 
    fe=round(fbase+(nyrs-1)/2); 
    nyrs2=fe-fb+1; 
    fmid=mean([fb,fe]); 
  else 
    fb=fbase; 
    fe=fbase+nyrs-1; 
  end 
  sd = datenum(['01-Jan-' num2str(fb) ' 05:00:00']); %add SS for octave 
  iv = 1/24; %hourly predictions 
  ed = datenum(['01-Jan-' num2str(fe+1) ' 04:00:00']); %add SS for octave 
  tt=(sd:iv:ed)'; %(simplified to make octave faster) 
  tt2=tt-5/24.;   
  stt2=datevec(tt2); 
   
  %Preallocate memory for final predictions 
  allstas = zeros(size(tt2,1),size(wl,2)); 
     
  %Loop through all stations 
  for i = 1:nstas 
    ista=i+4; 
    a = wl; 
    fprintf(1,'i=%s,ista=%s\n',num2str(i),num2str(ista)) 
    drawnow('expose'); 
    %drawnow('update'); 
    %j=find(a(:,ista) <= minvald(i)); 
    a(a(:,ista) <= minvald(i),ista)=NaN; 
    a=a(:,[1:4,ista]); 
    %j = find(a(:,1) >= minyr(i)); 
    a=a(a(:,1) >= minyr(i),1:5); 
    %plot(a(:,5)); 
    Month=a(:,2); 
    Year = a(:,1); 
    Day=a(:,3); 
    Hour=a(:,4); 
   t = datenum(Year,Month,Day,Hour,0,0); 
    TW = a(:,5); 
    %plot(t,TW); 
    more off;  
    %Call ut_solve 
    fprintf(1,'starting ut_solve for i=%s\n',num2str(i));  
    %drawnow('update');  
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    drawnow('expose'); 
    coef = ut_solv(t,TW,[],26.0,'auto','OLS','White','LinCI','NoDiagn',... 
        'NoTrend'); 
    %drawnow('update'); 
    drawnow('expose'); 
  
    %Call ut_reconstr 
    fprintf(1,'starting ut_reconstr for i=%s\n',num2str(i));  
    %drawnow('update'); 
    drawnow('expose');  
    pp = ut_reconstr(tt,coef); 
    %drawnow('update'); 
    drawnow('expose'); 
    pred = [stt2(:,1:4) pp]; 
     
    figure; 
    %plot(tt2,pp); 
    plot(t-5/24., TW, '-g', tt2, pp, '-y');  
    datetick('x','YYYY'); 
    legend('Raw data','Pred. tide w/o SLR','Location','northwest') 
    xlabel ('Time');  
    ylabel ('ft NGVD29'); 
    limits=axis(); 
    line([datenum(fbase,1,1) datenum(fbase,1,1)],[limits(3) limits(4) ],... 
      'color','k'); 
    text(datenum(fbase,1,1),limits(3),num2str(fbase),... 
      'horizontalalignment','center','color','r'); 
    line([datenum(fb,1,1) datenum(fb,1,1)],[limits(3) limits(4) ],... 
      'color','k'); 
    text(datenum(fb,1,1),limits(3),num2str(fb),... 
      'horizontalalignment','center','color','r');       
    line([datenum(fe+1,1,1) datenum(fe+1,1,1)],[limits(3) limits(4) ],... 
      'color','k'); 
    text(datenum(fe+1,1,1),limits(3),num2str(fe+1),... 
      'horizontalalignment','center','color','r');   
    if (byear(i) ~=999) 
      line([datenum(byear(i),1,1) datenum(byear(i),1,1)],[limits(3) limits(4) ],... 
        'color','k'); 
      text(datenum(byear(i),1,1),limits(3),num2str(byear(i)),... 
        'horizontalalignment','center','color','b'); 
    end     
    title (['Water level and tide at station ' char(station(i)) '(i=' ... 
        num2str(i) ')']);  
    if(outflag==1)  
      print(1,['pred_tide_' char(station(i)) '.png'],'-dpng');  
    end 
    close; 
  
    csvf = ['pred_tide_' char(station(i)) '.csv']; 
    csvwrite(csvf,pred);  
       
    %adjust data for SLR 
    fprintf(1,'starting projecttides_new for i=%s\n',num2str(i));  
    fac=39.3701/12; 
    %For stations with defined byear (e.g. NOAA), 
    %simply call projecttides_new to add in SLR 
    if (byear(i) ~= -999) 
      predf=projecttides_new(outflag,char(station(i)),csvf,... 
          fac,byear(i),fbase,scen,RegRate,RegAccel,adjtype); 
    else %For other stations 
      %Step 1: Subtract the mean from the Utide fit  
      pp2 = pp - coef.mean; 
      %Step 2: Get the mean of the raw data for the most recent 19 year  
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      %period to define the MSL for a tidal epoch (so effects of lunar 
      %nodal cycle, LNC are averaged out). Assumption here is that if there 
      %are data gaps, they are uniformly distributed throughout the dataset,  
      %which may or may not be the case. Add that mean to result of Step 1. 
      %Note: Stations with less than 19 years of POR will still be 
      %processed but means may reflect influence of LNC! 
      %Convert raw times to EST first 
      t = t - 5/24.; 
      maxt = max(t); 
      tmp = datevec(maxt); 
      mint = datenum(tmp(1)-19,tmp(2),tmp(3),tmp(4),tmp(5),tmp(6)); 
      midt = mean([mint maxt]); 
      midyr = midt/365.25; 
      jj=find(t >= mint & t <=maxt); 
      %If starting date of data is more than a year after mint, 
      %recompute mint, midt and midyr 
      %This will happen if station has less than 19 years of POR 
      %(may want to exclude these!) 
      if ((t(jj(1)) - mint) > 365)  
          mint = t(jj(1)); 
          midt = mean([mint maxt]); 
          midyr = midt/365.25; 
      end 
      %epoch_mean=mean(TW(jj),'omitnan'); 
      epoch_mean=nanmean(TW(jj)); 
      pp3 = pp2 + epoch_mean; 
      predadj = [stt2(:,1:4) pp3]; 
      adj=epoch_mean-coef.mean; 
       
      csvfadj = ['pred_tide_' char(station(i)) '_adj.csv']; 
      csvwrite(csvfadj,predadj);  
       
      figure; 
      plot(tt2, pp, '-y', tt2, pp3, '-b');  
      datetick('x','YYYY'); 
      legend('Pred. tide w/o SLR',... 
          'Pred. tide w/o SLR (adj. mean)','Location','northwest') 
      xlabel ('Time');  
      ylabel ('ft NGVD29'); 
      limits=axis(); 
      line([datenum(fbase,1,1) datenum(fbase,1,1)],[limits(3) limits(4) ],... 
        'color','k'); 
      text(datenum(fbase,1,1),limits(3),num2str(fbase),... 
        'horizontalalignment','center','color','r'); 
      line([datenum(fb,1,1) datenum(fb,1,1)],[limits(3) limits(4) ],... 
        'color','k'); 
      text(datenum(fb,1,1),limits(3),num2str(fb),... 
        'horizontalalignment','center','color','r');       
      line([datenum(fe+1,1,1) datenum(fe+1,1,1)],[limits(3) limits(4) ],... 
        'color','k'); 
      text(datenum(fe+1,1,1),limits(3),num2str(fe+1),... 
        'horizontalalignment','center','color','r');   
      line([datenum(floor(midyr),1,1)+(((midyr)-floor(midyr))*365) ... 
        datenum(floor(midyr),1,1)+(((midyr)-floor(midyr))*365)],... 
        [limits(3) limits(4) ],'color','k'); 
      text(datenum(floor(midyr),1,1)+(((midyr)-floor(midyr))*365),limits(3),... 
        num2str(round(midyr*100)/100),'horizontalalignment','center','color','b'); 
      line([limits(1) limits(2)],[mean(pp) mean(pp) ],... 
        'color','k'); 
      line([limits(1) limits(2)],[mean(pp3) mean(pp3) ],... 
        'color','k'); 
      text(limits(1),mean(pp),num2str(round(mean(pp)*100)/100),... %round(mean(pp),2) 
        'color','k'); 

https://maps.google.com/?q=4),tmp(5),tmp(6&entry=gmail&source=g
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      text(limits(1),mean(pp3),num2str(round(mean(pp3)*100)/100),... 
%round(mean(pp3),2) 
        'color','k'); 
      title (['Pred. tide at ' char(station(i)) '(adj=' ... 
        num2str(round(adj*100)/100) ' ft)']) %round(adj,2) 
      if(outflag==1)  
        print(1,['pred_tide_' char(station(i)) '_adj.png'],'-dpng');  
      end 
      close; 
  
      %Step 3: Call projecttides_new to add SLR 
      predf=projecttides_new(outflag,char(station(i)),csvfadj,... 
          fac,midyr,fbase,scen,RegRate,RegAccel,adjtype); 
    end 
     
    %Concatenate results to create a single csv file at the end 
    if (i==1) 
      allstas(:,1:5)=predf; 
    else 
      allstas(:,(i+4))=predf(:,end); 
    end 
     
  end 
   
 %Finally write out all predictions to a single csv file  
 ofile=fopen('proj_tide_all.csv','w'); 
fmt=strcat(repmat('%f,',1,size(allstas,2)-1),'%f\n'); 
fprintf(ofile,fmt,allstas');  
 fclose(ofile); 
  
end  
  
function SetDefaultValue(position, argName, defaultValue) 
% Initialise a missing or empty value in the caller function. 
%  
% SETDEFAULTVALUE(POSITION, ARGNAME, DEFAULTVALUE) checks to see if the 
% argument named ARGNAME in position POSITION of the caller function is 
% missing or empty, and if so, assigns it the value DEFAULTVALUE. 
%  
% Example: 
% function x = TheCaller(x) 
% SetDefaultValue(1, 'x', 10); 
% end 
% TheCaller()    % 10 
% TheCaller([])  % 10 
% TheCaller(99)  % 99 
%  
% $Author: Richie Cotton $  $Date: 2010/03/23 $ 
  
if evalin('caller', 'nargin') < position || ... 
      isempty(evalin('caller', argName)) 
   assignin('caller', argName, defaultValue); 
end 
end 
  

Top 5 rows and 8 columns of stations_35.csv: 

Year Month Day Hour BK TC 8722371 8722381 
1965 1 1 0 -902 -902 0.752 0.936 
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1965 1 1 1 -902 -902 0.832 1.039 
1965 1 1 2 -902 -902 0.813 1.02 
1965 1 1 3 -902 -902 0.702 0.884 

Top 5 lines of station_metadata.csv: 

station minyr minvald byear 
BK 1900 -900 -999 
TC 1900 -900 -999 
8722371 1900 -900 1992 
8722381 1900 -900 1992 

projecttides_new.m: 

function pred = projecttides_new(outflag,station,csvf,fac,... 
    byear,fbase,scen,RegRate,RegAccel,adjtype) 
   
  %outflag: 1 to output plots, 0 not to  
  %station: name of station to process 
  %csvf: name of CSV file with current hourly or daily  
  %      tidal data to be projected into the future 
  %      Format should be year,mo,day,[hr],tidal_value 
  %fac: conversion factor from meters to match units in csv file (csvf) 
  %byear: base year for historical raw water level data from which 
  %       tidal predictions were made (e.g. 1992=middle of 1983-2001 
  %       tidal epoch for NOAA stations; must be >=1992) 
  %       (can have a fractional part) 
  %fbase: future base year to project tides 
  %scen: SLR scenario for future tide projections: 
  %      from SE FL Reg. Compact Climate Change (Oct 2015): 
  %      1: USACE Low/NOAA Intermediate-Low 
  %      2: IPCC AR5 RCP8.5 median 
  %      3: USACE High 
  %      4: NOAA High 
  %RegRate: + regional SLR trend rate (mm/yr) 
  %         set to [] to use global rate instead (1.7 mm/yr) 
  %RegAccel: + regional accel trend rate (mm/yr^2) 
  %         set to [] to use the global accel. given by scen 
  %If Regional SLR rate and accel. are empty, then corresponding global  
  %values are used.  
  %Note: This could mix and match regional and global rate and accel.  
  %Proceed with caution!!! 
  %adjtype: 1: To shift entire timeseries by a certain SLR value (single value) 
  %         2: To shift the timeseries ALONG a SLR curve  
  
  %outflag=0; station='Key West'; RegRate=1.7; fac=39.3701/12;adjtype=1; 
   
  pkg load financial 
  %Get tidal data (with MSL corresponding to byear) 
  %[year,mo,day,hr,tdata]=textread(csvf,'%f,%f,%f,%f,%f',... 
  %    'headerlines',1); 
  M=csvread(csvf); 
  year=M(:,1); 
  mo=M(:,2); 
  day=M(:,3); 
  if (size(M,2)==4) 
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    freq='daily'; 
    hr=0; 
    tdata=M(:,4); 
  else 
    freq='hourly'; 
    hr=M(:,4); 
    tdata=M(:,5); 
  end 
  tcurr=datenum(year,mo,day,hr,0,0); 
  stcurr=datevec(tcurr); 
  nyears=(max(year)-min(year)+1); 
   
  %Prediction dates tt (GMT) and local dates tt2 
  if (adjtype==1) 
    fb=round(fbase-(nyears-1)/2); 
    fe=round(fbase+(nyears-1)/2); 
    nyrs2=fe-fb+1; 
    fmid=mean([fb,fe]); 
  else 
    fb=fbase; 
    fe=fbase+nyears-1; 
  end 
   
  %Determine future dates for predictions 
  sd=datenum(fb,1,1); 
  if (strcmp(freq,'daily'))  
      iv=1; 
      ed=sd+(size(year,1)-1); 
  else 
      iv=1/24; 
      ed=sd+(size(year,1)-1)/24; 
  end 
  tfut=(sd:iv:ed)'; 
  stfut=datevec(tfut); 
   
  %Derive acceleration rate b from year 2100 SLR projections from 1992 MSL 
  %in meters 
  gmsl=[0.5 0.73 1.5 2.0]; %Global MSL (m) for each scenario 
  scennames=char('USACE Low','IPCC AR5 RCP8.5 Med.','USACE High',... 
      'NOAA High'); 
  ag=1.7/1000; %global SLR rate (trend, 1.7/1000 m/year=1.7 mm/year) 
  
  %If Regional SLR rate and accel. not defined, then use global 
  %values. Note: This could mix and match regional and global rate 
  %and accel. Proceed with caution! 
  if (isempty(RegRate)) 
    a=ag; 
  else 
    a=RegRate/1000; 
  end 
  if (isempty(RegAccel)) 
      b=(gmsl-ag*(2100-1992))/(2100-1992)^2; %global SLR acceleration  
                                             %always derived based on ag 
  else 
      b=RegAccel/1000; 
  end 
   
  if (adjtype==1) 
    %Derive SLR from byear (must be >=1992) up to (fbase+1) 
    %here t is integer year 
    t=floor(byear):(fbase+1); 
  else 
    %Derive SLR from sd to ed (here t is fractional year) 



141 
 

    dv=stfut; 
    dv(:,2:3)=1; 
    dv(:,4:end)=0; 
    doy=tfut-datenum(dv); 
   yrs=stfut(:,1); 
    yrsday=yeardays(yrs); 
    t=(yrs + (doy ./ yrsday))'; 
  end 
  %slr=(b.'*(((t-1992).^2)-((byear-1992).^2))+ a*((t-1992)-(byear-1992))).'; 
  %Use this version for compatibility with MATLAB R2016a 
  %Note!!! Make sure this works for various scenarios and year fractions 
  slr=(b.'*(((t-1992).^2)-((byear-1992).^2))+ ... 
      repmat(a*((t-1992)-(byear-1992)),size(b,2),1)).'; 
  slrt=t; 
   
  %Unit conversion 
  slr=slr*fac; 
  u=[transpose(t) slr]; 
   
  if (adjtype==1)  
    %Determine the SLR adjustment for particular fbase year 
    if (isempty(RegAccel)) 
      adj=slr(slrt==fbase,scen); 
    else 
      adj=slr(slrt==fbase); 
    end 
  else 
    if (isempty(RegAccel)) 
      adj=slr(:,scen); 
    else 
      adj=slr; 
    end    
  end 
   
  %Adjust data to future MSL  
  tidefut=tdata+adj; 
   
  figure; 
  plot(tcurr,tdata,'b-',tfut,tidefut,'r-'); 
  if (isempty(RegRate) && isempty(RegAccel)) 
    legend('Pred. tide w/o SLR',['Proj. tide w/SLR: ' ... 
        scennames(scen,:)],'Location','northwest'); 
  else 
    legend('Pred. tide w/o SLR','Proj. tide w/SLR',... 
    'Location','northwest'); 
  end 
  datetick('x','YYYY'); 
  %axis([min([tcurr;tfut]) max([tcurr;tfut]) min([tdata;tidefut]) ... 
  %   max([tdata;tidefut]) ]); 
  grid(); 
  xlabel('Time (Year)');  
  ylabel('ft NGVD29');  
  if (isempty(RegAccel)) 
    title ({['Pred. tide with and w/o SLR at ' station '(adj=' ... 
      num2str(round(max(adj)*100)/100) ' ft)'],['a=' num2str(a*1000)... %round(adj,2) 
      'mm/yr,b=' num2str(round(b(scen)*1000*1000)/1000) 'mm/yr^2']}); 
%round(b(scen)*1000,3) 
  else 
    title ({['Pred. tide with and w/o SLR at ' station '(adj=' ... 
      num2str(round(max(adj)*100)/100) ' ft)'],['a=' num2str(a*1000)... %round(adj,2) 
      'mm/yr,b=' num2str(b*1000) 'mm/yr^2']}); 
  end      
  limits=axis(); 
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  line([datenum(fbase,1,1) datenum(fbase,1,1)],[limits(3) limits(4) ],... 
    'color','k'); 
  text(datenum(fbase,1,1),limits(3),num2str(fbase),... 
    'horizontalalignment','center','color','r'); 
  line([datenum(fb,1,1) datenum(fb,1,1)],[limits(3) limits(4) ],... 
    'color','k'); 
  text(datenum(fb,1,1),limits(3),num2str(fb),... 
    'horizontalalignment','center','color','r');       
  line([datenum(fe+1,1,1) datenum(fe+1,1,1)],[limits(3) limits(4) ],... 
    'color','k'); 
  text(datenum(fe+1,1,1),limits(3),num2str(fe+1),... 
    'horizontalalignment','center','color','r');   
  line([datenum(floor(byear),1,1)+(((byear)-floor(byear))*365) ... 
    datenum(floor(byear),1,1)+(((byear)-floor(byear))*365)],... 
    [limits(3) limits(4) ],'color','k'); 
  text(datenum(floor(byear),1,1)+(((byear)-floor(byear))*365),limits(3),... 
    num2str(round(byear*100)/100),'horizontalalignment','center','color','b'); 
  
  if (adjtype==1) 
    line([limits(1) limits(2)],[mean(tdata) mean(tdata) ],... 
        'color','k'); 
    line([limits(1) limits(2)],[mean(tidefut) mean(tidefut) ],... 
        'color','k'); 
    text(limits(1),mean(tdata),num2str(round(mean(tdata)*100)/100),... 
%round(mean(tdata),2) 
        'color','k'); 
    text(limits(1),mean(tidefut),num2str(round(mean(tidefut)*100)/100),... 
%round(mean(tidefut),2) 
        'color','k'); 
  else 
    line([limits(1) limits(2)],[mean(tdata) mean(tdata) ],... 
        'color','k'); 
    line([limits(1) limits(2)],[mean(tdata)+max(adj) mean(tdata)+max(adj) ],... 
        'color','k'); 
    text(limits(1),mean(tdata),num2str(round(mean(tdata)*100)/100),... 
%round(mean(tdata),2) 
        'color','k'); 
    text(limits(1),mean(tdata)+max(adj),num2str(round((mean(tdata)+max(adj))*100)/100)
,... %round(mean(tidefut),2) 
        'color','k'); 
  end 
  if(outflag==1)  
    print(1,['Proj_tide_' station '.png'],'-dpng');  
  end 
  close; 
   
  figure; 
  plot(slrt,slr); 
  grid(); 
  xlabel('Time (Year)'); 
  ylabel('ft'); 
  if (isempty(RegRate) && isempty(RegAccel)) 
    title({['Projected SLR at ' station ' since ' num2str(round(byear))], ... 
        ['global rate a=' num2str(a*1000) 'mm/yr and global accel. b='... 
        num2str(round(b(scen)*1000*1000)/1000) 'mm/yr^2']}); %round(b(scen)*1000,3) 
    %legend(scennames,'location','northwest'); 
    legend(strcat(cellstr(scennames),' b=',... 
           arrayfun("num2str",round(1000*1000*b)/1000,"UniformOutput",false)',... 
           'mm/yr^2'),'location','northwest'); 
  elseif (isempty(RegRate)) 
    title({['Projected SLR at ' station ' since ' num2str(round(byear))], ... 
        ['global rate a=' num2str(a*1000)... 
        'mm/yr and reg. accel. b=' num2str(b*1000) 'mm/yr^2']}); 
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  elseif (isempty(RegAccel)) 
    title({['Projected SLR at ' station ' since ' num2str(round(byear))], ... 
        ['reg. rate a=' num2str(a*1000)... 
        'mm/yr and global accel. b='... 
        num2str(round(b(scen)*1000*1000)/1000) 'mm/yr^2']}); %round(b(scen)*1000,3) 
    %legend(scennames,'location','northwest');  
    legend(strcat(cellstr(scennames),' b=',... 
           arrayfun("num2str",round(1000*1000*b)/1000,"UniformOutput",false)',... 
           'mm/yr^2'),'location','northwest'); 
  else 
    title({['Projected SLR at ' station ' since ' num2str(round(byear))], ... 
        ['reg. rate a=' num2str(a*1000)... 
        'mm/yr and reg. accel. b=' num2str(b*1000) 'mm/yr^2']}); 
  end 
  if(outflag==1)  
    print(1,['Proj_SLR_' station '.png'],'-dpng');  
  end 
  close; 
   
  %Write out future predicted tide 
  if (strcmp(freq,'daily')) 
    pred = [year mo day tidefut];  
  else 
    pred = [year mo day hr tidefut]; 
  end 
  csvwrite(['proj_tide_' station '.csv'],pred); 
  
   
end  
  
function SetDefaultValue(position, argName, defaultValue) 
% Initialise a missing or empty value in the caller function. 
%  
% SETDEFAULTVALUE(POSITION, ARGNAME, DEFAULTVALUE) checks to see if the 
% argument named ARGNAME in position POSITION of the caller function is 
% missing or empty, and if so, assigns it the value DEFAULTVALUE. 
%  
% Example: 
% function x = TheCaller(x) 
% SetDefaultValue(1, 'x', 10); 
% end 
% TheCaller()    % 10 
% TheCaller([])  % 10 
% TheCaller(99)  % 99 
%  
% $Author: Richie Cotton $  $Date: 2010/03/23 $ 
  
if evalin('caller', 'nargin') < position || ... 
      isempty(evalin('caller', argName)) 
   assignin('caller', argName, defaultValue); 
end 
end 
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Appendix B. R code for rainfall bias correction 
 

############################################################################ 
 
adjprecip_gridwmm_eval <- function(){ 
 
############################################################################ 
#Note: Must re-do LOCA run 25 (i=25) manually by reading data using var.get.nc and 
then creating the brick 
#For some reason it does not work to create the brick directly from the netCDF file in 
the loop. 
#Therefore, one must run this script manually up to the foreach loop, and then 
manually re-do 
LOCA run 25 (i=25) as described above. Then run the rest of the script manually as 
well. 
LOCA CRS: crs="+proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0" 
############################################################################ 
 
library(reshape) 
library(RNetCDF) 
library(raster) 
library(rgdal) 
#library(fields) 
#library(RColorBrewer) 
library(pals) 
library(foreach) 
library(parallel) 
library(doParallel) 
#library(tcltk) 
#library(doSNOW) 
#library(gdalUtils) 
library(rasterVis) 
library(lattice) 
library(magic) 
 
#Main variables 
vn="pr" 
vnl="Precip" 
#season=5:10 #wet season 
season=1:12 #entire year 
LOCA_dir="Z:/miriza/Work/R/LOCA_dataset/Data" 
NEXRAD_dir="Z:/miriza/Work/FIU/FL_Building_Code/Data/Rainfall/USGS_MODFLOW_NEXRAD" 
SFWMM_dir="Z:/miriza/Work/FIU/FL_Building_Code/Data/Rainfall/SFWMD" 
 
setwd("Z:/miriza/Work/FIU/FL_Building_Code/Data/Rainfall/LOCA_BC/LOCA_vs_SFWMM_entirey
r") 
 
#Future base period 
startyr2=2055 
endyr2=2069 
nyrs2=endyr2-startyr2+1 
allyrs2=startyr2:endyr2 
ndays2=as.integer(difftime(strptime(paste("01.01.",endyr2+1,sep=""), format = 
"%d.%m.%Y"), 
                strptime(paste("01.01.",startyr2,sep=""), format = 
"%d.%m.%Y"),units="days")) 
dates2=seq(as.Date("2055/1/1"), as.Date("2069/12/31"),"days") 
yrs2=as.numeric(format(dates2,'%Y')) 
mos2=as.numeric(format(dates2,'%m')) 
days2=as.numeric(format(dates2,'%d')) 
 
#Historical date range in M-D MODFLOW NEXRAD rainfall dataset 
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startyrh=1996 
endyrh=2010 
nyrsh=endyrh-startyrh+1 
allyrsh=startyrh:endyrh 
ndaysh=as.integer(difftime(strptime(paste("01.01.",endyrh+1,sep=""), format = 
"%d.%m.%Y"), 
                strptime(paste("01.01.",startyrh,sep=""), format = 
"%d.%m.%Y"),units="days")) 
datesnh=seq(as.Date("1996/1/1"), as.Date("2010/12/31"),"days") 
yrsnh=as.numeric(format(datesnh,'%Y')) 
mosnh=as.numeric(format(datesnh,'%m')) 
 
 
#Historical date range for Bias-correction (BC) 
startyrh2=1991 
endyrh2=2005 
nyrsh2=endyrh2-startyrh2+1 
allyrsh2=startyrh2:endyrh2 
ndaysh2=as.integer(difftime(strptime(paste("01.01.",endyrh2+1,sep=""), format = 
"%d.%m.%Y"), 
                strptime(paste("01.01.",startyrh2,sep=""), format = 
"%d.%m.%Y"),units="days")) 
datesnh2=seq(as.Date("1991/1/1"), as.Date("2005/12/31"),"days") 
yrsnh2=as.numeric(format(datesnh2,'%Y')) 
mosnh2=as.numeric(format(datesnh2,'%m')) 
daysnh2=as.numeric(format(datesnh2,'%d')) 
 
 
#LOCA date range 
#Historical period 
startyrlh=1950 
endyrlh=2005 
nyrslh=endyrlh-startyrlh+1 
allyrslh=startyrlh:endyrlh 
ndayslh=as.integer(difftime(strptime(paste("01.01.",endyrlh+1,sep=""), format = 
"%d.%m.%Y"), 
                strptime(paste("01.01.",startyrlh,sep=""), format = 
"%d.%m.%Y"),units="days")) 
dateslh=seq(as.Date("1950/1/1"), as.Date("2005/12/31"),"days") 
yrslh=as.numeric(format(dateslh,'%Y')) 
moslh=as.numeric(format(dateslh,'%m')) 
#Future period 
startyrlf=2006 
endyrlf=2099 
nyrslf=endyrlf-startyrlf+1 
allyrslf=startyrlf:endyrlf 
ndayslf=as.integer(difftime(strptime(paste("01.01.",endyrlf+1,sep=""), format = 
"%d.%m.%Y"), 
                strptime(paste("01.01.",startyrlf,sep=""), format = 
"%d.%m.%Y"),units="days")) 
dateslf=seq(as.Date("2006/1/1"), as.Date("2099/12/31"),"days") 
yrslf=as.numeric(format(dateslf,'%Y')) 
moslf=as.numeric(format(dateslf,'%m')) 
 
#Read in raster with 1996-2010 NEXRAD rainfall data on the M-D MODFLOW grid 
#Proj4js.defs["EPSG:26917"] = "+proj=utm +zone=17 +ellps=GRS80 +datum=NAD83 +units=m 
+no_defs" 
n=brick(paste(NEXRAD_dir,"/nexrad_rainfall.nc",sep=""),crs="+proj=utm +zone=17 
+ellps=GRS80 +datum=NAD83 +units=m +no_defs") 
#Load offset mask 
offsm=raster(paste(NEXRAD_dir,"/UMD_offshore.nc",sep=""),crs="+proj=utm +zone=17 
+ellps=GRS80 +datum=NAD83 +units=m +no_defs") 
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#ib=raster(paste(NEXRAD_dir,"/UMD_ibound.nc",sep=""),crs="+proj=utm +zone=17 
+ellps=GRS80 +datum=NAD83 +units=m +no_defs") 
#offsm[ib==1]=1 
offsm[offsm==2]=0 
#Adjust values 
n=mask(n,offsm,maskvalue=0,updatevalue=NA) 
print(paste("after mask-->n\n",sep="")) 
#Subset data for months of interest 
n=subset(n,which(mosnh%in%season)) 
print(paste("after subset-->n\n",sep="")) 
#Get mean 
nm=calc(n,mean) 
print(paste("after temporal mean-->nm\n",sep="")) 
minnm=minValue(nm) 
maxnm=maxValue(nm) 
#Get extent 
extn=bbox(n) 
#Go 1 SFWMM cell (2 mi = 3218.7 m) outside the NEXRAD extent 
extn2=extn 
extn2[,1]=extn2[,1]-3218.7 
extn2[,2]=extn2[,2]+3218.7 
 
#SFWMM date range 
datessh=seq(as.Date("1914/1/1"), as.Date("2016/12/31"),"days") 
yrssh=as.numeric(format(datessh,'%Y')) 
mossh=as.numeric(format(datessh,'%m')) 
 
#Read in SFWMM netCDF file 
#Proj4js.defs["ESRI:102258"] = "+proj=tmerc +lat_0=24.33333333333333 +lon_0=-81 
+k=0.9999411764705882 +x_0=200000 +y_0=0 +ellps=GRS80 +units=m +no_defs"; 
ncf=open.nc(paste(SFWMM_dir,"/rain_v4.7_1914_2016_sfwmd.nc",sep="")) 
#SFWMM coordinates are in ft NAD1983 HARN StatePlane FL East FIPS0901 (but ESRI:102258 
is in m) 
cds=var.get.nc(ncf,"coords") 
cds=cds 
#Change SFWMM cell centroid coordinates to match projection of M-D MODFLOW grid 
d <- data.frame(x=cds[1,], y=cds[2,]) 
coordinates(d) <- c("x", "y") 
proj4string(d) <- CRS("+proj=tmerc +lat_0=24.33333333333333 +lon_0=-81 
+k=0.9999411764705882 +x_0=200000 +y_0=0 +ellps=GRS80 +units=ft +no_defs")  
CRS.new <- CRS("+init=epsg:26917") #m 
d.n <- spTransform(d, CRS.new) #m 
d.ns=crop(d.n,extn2) 
#plot(d.ns,pch=1) 
cellsinmodel=which(d.n@coords[,1]>=extn2[1,1] & d.n@coords[,1]<=extn2[1,2] & 
d.n@coords[,2]>=extn2[2,1] & d.n@coords[,2]<=extn2[2,2]) 
roco=var.get.nc(ncf,"roco") 
rocosinmodel=roco[,cellsinmodel] 
#range of rows 3-32 
#range of cols 52-68 
wmmrain=var.get.nc(ncf,"rainfall")[,,(which(yrssh%in%allyrsh2 & mossh%in%season))] 
#This extract data for 1991-2005 and season of interest 
#Start with an NA array to accomodate the subset of cells of interest 
wmmraininmodel=array(dim=c(diff(range(rocosinmodel[1,]))+1,diff(range(rocosinmodel[2,]
))+1,dim(wmmrain)[3])) 
for (c in 1:dim(rocosinmodel)[2]) { 
  wmmraininmodel[(rocosinmodel[1,c]-min(rocosinmodel[1,])+1),(rocosinmodel[2,c]-
min(rocosinmodel[2,])+1),]= 
                  wmmrain[rocosinmodel[2,c],rocosinmodel[1,c],] 
} 
#Create a brick from the SFWMM rainfall data 
#Range defined below are for outer boundaries of cells 
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wmmb=brick(arev(wmmraininmodel,1),xmn=min(cds[1,cellsinmodel])-
5280,xmx=max(cds[1,cellsinmodel])+5280, 
           ymn=min(cds[2,cellsinmodel])-5280,ymx=max(cds[2,cellsinmodel])+5280, 
           crs="+proj=tmerc +lat_0=24.33333333333333 +lon_0=-81 +k=0.9999411764705882 
+x_0=200000 +y_0=0 +ellps=GRS80 +units=ft +no_defs") 
#Project SFWMM data to MODFLOW model grid 
wmmb=projectRaster(wmmb,n,method='ngb') 
print(paste("after projection-->wmmb\n",sep="")) 
nds2=nlayers(wmmb)/nyrsh2 #number of days in the season 
#Get mean 
wmmbm=calc(wmmb,mean) 
print(paste("after temporal mean-->wmmbm\n",sep="")) 
#Adjust values 
wmmbm=mask(wmmbm,offsm,maskvalue=0,updatevalue=NA) 
print(paste("after mask-->wmmbm\n",sep="")) 
minwmmm=minValue(wmmbm) 
maxwmmm=maxValue(wmmbm) 
 
#Read LOCA projections 
projs=read.table(paste(LOCA_dir,"/loca_projections.txt",sep=""),stringsAsFactors=FALSE
)  
nprojs=nrow(projs) 
fns=paste(vn,"_",projs[,1],sep="") 
modelp=apply(projs,1,function(x) paste(c(strsplit(x,"_")[[1]][1:2]),collapse="_")) 
modelpbase=apply(projs,1,function(x) strsplit(x,"_")[[1]][1]) 
modelprip=apply(projs,1,function(x) strsplit(x,"_")[[1]][2]) 
modelprcp=apply(projs,1,function(x) strsplit(x,"_")[[1]][3]) 
modelpbases=unique(modelpbase) 
minpm=vector(length=nprojs,mode="double") 
maxpm=vector(length=nprojs,mode="double") 
minpmbc=vector(length=nprojs,mode="double") 
maxpmbc=vector(length=nprojs,mode="double") 
meanpm=vector(length=nprojs,mode="double") 
meanpmbc=vector(length=nprojs,mode="double") 
 
hist=read.table(paste(LOCA_dir,"/loca_historical.txt",sep=""),stringsAsFactors=FALSE)  
fnsh=paste(vn,"_",hist[,1],sep="") 
modelh=apply(hist,1,function(x) paste(c(strsplit(x,"_")[[1]][1:2]),collapse="_")) 
modelhbase=apply(hist,1,function(x) strsplit(x,"_")[[1]][1]) 
modelhrip=apply(hist,1,function(x) strsplit(x,"_")[[1]][2]) 
minhm=vector(length=nprojs,mode="double") 
maxhm=vector(length=nprojs,mode="double") 
meanhm=vector(length=nprojs,mode="double") 
 
 
#Define number of cores 
ncore=3 
#Create log file 
st=Sys.time() 
#logfil=paste("Log_",gsub("[ :]","_",st),".txt",sep="") 
#cat(paste("Log file:",st,"\n"),file=logfil) 
 
#Register processors 
outfil=paste("Out_",gsub("[ :]","_",st),".txt",sep="") 
cl <- makePSOCKcluster(ncore,outfile=outfil) 
registerDoParallel(cl) 
#registerDoSNOW(cl) 
 
# Extract subset of data of interest for projections 
foreach 
(i=1:nrow(projs),.packages=c("raster","foreach","RNetCDF","rgdal","parallel","doParall
el")) %dopar% { 
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  logfil=paste("Log_",gsub("[ :]","_",st),"_",i,".txt",sep="") 
  cat(paste("Log file:",st,"\n"),file=logfil)  
  cat(paste("i=",i,"\n",sep=""),file=logfil,append=TRUE) 
 
  #Get LOCA data for projections 
  #Get variable attributes from netCDF file 
  ncfile<-open.nc(paste(LOCA_dir,"/",fns[i],"_2006-2100.nc",sep=""))  
  units=att.get.nc(ncfile,fns[i],"units") 
  cat(paste(units,"\n",sep=""),file=logfil,append=TRUE) 
  if (units == "kg m-2 s-1") { 
    conv=141.7323*24  #mm/s to in/day 
  } else if (units == "mm") { 
    conv=1/25.4  #mm to in (per day of course) 
  } else {  
    stop("Different type of units") 
  } 
 
  #scal=try(att.inq.nc(ncfile,fns[i],"scale_factor"),silent=TRUE) 
  #if (class(scal) == "try-error") { 
  #  scal=1 
  #} else { 
  #  scal=att.get.nc(ncfile,fns[i],"scale_factor") 
  #} 
  scal=1 
  cat(paste(scal,"\n",sep=""),file=logfil,append=TRUE) 
  close.nc(ncfile) 
   
  #get data as a brick 
  b=brick(paste(LOCA_dir,"/",fns[i],"_2006-2100.nc",sep="")) 
  cat(paste("after brick b\n",sep=""),file=logfil,append=TRUE) 
 
  #Fix longitudes to go from -180 to +180 so raster projection can proceed correctly 
  extent(b)=c(xmin(b)-360,xmax(b)-360,ymin(b),ymax(b)) 
 
  #Extract subset of LOCA data for future years of interst 
  bproj=subset(b,which(yrslf%in%allyrs2 & moslf%in%season)) 
  cat(paste("after subset-->bproj\n",sep=""),file=logfil,append=TRUE) 
 
  #Project LOCA data to MODFLOW model grid 
  bproj=projectRaster(bproj,n,method='ngb') 
  cat(paste("after projection-->bproj\n",sep=""),file=logfil,append=TRUE) 
 
  #Adjust values 
  #bproj=mask(bproj,offsm,maskvalue=0,updatevalue=NA) 
  #cat(paste("after mask-->bproj\n",sep=""),file=logfil,append=TRUE) 
  #bproj=calc(bproj,fun=function(x) x*conv*scal) 
  #cat(paste("after calculation-->bproj\n",sep=""),file=logfil,append=TRUE) 
 
  rm(b) 
 
  #Get mean 
  projm=calc(bproj,mean) 
  cat(paste("after temporal mean-->projm\n",sep=""),file=logfil,append=TRUE) 
  #Then project the mean 
  #projm=projectRaster(projm,n,method='ngb') 
  cat(paste("after projection-->projm\n",sep=""),file=logfil,append=TRUE) 
  #Mask values 
  #projm=mask(projm,offsm,maskvalue=0,updatevalue=NA) 
  #cat(paste("after mask-->projm\n",sep=""),file=logfil,append=TRUE) 
  #Adjust values 
  projm=calc(projm,fun=function(x) x*conv*scal) 
  cat(paste("after calculation-->projm\n",sep=""),file=logfil,append=TRUE) 
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  maxpm[i]=maxValue(projm) 
  minpm[i]=minValue(projm) 
 
  # Merge with historical data if available 
  idh=which(modelhbase %in% modelpbase[i]) 
  if (length(idh) == 0) {  
    cat(paste("No historical data found for model:",modelp[i]," 
(i=",i,")\n",sep=""),file=logfil,append=TRUE) 
  } else if (length(idh) > 1) { 
    stop(paste("Multiple historical data found for model:",modelp[i]," 
(i=",i,")",sep="")) 
  } else { 
    cat(paste("Historical data found for model:",modelp[i]," 
(i=",i,")\n",sep=""),file=logfil,append=TRUE) 
    ncfile2<-open.nc(paste(LOCA_dir,"/",fnsh[idh],"_1950-2005.nc",sep="")) 
  
    units2=att.get.nc(ncfile2,fnsh[idh],"units") 
    cat(paste(units2,"\n",sep=""),file=logfil,append=TRUE) 
    if (units2 == "kg m-2 s-1") { 
      conv2=141.7323*24  #mm/s to in/day 
    } else if (units2 == "mm") { 
      conv2=1/25.4  #mm to in (per day of course) 
    } else {  
      stop("Different type of units") 
    } 
 
    #scale2=try(att.inq.nc(ncfile2,fnsh[idh],"scale_factor"),silent=TRUE) 
    #if (class(scale2) == "try-error") { 
    #  scale2=1 
    #} else { 
    #  scale2=att.get.nc(ncfile2,fnsh[idh],"scale_factor") 
    #} 
    scale2=1 
    cat(paste(scale2,"\n",sep=""),file=logfil,append=TRUE) 
    close.nc(ncfile2) 
 
    #get data as a brick 
    b=brick(paste(LOCA_dir,"/",fnsh[idh],"_1950-2005.nc",sep="")) 
    cat(paste("after brick->b\n",sep=""),file=logfil,append=TRUE) 
 
    #Fix longitudes to go from -180 to +180 so raster projection can proceed correctly 
    extent(b)=c(xmin(b)-360,xmax(b)-360,ymin(b),ymax(b)) 
 
    #Extract subset of LOCA data for historical years of interest 
    bhist=subset(b,which(yrslh%in%allyrsh2 & moslh%in%season)) 
    cat(paste("after subset-->bhist\n",sep=""),file=logfil,append=TRUE) 
 
    #Project LOCA data to MODFLOW model grid 
    #bhist=projectRaster(bhist,n,method='ngb') 
    #cat(paste("after projection-->bhist\n",sep=""),file=logfil,append=TRUE) 
 
    #Adjust values 
    #bhist=mask(bhist,offsm,maskvalue=0,updatevalue=NA) 
    #cat(paste("after mask-->bhist\n",sep=""),file=logfil,append=TRUE) 
    #bhist=calc(bhist,fun=function(x) x*conv2*scale2) 
    #cat(paste("after calculation-->bhist\n",sep=""),file=logfil,append=TRUE) 
 
    rm(b) 
 
    #Get mean 
    histm=calc(bhist,mean) 
    cat(paste("after temporal mean-->histm\n",sep=""),file=logfil,append=TRUE) 
    #Then project the mean 
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    histm=projectRaster(histm,n,method='ngb') 
    cat(paste("after projection-->histm\n",sep=""),file=logfil,append=TRUE) 
    #Mask values 
    histm=mask(histm,offsm,maskvalue=0,updatevalue=NA) 
    cat(paste("after mask-->histm\n",sep=""),file=logfil,append=TRUE) 
    #Adjust values 
    histm=calc(histm,fun=function(x) x*conv2*scale2) 
    cat(paste("after calculation-->histm\n",sep=""),file=logfil,append=TRUE) 
 
    maxhm[i]=maxValue(histm) 
    minhm[i]=minValue(histm) 
 
    #Get bias-corrected mean 
    projmbc=(projm/histm)*wmmbm 
    maxpmbc[i]=maxValue(projmbc) 
    minpmbc[i]=minValue(projmbc) 
 
    #Save data 
    
save(bhist,histm,bproj,projm,n,nm,wmmbm,projmbc,file=paste(fns[i],"_rasters.RData",sep
="")) 
    rm(bhist,histm,bproj,projm,projmbc) 
     
  } 
} 
 
#Clean up the cluster 
stopImplicitCluster() 
 
#Make levelplots of annual means 
#Get overall ranges 
minz=min(c(minpm,minhm,minpmbc,minwmmm))*nds2 
maxz=max(c(maxpm,maxhm,maxpmbc,maxwmmm))*nds2 
 
minz=floor(minz) 
maxz=ceiling(maxz) 
 
#Create levelplot of nm 
#png("NEXRAD_mean_rainfall.png") 
#col.regions=brewer.gnbu(100) 
#print(levelplot(nm*nds2,margin=FALSE,at=seq(minz,maxz,1), 
#          main=paste("NEXRAD rainfall (",round(nds2*cellStats(nm,mean),2)," 
in/yr)\n",startyrh,"-",endyrh,sep=""), 
#          xlab="X (m) UTM17N, NAD83",ylab="Y (m) UTM17N, NAD83")) 
#dev.off() 
#rm(n,nm) 
 
#Create levelplot of wmmbm 
png("SFWMM_mean_rainfall.png") 
#col.regions=brewer.gnbu(100) 
print(levelplot(wmmbm*nds2,margin=FALSE,at=seq(minz,maxz,1), 
          main=paste("SFWMM rainfall (",round(nds2*cellStats(wmmbm,mean),2)," 
in/yr)\n",startyrh2,"-",endyrh2,sep=""), 
          xlab="X (m) UTM17N, NAD83",ylab="Y (m) UTM17N, NAD83")) 
dev.off() 
 
#Create levelplots for the projections 
for (i in 1:nrow(projs)) { 
  print(paste("i=",i)) 
  load(paste(fns[i],"_rasters.RData",sep=""),verbose=TRUE) 
  #Create levelplot of histm 
  meanhm[i]=round(nds2*cellStats(histm,mean),2) 
  png(paste("LOCA_mean_rainfall_hist_",fns[i],".png",sep="")) 
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  print(levelplot(histm*nds2,margin=FALSE,at=seq(minz,maxz,1), 
            main=paste("LOCA rainfall (",meanhm[i]," in/yr)\n", 
            startyrh2,"-",endyrh2," (",fns[i],")",sep=""), 
            xlab="X (m) UTM17N, NAD83",ylab="Y (m) UTM17N, NAD83")) 
  dev.off()   
  #Create levelplot of projm 
  meanpm[i]=round(nds2*cellStats(projm,mean),2) 
  png(paste("LOCA_mean_rainfall_proj_",fns[i],".png",sep="")) 
  print(levelplot(projm*nds2,margin=FALSE,at=seq(minz,maxz,1), 
            main=paste("LOCA rainfall (",meanpm[i]," in/yr)\n", 
            startyr2,"-",endyr2," (",fns[i],")",sep=""), 
            xlab="X (m) UTM17N, NAD83",ylab="Y (m) UTM17N, NAD83")) 
  dev.off()   
  #Create levelplot of projmbc 
  meanpmbc[i]=round(nds2*cellStats(projmbc,mean),2) 
  png(paste("LOCA_mean_rainfall_projbc_",fns[i],".png",sep="")) 
  print(levelplot(projmbc*nds2,margin=FALSE,at=seq(minz,maxz,1), 
            main=paste("B.C. LOCA rainfall (",meanpmbc[i]," in/yr)\n", 
            startyr2,"-",endyr2," (",fns[i],")",sep=""), 
            xlab="X (m) UTM17N, NAD83",ylab="Y (m) UTM17N, NAD83",cex=0.5)) 
  dev.off()  
 
  png(paste("LOCA_projbc_to_SFWMM_ratio_",fns[i],".png",sep="")) 
  print(levelplot(projmbc/wmmbm,col.regions=brewer.rdbu(21),margin=FALSE, 
            at=seq(0.70,1.30,0.025), 
            main=paste("B.C.",fns[i]," (",startyr2,"-",endyr2,")\n", 
            "to SFWMM rainfall (",startyrh,"-",endyrh,")",sep=""), 
            xlab="X (m) UTM17N, NAD83",ylab="Y (m) UTM17N, NAD83",cex=0.5)) 
  dev.off()  
 
  png(paste("LOCA_projbc-SFWMM_",fns[i],".png",sep="")) 
  print(levelplot(nds2*(projmbc-wmmbm),col.regions=brewer.rdbu(29),margin=FALSE, 
            at=seq(-16,16,1), 
            main=paste("B.C.",fns[i]," (",startyr2,"-",endyr2,")\n", 
            "- SFWMM rainfall (",startyrh,"-",endyrh,") (", 
           round(nds2*cellStats((projmbc-wmmbm),mean),2)," in/yr)",sep=""), 
            xlab="X (m) UTM17N, NAD83",ylab="Y (m) UTM17N, NAD83",cex=0.5)) 
  dev.off()  
 
} 
 
statis=as.data.frame(cbind(meanhm,meanpm,meanpmbc)) 
rownames(statis)=fns 
colnames(statis)=c('meanhm','meanpm','meanpmbc') 
 
save(statis,file="mean_rainfall_stats.RData") 
write.csv(statis,file="mean_rainfall_stats.csv") 
 
png("Bias_correction_check.png") 
plot(statis[,1]/(cellStats(wmmbm,mean)*nds2),statis[,2]/statis[,3],xlab="mean(hist)/me
an(WMM)",ylab="mean(proj)/mean(projbc)",main="Check of bias-correction") 
grid() 
dev.off() 
 
 
} 
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############################################################################ 
 
adjprecip_gridwmm_actual <- function(){ 
 
############################################################################ 
#Note: Must re-do LOCA run 25 (i=25) manually by reading data using var.get.nc and 
then creating the brick 
#For some reason it does not work to create the brick directly from the netCDF file in 
the loop. 
#Therefore, one must run this script manually up to the foreach loop, and then 
manually re-do 
LOCA run 25 (i=25) as described above. Then run the rest of the script manually as 
well. 
LOCA CRS: crs="+proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0" 
############################################################################ 
 
library(reshape) 
library(RNetCDF) 
library(raster) 
library(rgdal) 
#library(fields) 
#library(RColorBrewer) 
library(pals) 
library(foreach) 
library(parallel) 
library(doParallel) 
#library(tcltk) 
#library(doSNOW) 
#library(gdalUtils) 
library(rasterVis) 
library(lattice) 
library(magic) 
 
#Main variables 
vn="pr" 
vnl="Precip" 
#season=5:10 #wet season 
season=1:12 #entire year 
LOCA_dir="Z:/miriza/Work/R/LOCA_dataset/Data" 
NEXRAD_dir="Z:/miriza/Work/FIU/FL_Building_Code/Data/Rainfall/USGS_MODFLOW_NEXRAD" 
SFWMM_dir="Z:/miriza/Work/FIU/FL_Building_Code/Data/Rainfall/SFWMD" 
 
setwd("Z:/miriza/Work/FIU/FL_Building_Code/Data/Rainfall/LOCA_BC/LOCA_vs_SFWMM_entirey
r_barrier_islands") 
 
#Future base period 
startyr2=2055 
endyr2=2069 
nyrs2=endyr2-startyr2+1 
allyrs2=startyr2:endyr2 
ndays2=as.integer(difftime(strptime(paste("01.01.",endyr2+1,sep=""), format = 
"%d.%m.%Y"), 
                strptime(paste("01.01.",startyr2,sep=""), format = 
"%d.%m.%Y"),units="days")) 
dates2=seq(as.Date("2055/1/1"), as.Date("2069/12/31"),"days") 
yrs2=as.numeric(format(dates2,'%Y')) 
mos2=as.numeric(format(dates2,'%m')) 
days2=as.numeric(format(dates2,'%d')) 
 
#Historical date range in M-D MODFLOW NEXRAD rainfall dataset 
startyrh=1996 
endyrh=2010 
nyrsh=endyrh-startyrh+1 
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allyrsh=startyrh:endyrh 
ndaysh=as.integer(difftime(strptime(paste("01.01.",endyrh+1,sep=""), format = 
"%d.%m.%Y"), 
                strptime(paste("01.01.",startyrh,sep=""), format = 
"%d.%m.%Y"),units="days")) 
datesnh=seq(as.Date("1996/1/1"), as.Date("2010/12/31"),"days") 
yrsnh=as.numeric(format(datesnh,'%Y')) 
mosnh=as.numeric(format(datesnh,'%m')) 
 
 
#Historical date range for Bias-correction (BC) 
startyrh2=1991 
endyrh2=2005 
nyrsh2=endyrh2-startyrh2+1 
allyrsh2=startyrh2:endyrh2 
ndaysh2=as.integer(difftime(strptime(paste("01.01.",endyrh2+1,sep=""), format = 
"%d.%m.%Y"), 
                strptime(paste("01.01.",startyrh2,sep=""), format = 
"%d.%m.%Y"),units="days")) 
datesnh2=seq(as.Date("1991/1/1"), as.Date("2005/12/31"),"days") 
yrsnh2=as.numeric(format(datesnh2,'%Y')) 
mosnh2=as.numeric(format(datesnh2,'%m')) 
daysnh2=as.numeric(format(datesnh2,'%d')) 
 
 
#LOCA date range 
#Historical period 
startyrlh=1950 
endyrlh=2005 
nyrslh=endyrlh-startyrlh+1 
allyrslh=startyrlh:endyrlh 
ndayslh=as.integer(difftime(strptime(paste("01.01.",endyrlh+1,sep=""), format = 
"%d.%m.%Y"), 
                strptime(paste("01.01.",startyrlh,sep=""), format = 
"%d.%m.%Y"),units="days")) 
dateslh=seq(as.Date("1950/1/1"), as.Date("2005/12/31"),"days") 
yrslh=as.numeric(format(dateslh,'%Y')) 
moslh=as.numeric(format(dateslh,'%m')) 
#Future period 
startyrlf=2006 
endyrlf=2099 
nyrslf=endyrlf-startyrlf+1 
allyrslf=startyrlf:endyrlf 
ndayslf=as.integer(difftime(strptime(paste("01.01.",endyrlf+1,sep=""), format = 
"%d.%m.%Y"), 
                strptime(paste("01.01.",startyrlf,sep=""), format = 
"%d.%m.%Y"),units="days")) 
dateslf=seq(as.Date("2006/1/1"), as.Date("2099/12/31"),"days") 
yrslf=as.numeric(format(dateslf,'%Y')) 
moslf=as.numeric(format(dateslf,'%m')) 
 
#Read in raster with 1996-2010 NEXRAD rainfall data on the M-D MODFLOW grid 
#Proj4js.defs["EPSG:26917"] = "+proj=utm +zone=17 +ellps=GRS80 +datum=NAD83 +units=m 
+no_defs" 
n=brick(paste(NEXRAD_dir,"/nexrad_rainfall.nc",sep=""),crs="+proj=utm +zone=17 
+ellps=GRS80 +datum=NAD83 +units=m +no_defs") 
#Load offset mask 
offsm=raster(paste(NEXRAD_dir,"/UMD_offshore.nc",sep=""),crs="+proj=utm +zone=17 
+ellps=GRS80 +datum=NAD83 +units=m +no_defs") 
ib=raster(paste(NEXRAD_dir,"/UMD_ibound.nc",sep=""),crs="+proj=utm +zone=17 
+ellps=GRS80 +datum=NAD83 +units=m +no_defs") 
offsm[ib==1]=1 
offsm[offsm==2]=0 
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#Adjust values 
n=mask(n,offsm,maskvalue=0,updatevalue=NA) 
print(paste("after mask-->n\n",sep="")) 
#Subset data for months of interest 
n=subset(n,which(mosnh%in%season)) 
print(paste("after subset-->n\n",sep="")) 
#Get mean 
nm=calc(n,mean) 
print(paste("after temporal mean-->nm\n",sep="")) 
minnm=minValue(nm) 
maxnm=maxValue(nm) 
#Get extent 
extn=bbox(n) 
#Go 1 SFWMM cell (2 mi = 3218.7 m) outside the NEXRAD extent 
extn2=extn 
extn2[,1]=extn2[,1]-3218.7 
extn2[,2]=extn2[,2]+3218.7 
 
#SFWMM date range 
datessh=seq(as.Date("1914/1/1"), as.Date("2016/12/31"),"days") 
yrssh=as.numeric(format(datessh,'%Y')) 
mossh=as.numeric(format(datessh,'%m')) 
 
#Read in SFWMM netCDF file 
#Proj4js.defs["ESRI:102258"] = "+proj=tmerc +lat_0=24.33333333333333 +lon_0=-81 
+k=0.9999411764705882 +x_0=200000 +y_0=0 +ellps=GRS80 +units=m +no_defs"; 
ncf=open.nc(paste(SFWMM_dir,"/rain_v4.7_1914_2016_sfwmd.nc",sep="")) 
#SFWMM coordinates are in ft NAD1983 HARN StatePlane FL East FIPS0901 (but ESRI:102258 
is in m) 
cds=var.get.nc(ncf,"coords") 
cds=cds 
#Change SFWMM cell centroid coordinates to match projection of M-D MODFLOW grid 
d <- data.frame(x=cds[1,], y=cds[2,]) 
coordinates(d) <- c("x", "y") 
proj4string(d) <- CRS("+proj=tmerc +lat_0=24.33333333333333 +lon_0=-81 
+k=0.9999411764705882 +x_0=200000 +y_0=0 +ellps=GRS80 +units=ft +no_defs")  
CRS.new <- CRS("+init=epsg:26917") #m 
d.n <- spTransform(d, CRS.new) #m 
d.ns=crop(d.n,extn2) 
#plot(d.ns,pch=1) 
cellsinmodel=which(d.n@coords[,1]>=extn2[1,1] & d.n@coords[,1]<=extn2[1,2] & 
d.n@coords[,2]>=extn2[2,1] & d.n@coords[,2]<=extn2[2,2]) 
roco=var.get.nc(ncf,"roco") 
rocosinmodel=roco[,cellsinmodel] 
#range of rows 3-32 
#range of cols 52-68 
wmmrain=var.get.nc(ncf,"rainfall")[,,(which(yrssh%in%allyrsh2 & mossh%in%season))] 
#This extract data for 1991-2005 and season of interest 
#Start with an NA array to accomodate the subset of cells of interest 
wmmraininmodel=array(dim=c(diff(range(rocosinmodel[1,]))+1,diff(range(rocosinmodel[2,]
))+1,dim(wmmrain)[3])) 
for (c in 1:dim(rocosinmodel)[2]) { 
  wmmraininmodel[(rocosinmodel[1,c]-min(rocosinmodel[1,])+1),(rocosinmodel[2,c]-
min(rocosinmodel[2,])+1),]= 
                  wmmrain[rocosinmodel[2,c],rocosinmodel[1,c],] 
} 
#Create a brick from the SFWMM rainfall data 
#Range defined below are for outer boundaries of cells 
wmmb=brick(arev(wmmraininmodel,1),xmn=min(cds[1,cellsinmodel])-
5280,xmx=max(cds[1,cellsinmodel])+5280, 
           ymn=min(cds[2,cellsinmodel])-5280,ymx=max(cds[2,cellsinmodel])+5280, 
           crs="+proj=tmerc +lat_0=24.33333333333333 +lon_0=-81 +k=0.9999411764705882 
+x_0=200000 +y_0=0 +ellps=GRS80 +units=ft +no_defs") 
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#Project SFWMM data to MODFLOW model grid 
wmmb=projectRaster(wmmb,n,method='ngb') 
print(paste("after projection-->wmmb\n",sep="")) 
nds2=nlayers(wmmb)/nyrsh2 #number of days in the season 
#Apply mask  
wmmb=mask(wmmb,offsm,maskvalues=0,updatevalues=NA) 
#Fill in values with offsm=1 
#Calculate distance and direction from all NA pixels to the nearest non-NA pixel 
dist=distance(subset(wmmb,1)) 
direct=direction(subset(wmmb,1),from=FALSE) 
#Retrieve coordinates of NA pixels 
#NA raster 
rna=is.na(wmmb) 
#Store coordinates 
na.x=init(rna,'x') 
na.y=init(rna,'y') 
#Calculate coordinates to nearest non-NA pixel 
co.x = na.x + dist * sin(direct) 
co.y = na.y + dist * cos(direct) 
co = cbind(co.x[], co.y[]) 
# extract values of nearest non-NA cell with coordinates co 
NAVals <- raster::extract(wmmb, co, method='simple')  
r.NAVals <- rna # initiate new raster 
r.NAVals[] <- NAVals # store values in raster 
# cover nearest non-NA value at NA locations of original raster 
wmmb.filled=cover(x=wmmb,y=r.NAVals) 
#Mask values 
wmmb=mask(wmmb.filled,offsm,maskvalue=0,updatevalue=NA) 
print(paste("after mask-->wmmbm\n",sep="")) 
#Get mean 
wmmbm=calc(wmmb,mean) 
print(paste("after temporal mean-->wmmbm\n",sep="")) 
plot(wmmbm) 
minwmmm=minValue(wmmbm) 
maxwmmm=maxValue(wmmbm) 
 
#Read LOCA projections 
projs=read.table(paste(LOCA_dir,"/loca_projections.txt",sep=""),stringsAsFactors=FALSE
)  
nprojs=nrow(projs) 
fns=paste(vn,"_",projs[,1],sep="") 
modelp=apply(projs,1,function(x) paste(c(strsplit(x,"_")[[1]][1:2]),collapse="_")) 
modelpbase=apply(projs,1,function(x) strsplit(x,"_")[[1]][1]) 
modelprip=apply(projs,1,function(x) strsplit(x,"_")[[1]][2]) 
modelprcp=apply(projs,1,function(x) strsplit(x,"_")[[1]][3]) 
modelpbases=unique(modelpbase) 
minpm=vector(length=nprojs,mode="double") 
maxpm=vector(length=nprojs,mode="double") 
minpmbc=vector(length=nprojs,mode="double") 
maxpmbc=vector(length=nprojs,mode="double") 
meanpm=vector(length=nprojs,mode="double") 
meanpmbc=vector(length=nprojs,mode="double") 
 
hist=read.table(paste(LOCA_dir,"/loca_historical.txt",sep=""),stringsAsFactors=FALSE)  
fnsh=paste(vn,"_",hist[,1],sep="") 
modelh=apply(hist,1,function(x) paste(c(strsplit(x,"_")[[1]][1:2]),collapse="_")) 
modelhbase=apply(hist,1,function(x) strsplit(x,"_")[[1]][1]) 
modelhrip=apply(hist,1,function(x) strsplit(x,"_")[[1]][2]) 
minhm=vector(length=nprojs,mode="double") 
maxhm=vector(length=nprojs,mode="double") 
meanhm=vector(length=nprojs,mode="double") 
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st=Sys.time() 
 
# Extract subset of data of interest for projections 
#Chosing run i=56 (MRI-CGCM3_r1i1p1_rcp85) for daily bias-correction 
i = 56 
  
  logfil=paste("Log_",gsub("[ :]","_",st),"_",i,".txt",sep="") 
  cat(paste("Log file:",st,"\n"),file=logfil)  
  cat(paste("i=",i,"\n",sep=""),file=logfil,append=TRUE) 
 
  #Get LOCA data for projections 
  #Get variable attributes from netCDF file 
  ncfile<-open.nc(paste(LOCA_dir,"/",fns[i],"_2006-2100.nc",sep=""))  
  units=att.get.nc(ncfile,fns[i],"units") 
  cat(paste(units,"\n",sep=""),file=logfil,append=TRUE) 
  if (units == "kg m-2 s-1") { 
    conv=141.7323*24  #mm/s to in/day 
  } else if (units == "mm") { 
    conv=1/25.4  #mm to in (per day of course) 
  } else {  
    stop("Different type of units") 
  } 
 
  #scal=try(att.inq.nc(ncfile,fns[i],"scale_factor"),silent=TRUE) 
  #if (class(scal) == "try-error") { 
  #  scal=1 
  #} else { 
  #  scal=att.get.nc(ncfile,fns[i],"scale_factor") 
  #} 
  scal=1 
  cat(paste(scal,"\n",sep=""),file=logfil,append=TRUE) 
  close.nc(ncfile) 
   
  #get data as a brick 
  b=brick(paste(LOCA_dir,"/",fns[i],"_2006-2100.nc",sep="")) 
  cat(paste("after brick b\n",sep=""),file=logfil,append=TRUE) 
 
  #Fix longitudes to go from -180 to +180 so raster projection can proceed correctly 
  extent(b)=c(xmin(b)-360,xmax(b)-360,ymin(b),ymax(b)) 
 
  #Extract subset of LOCA data for future years of interst 
  bproj=subset(b,which(yrslf%in%allyrs2 & moslf%in%season)) 
  cat(paste("after subset-->bproj\n",sep=""),file=logfil,append=TRUE) 
 
  #Project LOCA data to MODFLOW model grid 
  bproj=projectRaster(bproj,n,method='ngb') 
  cat(paste("after projection-->bproj\n",sep=""),file=logfil,append=TRUE) 
 
  #Adjust values 
  bproj=calc(bproj,fun=function(x) x*conv*scal) 
  cat(paste("after calculation-->bproj\n",sep=""),file=logfil,append=TRUE) 
  #Apply mask  
  bproj=mask(bproj,offsm,maskvalues=0,updatevalues=NA) 
  #Fill in values with offsm=1 
  #Calculate distance and direction from all NA pixels to the nearest non-NA pixel 
  dist=distance(subset(bproj,1)) 
  direct=direction(subset(bproj,1),from=FALSE) 
  #Retrieve coordinates of NA pixels 
  #NA raster 
  rna=is.na(bproj) 
  #Store coordinates 
  na.x=init(rna,'x') 
  na.y=init(rna,'y') 



157 
 

  #Calculate coordinates to nearest non-NA pixel 
  co.x = na.x + dist * sin(direct) 
  co.y = na.y + dist * cos(direct) 
  co = cbind(co.x[], co.y[]) 
  # extract values of nearest non-NA cell with coordinates co 
  NAVals <- raster::extract(bproj, co, method='simple')  
  r.NAVals <- rna # initiate new raster 
  r.NAVals[] <- NAVals # store values in raster 
  # cover nearest non-NA value at NA locations of original raster 
  bproj.filled=cover(x=bproj,y=r.NAVals) 
  #Mask values 
  bproj=mask(bproj.filled,offsm,maskvalue=0,updatevalue=NA) 
  print(paste("after mask-->bprojm\n",sep="")) 
  #Get mean 
  projm=calc(bproj,mean) 
 
  rm(b) 
 
  maxpm[i]=maxValue(projm) 
  minpm[i]=minValue(projm) 
 
  # Merge with historical data if available 
  idh=which(modelhbase %in% modelpbase[i]) 
  if (length(idh) == 0) {  
    cat(paste("No historical data found for model:",modelp[i]," 
(i=",i,")\n",sep=""),file=logfil,append=TRUE) 
  } else if (length(idh) > 1) { 
    stop(paste("Multiple historical data found for model:",modelp[i]," 
(i=",i,")",sep="")) 
  } else { 
    cat(paste("Historical data found for model:",modelp[i]," 
(i=",i,")\n",sep=""),file=logfil,append=TRUE) 
    ncfile2<-open.nc(paste(LOCA_dir,"/",fnsh[idh],"_1950-2005.nc",sep="")) 
  
    units2=att.get.nc(ncfile2,fnsh[idh],"units") 
    cat(paste(units2,"\n",sep=""),file=logfil,append=TRUE) 
    if (units2 == "kg m-2 s-1") { 
      conv2=141.7323*24  #mm/s to in/day 
    } else if (units2 == "mm") { 
      conv2=1/25.4  #mm to in (per day of course) 
    } else {  
      stop("Different type of units") 
    } 
 
    #scale2=try(att.inq.nc(ncfile2,fnsh[idh],"scale_factor"),silent=TRUE) 
    #if (class(scale2) == "try-error") { 
    #  scale2=1 
    #} else { 
    #  scale2=att.get.nc(ncfile2,fnsh[idh],"scale_factor") 
    #} 
    scale2=1 
    cat(paste(scale2,"\n",sep=""),file=logfil,append=TRUE) 
    close.nc(ncfile2) 
 
    #get data as a brick 
    b=brick(paste(LOCA_dir,"/",fnsh[idh],"_1950-2005.nc",sep="")) 
    cat(paste("after brick->b\n",sep=""),file=logfil,append=TRUE) 
 
    #Fix longitudes to go from -180 to +180 so raster projection can proceed correctly 
    extent(b)=c(xmin(b)-360,xmax(b)-360,ymin(b),ymax(b)) 
 
    #Extract subset of LOCA data for historical years of interest 
    bhist=subset(b,which(yrslh%in%allyrsh2 & moslh%in%season)) 
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    cat(paste("after subset-->bhist\n",sep=""),file=logfil,append=TRUE) 
 
    #Project LOCA data to MODFLOW model grid 
    bhist=projectRaster(bhist,n,method='ngb') 
    cat(paste("after projection-->bhist\n",sep=""),file=logfil,append=TRUE) 
 
    #Adjust values 
    bhist=calc(bhist,fun=function(x) x*conv2*scale2) 
    cat(paste("after calculation-->bhist\n",sep=""),file=logfil,append=TRUE) 
    #Apply mask  
    bhist=mask(bhist,offsm,maskvalues=0,updatevalues=NA) 
    #Fill in values with offsm=1 
    #Calculate distance and direction from all NA pixels to the nearest non-NA pixel 
    dist=distance(subset(bhist,1)) 
    direct=direction(subset(bhist,1),from=FALSE) 
    #Retrieve coordinates of NA pixels 
    #NA raster 
    rna=is.na(bhist) 
    #Store coordinates 
    na.x=init(rna,'x') 
    na.y=init(rna,'y') 
    #Calculate coordinates to nearest non-NA pixel 
    co.x = na.x + dist * sin(direct) 
    co.y = na.y + dist * cos(direct) 
    co = cbind(co.x[], co.y[]) 
    # extract values of nearest non-NA cell with coordinates co 
    NAVals <- raster::extract(bhist, co, method='simple')  
    r.NAVals <- rna # initiate new raster 
    r.NAVals[] <- NAVals # store values in raster 
    # cover nearest non-NA value at NA locations of original raster 
    bhist.filled=cover(x=bhist,y=r.NAVals) 
    #Mask values 
    bhist=mask(bhist.filled,offsm,maskvalue=0,updatevalue=NA) 
    print(paste("after mask-->bhistm\n",sep="")) 
    #Get mean 
    histm=calc(bhist,mean) 
 
    rm(b) 
 
    maxhm[i]=maxValue(histm) 
    minhm[i]=minValue(histm) 
 
    #Get bias-corrected mean 
    projmbc=(projm/histm)*wmmbm 
    maxpmbc[i]=maxValue(projmbc) 
    minpmbc[i]=minValue(projmbc) 
 
    #Save data 
    
#save(bhist,histm,bproj,projm,n,nm,wmmbm,projmbc,file=paste(fns[i],"_rasters.RData",se
p="")) 
    #rm(bhist,histm,bproj,projm,projmbc) 
     
  } 
 
 
#Get list of on-shore (active cells) 
onsh=which(values(offsm!=0)) 
ngages=length(onsh) 
 
#Only 1 run of interest 
nruns=1 
allprojs=projs[i,1] 
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#Initialize arrays 
PU1=array(dim=c(ndaysh2,(ngages+3),nruns)) 
PU2=array(dim=c(ndays2,(ngages+3),nruns)) 
PUmoyr1=array(dim=c(nyrsh2,12,ngages,nruns)) 
PUyr1=array(dim=c(nyrsh2,ngages,nruns)) 
PUmo1=array(dim=c(12,ngages,nruns)) 
PUmoyr2=array(dim=c(nyrs2,12,ngages,nruns)) 
PUyr2=array(dim=c(nyrs2,ngages,nruns)) 
PUmo2=array(dim=c(12,ngages,nruns)) 
 
PH1=array(dim=c(ndaysh2,(ngages+3))) 
PHmoyr1=array(dim=c(nyrsh2,12,ngages)) 
PHyr1=array(dim=c(nyrsh2,ngages)) 
PHmo1=array(dim=c(12,ngages)) 
 
#Populate the arrays  
PU1[,(1:3),]=cbind(yrsnh2,mosnh2,daysnh2) 
PU2[,(1:3),]=cbind(yrs2,mos2,days2) 
PH1[,(1:3)]=cbind(yrsnh2,mosnh2,daysnh2) 
 
PU1[,(4:(ngages+3)),]=aperm(getValues(bhist)[onsh,],c(2,1)) 
PU2[,(4:(ngages+3)),]=aperm(getValues(bproj)[onsh,],c(2,1)) 
PH1[,(4:(ngages+3))]=aperm(getValues(wmmb)[onsh,],c(2,1)) 
 
#Overall seasonal cycle boxplot 
bproj_gridave=cbind(yrs2,mos2,days2,cellStats(bproj,mean)) 
bhist_gridave=cbind(yrsnh2,mosnh2,daysnh2,cellStats(bhist,mean)) 
wmmb_gridave=cbind(yrsnh2,mosnh2,daysnh2,cellStats(wmmb,mean)) 
 
bproj_gridavemoyr=tapply(bproj_gridave[,4], 
               list(bproj_gridave[,1],bproj_gridave[,2]),sum,na.rm=TRUE) 
 
bhist_gridavemoyr=tapply(bhist_gridave[,4], 
               list(bhist_gridave[,1],bhist_gridave[,2]),sum,na.rm=TRUE) 
 
wmmb_gridavemoyr=tapply(wmmb_gridave[,4], 
               list(wmmb_gridave[,1],wmmb_gridave[,2]),sum,na.rm=TRUE) 
 
bproj_gridavemo=tapply(bproj_gridave[,4], 
               list(bproj_gridave[,2]),sum,na.rm=TRUE)/nyrs2 
 
bhist_gridavemo=tapply(bhist_gridave[,4], 
               list(bhist_gridave[,2]),sum,na.rm=TRUE)/nyrsh2 
 
wmmb_gridavemo=tapply(wmmb_gridave[,4], 
               list(wmmb_gridave[,2]),sum,na.rm=TRUE)/nyrsh2 
 
bproj_gridavemod=by(data=bproj_gridave[,4],INDICES=bproj_gridave[,2],FUN=identity) 
 
bhist_gridavemod=by(data=bhist_gridave[,4],INDICES=bhist_gridave[,2],FUN=identity) 
 
wmmb_gridavemod=by(data=wmmb_gridave[,4],INDICES=wmmb_gridave[,2],FUN=identity) 
 
png(paste("Allmodels_moyrboxplot_gridave_curr.png",sep="")) 
boxplot((bhist_gridavemoyr),xlim=c(0.5,12+0.5),boxfill=rgb(1,1,1,alpha=1),border=rgb(1
,1,1,alpha=1), 
         main=c(paste("Seasonal cycle of Precip. for entire domain",sep="")), 
         xlab="Month",ylab="Precip. (in)", 
         ylim=c(min(bhist_gridavemoyr,bproj_gridavemoyr,wmmb_gridavemoyr), 
                max(bhist_gridavemoyr,bproj_gridavemoyr,wmmb_gridavemoyr))) 
boxplot((bhist_gridavemoyr),xaxt="n",yaxt="n",add=TRUE,boxfill="pink",border="red",box
wex=0.2,at=(1:12)-.3) 
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boxplot(wmmb_gridavemoyr,xaxt="n",yaxt="n",add=TRUE,boxfill="light 
blue",border="blue",boxwex=0.2,at=(1:12)+.3) 
lines((1:12),bhist_gridavemo,lwd=2,col="red") 
lines((1:12),wmmb_gridavemo,lwd=2,col="blue") 
grid() 
abline(v=1:12,lty=3,col="grey") 
legend("topleft",legend=c(paste("Sim.:",startyrh2,"-",endyrh2), 
      paste("Hist.:",startyrh2,"-",endyrh2)),fill=c("pink","light blue"), 
        lty=c(NA,NA),lwd=c(NA,NA),border=c("red","blue"),cex=0.6) 
dev.off() 
 
png(paste("Allmodels_modboxplot_gridave_curr.png",sep="")) 
boxplot((bhist_gridavemod),xlim=c(0.5,12+0.5),boxfill=rgb(1,1,1,alpha=1),border=rgb(1,
1,1,alpha=1), 
         main=c(paste("Seasonal cycle of Precip. for entire domain",sep="")), 
         xlab="Month",ylab="Precip. (in)", 
         ylim=c(0,  
max(max(sapply(bhist_gridavemod,max,simplify="vector")),max(sapply(bproj_gridavemod,ma
x,simplify="vector")), 
                    max(sapply(wmmb_gridavemod,max,simplify="vector"))))) 
boxplot((bhist_gridavemod),xaxt="n",yaxt="n",add=TRUE,boxfill="pink",border="red",boxw
ex=0.2,at=(1:12)-.3) 
boxplot(wmmb_gridavemod,xaxt="n",yaxt="n",add=TRUE,boxfill="light 
blue",border="blue",boxwex=0.2,at=(1:12)+.3) 
grid() 
abline(v=1:12,lty=3,col="grey") 
legend("topleft",legend=c(paste("Sim.:",startyrh2,"-",endyrh2), 
      paste("Hist.:",startyrh2,"-",endyrh2)),fill=c("pink","light blue"), 
        lty=c(NA,NA),lwd=c(NA,NA),border=c("red","blue"),cex=0.6) 
dev.off() 
 
 
png(paste("Allmodels_moyrboxplot_gridave_currfut.png",sep="")) 
boxplot((bhist_gridavemoyr),xlim=c(0.5,12+0.5),boxfill=rgb(1,1,1,alpha=1),border=rgb(1
,1,1,alpha=1), 
         main=c(paste("Seasonal cycle of Precip. for entire domain",sep="")), 
         xlab="Month",ylab="Precip. (in)", 
         ylim=c(min(bhist_gridavemoyr,bproj_gridavemoyr,wmmb_gridavemoyr), 
                max(bhist_gridavemoyr,bproj_gridavemoyr,wmmb_gridavemoyr))) 
boxplot((bhist_gridavemoyr),xaxt="n",yaxt="n",add=TRUE,boxfill="pink",border="red",box
wex=0.2,at=(1:12)-.3) 
boxplot((bproj_gridavemoyr),xaxt="n",yaxt="n",add=TRUE,boxfill="light 
green",border="dark green",boxwex=0.2,at=(1:12)) 
boxplot(wmmb_gridavemoyr,xaxt="n",yaxt="n",add=TRUE,boxfill="light 
blue",border="blue",boxwex=0.2,at=(1:12)+.3) 
lines((1:12),bhist_gridavemo,lwd=2,col="red") 
lines((1:12),bproj_gridavemo,lwd=2,col="dark green") 
lines((1:12),wmmb_gridavemo,lwd=2,col="blue") 
grid() 
abline(v=1:12,lty=3,col="grey") 
legend("topleft",legend=c(paste("Sim.:",startyrh2,"-
",endyrh2),paste("Sim.:",startyr2,"-",endyr2), 
      paste("Hist.:",startyrh2,"-",endyrh2)),fill=c("pink","light green","light 
blue"), 
        lty=c(NA,NA,NA),lwd=c(NA,NA,NA),border=c("red","dark green","blue"),cex=0.6) 
dev.off() 
 
png(paste("Allmodels_modboxplot_gridave_currfut.png",sep="")) 
boxplot((bhist_gridavemod),xlim=c(0.5,12+0.5),boxfill=rgb(1,1,1,alpha=1),border=rgb(1,
1,1,alpha=1), 
         main=c(paste("Seasonal cycle of Precip. for entire domain",sep="")), 
         xlab="Month",ylab="Precip. (in)", 
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         ylim=c(0,  
max(max(sapply(bhist_gridavemod,max,simplify="vector")),max(sapply(bproj_gridavemod,ma
x,simplify="vector")), 
                    max(sapply(wmmb_gridavemod,max,simplify="vector"))))) 
boxplot((bhist_gridavemod),xaxt="n",yaxt="n",add=TRUE,boxfill="pink",border="red",boxw
ex=0.2,at=(1:12)-.3) 
boxplot((bproj_gridavemod),xaxt="n",yaxt="n",add=TRUE,boxfill="light 
green",border="dark green",boxwex=0.2,at=(1:12)) 
boxplot(wmmb_gridavemod,xaxt="n",yaxt="n",add=TRUE,boxfill="light 
blue",border="blue",boxwex=0.2,at=(1:12)+.3) 
grid() 
abline(v=1:12,lty=3,col="grey") 
legend("topleft",legend=c(paste("Sim.:",startyrh2,"-
",endyrh2),paste("Sim.:",startyr2,"-",endyr2), 
      paste("Hist.:",startyrh2,"-",endyrh2)),fill=c("pink","light green","light 
blue"), 
        lty=c(NA,NA,NA),lwd=c(NA,NA,NA),border=c("red","dark green","blue"),cex=0.6) 
dev.off() 
 
#For each active cell 
for (i in 1:ngages) { 
  print(paste("i = ",i,sep="")) 
 
  PUi=as.matrix(PU1[,(i+3),]) 
  ffsU=apply(X=PUi,MARGIN=2,FUN=function(x) ecdf(x)(x)) 
 
  PUi2=as.matrix(PU2[,(i+3),]) 
  ffsU2=apply(X=PUi2,MARGIN=2,FUN=function(x) ecdf(x)(x)) 
 
  PHi=PH1[,(i+3)] 
  ffsH=ecdf(PHi)(PHi) 
 
  PHmoyr1[,,i]=tapply(PH1[,(i+3)], 
               list(PH1[,1],PH1[,2]),sum,na.rm=TRUE) 
  PHyr1[,i]=tapply(PH1[,(i+3)],list(PH1[,1]),sum,na.rm=TRUE) 
  PHmo1[,i]=tapply(PH1[,(i+3)],list(PH1[,2]),sum,na.rm=TRUE)/nyrsh2 
 
  #Only plot every 100 cells 
  if (i%%100==0) { 
    print(paste("toplot")) 
 
    png(paste("Allmodels_CDFs_gage",i,"_",i,"_current.png",sep="")) 
    matplot(PUi,ffsU,xlim=c(0,max(max(PUi,PHi))),cex=0.1,main=paste("CDFs for gage 
",i," (",i,")",sep=""), 
            xlab="Precip. (in)",ylab="Prob. exc.") 
    points(PHi,ffsH,cex=0.1) 
    legend("bottomright",legend=c(paste("Sim. (colors):",startyrh2,"-
",endyrh2),paste("Hist.:",startyrh2,"-",endyrh2)), 
           pch=c(5,1),col=c("red","black")) 
    grid() 
    dev.off() 
  } 
 
  for (m in 1:nruns) { 
    print(paste("m = ",m,sep="")) 
 
    PUmoyr1[,,i,m]=tapply(PU1[,(i+3),m], 
                   list(PU1[,1,m], 
                   PU1[,2,m]),sum,na.rm=TRUE) 
    PUyr1[,i,m]=tapply(PU1[,(i+3),m], 
                list(PU1[,1,m]),sum,na.rm=TRUE) 
    PUmo1[,i,m]=tapply(PU1[,(i+3),m], 
                list(PU1[,2,m]),sum,na.rm=TRUE)/nyrsh2 
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    PUmoyr2[,,i,m]=tapply(PU2[,(i+3),m], 
                   list(PU2[,1,m], 
                   PU2[,2,m]),sum,na.rm=TRUE) 
    PUyr2[,i,m]=tapply(PU2[,(i+3),m], 
                list(PU2[,1,m]),sum,na.rm=TRUE) 
    PUmo2[,i,m]=tapply(PU2[,(i+3),m], 
                list(PU2[,2,m]),sum,na.rm=TRUE)/nyrs2 
 
    #Only plot every 100 cells 
    if (i%%100==0) { 
      print(paste("toplot")) 
 
      
png(paste("Model_",m,"_QQplot_CDF_gage",i,"_",i,"_currfut.png",sep=""),height=960,poin
tsize=20) 
      nf=layout((c(1,2,3)),heights=c(5,5,5)) 
      
qqplot(PHi,PUi[,m],xlim=c(0,max(max(PHi,PUi[,m]))),ylim=c(0,max(max(PHi,PUi[,m]))), 
             main=c(paste("QQplot for gage ",i," (",i,")",sep=""), 
             paste("m=",m," (",allprojs[m],"), ",startyrh2,"-",endyrh2,sep="")), 
             xlab=paste("Hist. Precip. (in):",startyrh2,"-",endyrh2),ylab=paste("Sim. 
Precip. (in):",startyrh2,"-",endyrh2)) 
      lines(c(0,max(max(PHi,PUi[,m]))),c(0,max(max(PHi,PUi[,m]))),col="red") 
      
legend("topleft",legend=c("QQ","1:1"),pch=c(1,NA),col=c("black","red"),lty=c(NA,1)) 
      grid() 
      
qqplot(PUi[,m],PUi2[,m],xlim=c(0,max(max(PUi[,m],PUi2[,m]))),ylim=c(0,max(max(PUi[,m],
PUi2[,m]))), 
             main=c(paste("QQplot for gage ",i," (",i,")",sep=""), 
             paste("m=",m," (",allprojs[m],"), ",startyrh2,"-",endyrh2,sep="")), 
             xlab=paste("Sim. Precip. (in):",startyrh2,"-",endyrh2),ylab=paste("Sim. 
Precip. (in):",startyr2,"-",endyr2)) 
      lines(c(0,max(max(PUi[,m],PUi2[,m]))),c(0,max(max(PUi[,m],PUi2[,m]))),col="red") 
      
legend("topleft",legend=c("QQ","1:1"),pch=c(1,NA),col=c("black","red"),lty=c(NA,1)) 
      grid() 
      
plot(PUi[,m],ffsU[,m],xlim=c(0,max(PUi[,m],PUi2[,m],PHi)),cex=0.2,main="CDF",xlab="Pre
cip. (in)", 
           ylab="Prob. exc.",col="red")  
      points(PUi2[,m],ffsU2[,m],cex=0.2,col="green")  
      points(PHi,ffsH,cex=0.2) 
      legend("bottomright",legend=c(paste("Sim.:",startyrh2,"-
",endyrh2),paste("Sim.:",startyr2,"-",endyr2), 
             paste("Hist.:",startyrh2,"-",endyrh2)), 
             pch=1,col=c("red","green","black")) 
      grid() 
      dev.off() 
    } 
  }#end m 
 
  #Only plot every 100 cells 
  if (i%%100==0) { 
    print(paste("toplot")) 
    #Create boxplots for seasonal cycle and inter-annual variability 
    png(paste("Allmodels_moboxplot_gage",i,"_",i,"_currfut.png",sep="")) 
    
boxplot(t(PUmo1[,i,]),xlim=c(0.5,12+0.5),boxfill=rgb(1,1,1,alpha=1),border=rgb(1,1,1,a
lpha=1), 
            main=c(paste("Seasonal cycle of Precip. for gage ",i," (",i,")",sep="")), 
            xlab="Month",ylab="Precip. (in)", 
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ylim=c(min(PUmo1[,i,],PUmo2[,i,],PHmo1[,i]),max(PUmo1[,i,],PUmo2[,i,],PHmo1[,i]))) 
    
boxplot(t(PUmo1[,i,]),xaxt="n",yaxt="n",add=TRUE,boxfill="red",border="red",boxwex=0.2
5,at=(1:12)-.15) 
    boxplot(t(PUmo2[,i,]),xaxt="n",yaxt="n",add=TRUE,boxfill="light 
green",border="light green",boxwex=0.25,at=(1:12)+.15) 
    lines((1:12)-0.15,PHmo1[,i],lwd=2) 
    grid() 
    abline(v=1:12,lty=3,col="grey") 
    legend("topleft",legend=c(paste("Sim.:",startyrh2,"-
",endyrh2),paste("Sim.:",startyr2,"-",endyr2), 
           paste("Hist.:",startyrh2,"-",endyrh2)),fill=c("red","light green",NA), 
           lty=c(NA,NA,1),lwd=c(NA,NA,2),border=c("black","black",NA),cex=0.6) 
    dev.off() 
  
    png(paste("Allmodels_moyrboxplot_gage",i,"_",i,"_currfut.png",sep="")) 
    
boxplot((PUmoyr1[,,i,]),xlim=c(0.5,12+0.5),boxfill=rgb(1,1,1,alpha=1),border=rgb(1,1,1
,alpha=1), 
            main=c(paste("Seasonal cycle of Precip. for gage ",i," (",i,")",sep="")), 
            xlab="Month",ylab="Precip. (in)", 
            
ylim=c(min(PUmoyr1[,,i,],PUmoyr2[,,i,],PHmoyr1[,,i]),max(PUmoyr1[,,i,],PUmoyr2[,,i,],P
Hmoyr1[,,i]))) 
    
boxplot((PUmoyr1[,,i,]),xaxt="n",yaxt="n",add=TRUE,boxfill="red",border="red",boxwex=0
.2,at=(1:12)-.3) 
    boxplot((PUmoyr2[,,i,]),xaxt="n",yaxt="n",add=TRUE,boxfill="light 
green",border="light green",boxwex=0.2,at=(1:12)) 
    
boxplot(PHmoyr1[,,i],xaxt="n",yaxt="n",add=TRUE,boxfill="black",border="black",boxwex=
0.2,at=(1:12)+.3) 
    grid() 
    abline(v=1:12,lty=3,col="grey") 
    legend("topleft",legend=c(paste("Sim.:",startyrh2,"-
",endyrh2),paste("Sim.:",startyr2,"-",endyr2), 
          paste("Hist.:",startyrh2,"-",endyrh2)),fill=c("red","light green","black"), 
           lty=c(NA,NA,NA),lwd=c(NA,NA,NA),border=c("red","light 
green","black"),cex=0.6) 
    dev.off() 
  
    
png(paste("Allmodels_yrboxplot_gage",i,"_",i,"_currfut.png",sep=""),width=960,pointsiz
e=20) 
    
boxplot(t(PUyr1[,i,]),names=allyrsh2,xlim=c(0.5,nyrsh2+0.5),boxfill=rgb(1,1,1,alpha=1)
,border=rgb(1,1,1,alpha=1), 
            main=c(paste("Inter-annual var. of Precip. for gage ",i," 
(",i,")",sep="")), 
            xlab="Year",ylab="Precip. (in)", 
            
ylim=c(min(PUyr1[,i,],PUyr2[,i,],PHyr1[,i]),max(PUyr1[,i,],PUyr2[,i,],PHyr1[,i]))) 
    
boxplot(t(PUyr1[,i,]),xaxt="n",yaxt="n",add=TRUE,boxfill="red",border="red",boxwex=0.2
5,at=(1:nyrsh2)-0.15) 
    boxplot(t(PUyr2[,i,]),xaxt="n",yaxt="n",add=TRUE,boxfill="light 
green",border="light green",boxwex=0.25,at=(1:nyrsh2)+0.15) 
    lines((1:nyrsh2)-0.15,PHyr1[,i],lwd=2) 
    grid() 
    abline(v=allyrsh2,lty=3,col="grey") 
    legend("topleft",legend=c(paste("Sim.:",startyrh2,"-
",endyrh2),paste("Sim.:",startyr2,"-",endyr2,"shifted"), 
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           paste("Hist.:",startyrh2,"-",endyrh2)),fill=c("red","light green",NA), 
           lty=c(NA,NA,1),lwd=c(NA,NA,2),border=c("black","black",NA),cex=0.6) 
    dev.off() 
  } 
 
}#end i 
 
#Save unadjusted data (pre-BC) 
save(PU1,PUmoyr1,PUyr1,PUmo1,PU2,PUmoyr2,PUyr2,PUmo2,PH1,PHmoyr1,PHyr1,PHmo1,file="Pre
BC_Precip.RData") 
 
#Do AQDM or MQDM Bias Correction here 
#Initialize BC matrices to uncorrected ones 
PUBC1=PU1 
PUBC2=PU2 
PUBCmoyr1=PUmoyr1 
PUBCyr1=PUyr1 
PUBCmo1=PUmo1 
PUBCmoyr2=PUmoyr2 
PUBCyr2=PUyr2 
PUBCmo2=PUmo2 
 
if (file.exists("Inf_cells.txt")) { 
  file.remove("Inf_cells.txt") 
} 
 
infc=0 
l=list() 
 
for (i in 1:ngages) { 
  err1=0 
  print(paste("i = ",i,sep="")) 
 
 
  #This gives values for the month 
  Ubymo=lapply(seq_len(nruns),FUN=function(x) by(data=PU1[,(i+3),x], 
                                              INDICES=PU1[,2,x],FUN=identity)) 
 
  U2bymo=lapply(seq_len(nruns),FUN=function(x) by(data=PU2[,(i+3),x], 
                                              INDICES=PU2[,2,x],FUN=identity)) 
   
  H1bymo=by(data=PH1[,(i+3)],INDICES=PH1[,2],FUN=identity) 
 
 
  #This gives sorted values for the month 
  #sortedUbymo=lapply(seq_len(nruns),FUN=function(x) by(data=PU1[,(i+3),x], 
  #                                            INDICES=PU1[,2,x],FUN=sort)) 
 
  #This gives CDF value (non-exceedance prob.) for a particular value with a month's 
CDF 
  #ffsUbymo=lapply(seq_len(nruns),FUN=function(x) by(data=PU1[,(i+3),x], 
  #                                            INDICES=PU1[,2,x],FUN=function(x) 
ecdf(x)(x))) 
 
  #This can be used to get quantile of interest 
  #ecdfUbymo=lapply(seq_len(nruns),FUN=function(x) by(data=PU1[,(i+3),x], 
  #                                            INDICES=PU1[,2,x],FUN=function(x) 
ecdf(x))) 
 
  #ecdfU2bymo=lapply(seq_len(nruns),FUN=function(x) by(data=PU2[,(i+3),x], 
  #                                            INDICES=PU2[,2,x],FUN=function(x) 
ecdf(x))) 
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  #ecdfH1bymo=by(data=PH1[,(i+3)],INDICES=PH1[,2],FUN=function(x) ecdf(x)) 
 
  for (m in 1:nruns) { 
    print(paste("m = ",m,sep="")) 
 
    #MQDM 
    PUBC1[,(i+3),m]=mapply(function(mo,xmc) { 
                                if (xmc==0 || 
(quantile(H1bymo[mo][[1]],ecdf(Ubymo[[m]][mo][[1]])(xmc)))<=0.0001) { 
                                  0  
                                } else { 
                                
xmc*(quantile(H1bymo[mo][[1]],ecdf(Ubymo[[m]][mo][[1]])(xmc)))/ 
                                
(quantile(Ubymo[[m]][mo][[1]],ecdf(Ubymo[[m]][mo][[1]])(xmc))) 
                                }}, 
                            mo=PU1[,2,m],xmc=PU1[,(i+3),m])     
 
    if (length(which(PUBC1[,(i+3),m]==Inf))) { 
      cat(paste("PUBC1: i",i,"\n"),file="Inf_cells.txt",append=TRUE)  
      arr=which(PUBC1[,(i+3),m]==Inf) 
      PUBC1[arr,(i+3),m]=0 
      err1=0 #used to be set to 1, but now set to 0 since Inf values changed to 0 (see 
comment at bottom) 
    } 
    #AQDM 
    #PUBC1[,(i+3),m]=mapply(function(mo,xmc) { 
    #                            
xmc+(quantile(H1bymo[mo][[1]],ecdf(Ubymo[[m]][mo][[1]])(xmc)))- 
    #                            
(quantile(Ubymo[[m]][mo][[1]],ecdf(Ubymo[[m]][mo][[1]])(xmc))) 
    #                            }, 
    #                        mo=PU1[,2,m],xmc=PU1[,(i+3),m])   
 
    #PUBC1[PUBC1[,(i+3),m]<0,(i+3),m]=0 
 
    #MQDM 
    PUBC2[,(i+3),m]=mapply(function(mo,xmp) { 
                                if (xmp==0 || 
(quantile(H1bymo[mo][[1]],ecdf(U2bymo[[m]][mo][[1]])(xmp)))<=0.0001) { 
                                  0  
                                } else { 
                                
xmp*(quantile(H1bymo[mo][[1]],ecdf(U2bymo[[m]][mo][[1]])(xmp)))/ 
                                
(quantile(Ubymo[[m]][mo][[1]],ecdf(U2bymo[[m]][mo][[1]])(xmp))) 
                                }}, 
                            mo=PU2[,2,m],xmp=PU2[,(i+3),m])     
 
    if (length(which(PUBC2[,(i+3),m]==Inf))) { 
      infc = infc+1 
      cat(paste("PUBC2: i",i,"\n"),file="Inf_cells.txt",append=TRUE)  
      arr=which(PUBC2[,(i+3),m]==Inf) 
      mos=PUBC2[arr,2,1] 
      myl=list("cell"=i,"errarray"=arr,"xmp"=PU2[arr,(i+3),m],"mos"=mos, 
          
"qq1"=(quantile(H1bymo[mos][[1]],ecdf(U2bymo[[m]][mos][[1]])(PU2[arr,(i+3),m]))), 
          
"qq2"=(quantile(Ubymo[[m]][mos][[1]],ecdf(U2bymo[[m]][mos][[1]])(PU2[arr,(i+3),m])))) 
      l[[infc]]=myl 
      PUBC2[arr,(i+3),m]=0 
      err1=0 #used to be set to 1, but now set to 0 since Inf values changed to 0 (see 
comment at bottom) 
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    } 
    #AQDM 
    #PUBC2[,(i+3),m]=mapply(function(mo,xmp) { 
    #                            
xmp+(quantile(H1bymo[mo][[1]],ecdf(U2bymo[[m]][mo][[1]])(xmp)))- 
    #                            
(quantile(Ubymo[[m]][mo][[1]],ecdf(U2bymo[[m]][mo][[1]])(xmp))) 
    #                            }, 
    #                        mo=PU2[,2,m],xmp=PU2[,(i+3),m])     
    
    #PUBC2[PUBC2[,(i+3),m]<0,(i+3),m]=0 
 
    ffsUBC1=ecdf(PUBC1[,(i+3),m])(PUBC1[,(i+3),m]) 
    ffsUBC2=ecdf(PUBC2[,(i+3),m])(PUBC2[,(i+3),m]) 
    ffsH=ecdf(PH1[,(i+3)])(PH1[,(i+3)]) 
 
    PUBCmoyr1[,,i,m]=tapply(PUBC1[,(i+3),m], 
                   list(PUBC1[,1,m], 
                   PUBC1[,2,m]),sum,na.rm=TRUE) 
    PUBCyr1[,i,m]=tapply(PUBC1[,(i+3),m], 
                list(PUBC1[,1,m]),sum,na.rm=TRUE) 
    PUBCmo1[,i,m]=tapply(PUBC1[,(i+3),m], 
                list(PUBC1[,2,m]),sum,na.rm=TRUE)/nyrsh2 
 
    PUBCmoyr2[,,i,m]=tapply(PUBC2[,(i+3),m], 
                   list(PUBC2[,1,m], 
                   PUBC2[,2,m]),sum,na.rm=TRUE) 
    PUBCyr2[,i,m]=tapply(PUBC2[,(i+3),m], 
                list(PUBC2[,1,m]),sum,na.rm=TRUE) 
    PUBCmo2[,i,m]=tapply(PUBC2[,(i+3),m], 
                list(PUBC2[,2,m]),sum,na.rm=TRUE)/nyrs2 
 
    #Now generate corrected plots 
    #Only plot every 100 cells 
    if (i%%100==0 & err1==0) { 
      print(paste("toplot")) 
 
      
png(paste("Model_",m,"_QQplot_CDF_gage",i,"_",i,"_currfut_BC.png",sep=""),height=960,p
ointsize=20) 
      nf=layout((c(1,2,3)),heights=c(5,5,5)) 
      
qqplot(PH1[,(i+3)],PUBC1[,(i+3),m],xlim=c(0,max(max(PH1[,(i+3)],PUBC1[,(i+3),m]))),yli
m=c(0,max(max(PH1[,(i+3)],PUBC1[,(i+3),m]))), 
             main=c(paste("Post-BC QQplot for gage ",i," (",i,")",sep=""), 
             paste("m=",m," (",allprojs[m],"), ",startyrh2,"-",endyrh2,sep="")), 
             xlab=paste("Hist. Precip. (in):",startyrh2,"-",endyrh2),ylab=paste("BC 
Sim. Precip. (in):",startyrh2,"-",endyrh2)) 
      
lines(c(0,max(max(PH1[,(i+3)],PUBC1[,(i+3),m]))),c(0,max(max(PH1[,(i+3)],PUBC1[,(i+3),
m]))),col="red") 
      
legend("topleft",legend=c("QQ","1:1"),pch=c(1,NA),col=c("black","red"),lty=c(NA,1)) 
      grid() 
      
qqplot(PUBC1[,(i+3),m],PUBC2[,(i+3),m],xlim=c(0,max(max(PUBC1[,(i+3),m],PUBC2[,(i+3),m
]))), 
             ylim=c(0,max(max(PUBC1[,(i+3),m],PUBC2[,(i+3),m]))), 
             main=c(paste("Post B-C QQplot for gage ",i," (",i,")",sep=""), 
             paste("m=",m," (",allprojs[m],"), ",startyrh2,"-",endyrh2,sep="")), 
             xlab=paste("BC Sim. Precip. (in):",startyrh2,"-",endyrh2),ylab=paste("BC 
Sim. Precip. (in):",startyr2,"-",endyr2)) 
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lines(c(0,max(max(PUBC1[,(i+3),m],PUBC2[,(i+3),m]))),c(0,max(max(PUBC1[,(i+3),m],PUBC2
[,(i+3),m]))),col="red") 
      
legend("topleft",legend=c("QQ","1:1"),pch=c(1,NA),col=c("black","red"),lty=c(NA,1)) 
      grid() 
      
plot(PUBC1[,(i+3),m],ffsUBC1,xlim=c(0,max(PUBC1[,(i+3),m],PUBC2[,(i+3),m],PH1[,(i+3)])
),cex=0.2, 
           main="Post-BC CDF",xlab="Precip. (in)",ylab="Prob. exc.",col="red")  
      points(PUBC2[,(i+3),m],ffsUBC2,cex=0.2,col="green")  
      points(PH1[,(i+3)],ffsH,cex=0.2) 
      legend("bottomright",legend=c(paste("BC Sim.:",startyrh2,"-",endyrh2),paste("BC 
Sim.:",startyr2,"-",endyr2), 
             paste("Hist.:",startyrh2,"-",endyrh2)), 
             pch=1,col=c("red","green","black")) 
      grid() 
      dev.off() 
    } 
 
  }#end m 
 
  #Only plot every 100 cells 
  if (i%%100==0 & err1==0) { 
    print(paste("toplot")) 
 
    #Create boxplots for seasonal cycle and inter-annual variability 
    png(paste("Allmodels_moboxplot_gage",i,"_",i,"_currfut_BC.png",sep="")) 
    
boxplot(t(PUBCmo1[,i,]),xlim=c(0.5,12+0.5),boxfill=rgb(1,1,1,alpha=1),border=rgb(1,1,1
,alpha=1), 
            main=c(paste("Post-BC Seas. cycle of Precip.-gage ",i," (",i,")",sep="")), 
            xlab="Month",ylab="Precip. (in)", 
            
ylim=c(min(PUBCmo1[,i,],PUBCmo2[,i,],PHmo1[,i]),max(PUBCmo1[,i,],PUBCmo2[,i,],PHmo1[,i
]))) 
    
boxplot(t(PUBCmo1[,i,]),xaxt="n",yaxt="n",add=TRUE,boxfill="red",border="red",boxwex=0
.25,at=(1:12)-.15) 
    boxplot(t(PUBCmo2[,i,]),xaxt="n",yaxt="n",add=TRUE,boxfill="light 
green",border="light green",boxwex=0.25,at=(1:12)+.15) 
    lines((1:12)-0.15,PHmo1[,i],lwd=2) 
    grid() 
    abline(v=1:12,lty=3,col="grey") 
    legend("topleft",legend=c(paste("BC Sim.:",startyrh2,"-",endyrh2),paste("BC 
Sim.:",startyr2,"-",endyr2), 
           paste("Hist.:",startyrh2,"-",endyrh2)),fill=c("red","light green",NA), 
           lty=c(NA,NA,1),lwd=c(NA,NA,2),border=c("black","black",NA),cex=0.6) 
    dev.off() 
  
    png(paste("Allmodels_moyrboxplot_gage",i,"_",i,"_currfut_BC.png",sep="")) 
    
boxplot((PUBCmoyr1[,,i,]),xlim=c(0.5,12+0.5),boxfill=rgb(1,1,1,alpha=1),border=rgb(1,1
,1,alpha=1), 
            main=c(paste("Seasonal cycle of Precip. for gage ",i," (",i,")",sep="")), 
            xlab="Month",ylab="Precip. (in)", 
            
ylim=c(min(PUBCmoyr1[,,i,],PUBCmoyr2[,,i,],PHmoyr1[,,i]),max(PUBCmoyr1[,,i,],PUBCmoyr2
[,,i,],PHmoyr1[,,i]))) 
    
boxplot((PUBCmoyr1[,,i,]),xaxt="n",yaxt="n",add=TRUE,boxfill="red",border="red",boxwex
=0.2,at=(1:12)-.3) 
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    boxplot((PUBCmoyr2[,,i,]),xaxt="n",yaxt="n",add=TRUE,boxfill="light 
green",border="light green",boxwex=0.2,at=(1:12)) 
    
boxplot(PHmoyr1[,,i],xaxt="n",yaxt="n",add=TRUE,boxfill="black",border="black",boxwex=
0.2,at=(1:12)+.3) 
    grid() 
    abline(v=1:12,lty=3,col="grey") 
    legend("topleft",legend=c(paste("BC Sim.:",startyrh2,"-",endyrh2),paste("BC 
Sim.:",startyr2,"-",endyr2), 
          paste("Hist.:",startyrh2,"-",endyrh2)),fill=c("red","light green","black"), 
           lty=c(NA,NA,NA),lwd=c(NA,NA,NA),border=c("red","light 
green","black"),cex=0.6) 
    dev.off() 
  
png(paste("Allmodels_yrboxplot_gage",i,"_",i,"_currfut_BC.png",sep=""),width=960,point
size=20) 
    
boxplot(t(PUBCyr1[,i,]),names=allyrsh2,xlim=c(0.5,nyrsh2+0.5),boxfill=rgb(1,1,1,alpha=
1),border=rgb(1,1,1,alpha=1), 
            main=c(paste("Post-BC Inter-annual var. of Precip.-gage ",i," 
(",i,")",sep="")), 
            xlab="Year",ylab="Precip. (in)", 
            
ylim=c(min(PUBCyr1[,i,],PUBCyr2[,i,],PHyr1[,i]),max(PUBCyr1[,i,],PUBCyr2[,i,],PHyr1[,i
]))) 
    
boxplot(t(PUBCyr1[,i,]),xaxt="n",yaxt="n",add=TRUE,boxfill="red",border="red",boxwex=0
.25,at=(1:nyrsh2)-0.15) 
    boxplot(t(PUBCyr2[,i,]),xaxt="n",yaxt="n",add=TRUE,boxfill="light 
green",border="light green",boxwex=0.25,at=(1:nyrsh2)+0.15) 
    lines((1:nyrsh2)-0.15,PHyr1[,i],lwd=2) 
    grid() 
    abline(v=allyrsh2,lty=3,col="grey") 
    legend("topleft",legend=c(paste("BC Sim.:",startyrh2,"-",endyrh2),paste("BC 
Sim.:",startyr2,"-",endyr2,"shifted"), 
           paste("Hist.:",startyrh2,"-",endyrh2)),fill=c("red","light green",NA), 
           lty=c(NA,NA,1),lwd=c(NA,NA,2),border=c("black","black",NA),cex=0.6) 
    dev.off()  
  } 
 
}#end i 
 
#Save list of cells with issues 
save(l,file="List_of_list_inf_cells.RData") 
 
#The list shows that the numerator (Xoc) is almost 0 (0.0001-0.007 in/d) when the 
denominator (Xmc) is zero.  
#Therefore, for all intents and purposes, one can make the Inf values equal to 0. Re-
run the code above setting Inf to 0. 
 
#Save adjusted (post-BC) file 
save(PUBC1,PUBCmoyr1,PUBCyr1,PUBCmo1,PUBC2,PUBCmoyr2,PUBCyr2,PUBCmo2,PH1,PHmoyr1,PHyr1
,PHmo1, 
     file="PostBC_MQDM_Precip.RData") 
 
#Populate a new brick with the new post-BC data and save to ncfile to read in python 
and create the binary files 
onshrc=rowColFromCell(bhist,onsh) 
bhbc=array(dim=c(nrow(bhist),ncol(bhist),nlayers(bhist))) 
for (g in 1:ngages) { 
  print(paste("g=",g)) 
  bhbc[onshrc[g,1],onshrc[g,2],]=PUBC1[,(g+3),1] 
} 
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bhistbc=brick(bhbc,crs="+proj=utm +zone=17 +ellps=GRS80 +datum=NAD83 +units=m 
+no_defs") 
extent(bhistbc)=extent(wmmbm) 
writeRaster(bhistbc,paste(fns[56],"_histBC_Precip.nc",sep=""),format="CDF",varname="pr
",varunit="in/day", 
            longname="Bias-corrected historical 
precipitation",xname="x",yname="y",zname="t",zunit=paste("days since",startyrh2), 
            NAflag=-999) 
 
bpbc=array(dim=c(nrow(bproj),ncol(bproj),nlayers(bproj))) 
#bpbc=array(dim=c(nrow(bhist),ncol(bhist),nlayers(bproj))) 
for (g in 1:ngages) { 
  print(paste("g=",g)) 
  bpbc[onshrc[g,1],onshrc[g,2],]=PUBC2[,(g+3),1] 
} 
bprojbc=brick(bpbc,crs="+proj=utm +zone=17 +ellps=GRS80 +datum=NAD83 +units=m 
+no_defs") 
extent(bprojbc)=extent(wmmbm) 
writeRaster(bprojbc,paste(fns[56],"_projBC_Precip.nc",sep=""),format="CDF",varname="pr
",varunit="in/day", 
            longname="Bias-corrected projected 
precipitation",xname="x",yname="y",zname="t",zunit=paste("days since",startyr2), 
            NAflag=-999) 
 
save(bhistbc,bprojbc,file="PostBC_MQDM_Precip_bricks.RData") 
 
minz=32 
maxz=83 
#Create levelplots for the bias-corrected model projection 
print(paste("i=",i)) 
#Create levelplot of histmbc 
histmbc=calc(bhistbc,mean) 
meanhmbc=round(nds2*cellStats(histmbc,mean),2) 
png(paste("LOCA_mean_rainfall_hist_",fns[56],"_dailyBC.png",sep="")) 
print(levelplot(histmbc*nds2,margin=FALSE,at=seq(minz,maxz,1), 
          main=paste("Daily B.C. LOCA rainfall (",meanhmbc," in/yr)\n", 
          startyrh2,"-",endyrh2," (",fns[56],")",sep=""), 
          xlab="X (m) UTM17N, NAD83",ylab="Y (m) UTM17N, NAD83")) 
dev.off()   
 
#Create levelplot of projmdbc 
projmdbc=calc(bprojbc,mean) 
meanpmdbc=round(nds2*cellStats(projmdbc,mean),2) 
png(paste("LOCA_mean_rainfall_proj_",fns[56],"_dailyBC.png",sep="")) 
print(levelplot(projmdbc*nds2,margin=FALSE,at=seq(minz,maxz,1), 
          main=paste("Daily B.C. LOCA rainfall (",meanpmdbc," in/yr)\n", 
          startyr2,"-",endyr2," (",fns[56],")",sep=""), 
          xlab="X (m) UTM17N, NAD83",ylab="Y (m) UTM17N, NAD83")) 
dev.off()   
 
png(paste("LOCA_projbc_to_SFWMM_ratio_",fns[56],"_dailyBC.png",sep="")) 
print(levelplot(projmdbc/wmmbm,col.regions=brewer.rdbu(21),margin=FALSE, 
         at=seq(0.70,1.30,0.025), 
         main=paste("Daily B.C.",fns[56]," (",startyr2,"-",endyr2,")\n", 
         "to SFWMM rainfall (",startyrh,"-",endyrh,")",sep=""), 
         xlab="X (m) UTM17N, NAD83",ylab="Y (m) UTM17N, NAD83",cex=0.5)) 
dev.off()  
 
png(paste("LOCA_projbc-SFWMM_",fns[56],"_dailyBC.png",sep="")) 
print(levelplot(nds2*(projmdbc-wmmbm),col.regions=brewer.rdbu(29),margin=FALSE, 
          at=seq(-16,16,1), 
          main=paste("Daily B.C.",fns[56]," (",startyr2,"-",endyr2,")\n", 
          "- SFWMM rainfall (",startyrh,"-",endyrh,") (", 
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          round(nds2*cellStats((projmdbc-wmmbm),mean),2)," in/yr)",sep=""), 
          xlab="X (m) UTM17N, NAD83",ylab="Y (m) UTM17N, NAD83",cex=0.5)) 
dev.off()  
 
#Overall seasonal cycle boxplot 
bprojdbc_gridave=cbind(yrs2,mos2,days2,cellStats(bprojbc,mean)) 
bhistdbc_gridave=cbind(yrsnh2,mosnh2,daysnh2,cellStats(bhistbc,mean)) 
wmmb_gridave=cbind(yrsnh2,mosnh2,daysnh2,cellStats(wmmb,mean)) 
 
bprojdbc_gridavemoyr=tapply(bprojdbc_gridave[,4], 
               list(bprojdbc_gridave[,1],bprojdbc_gridave[,2]),sum,na.rm=TRUE) 
 
bhistdbc_gridavemoyr=tapply(bhistdbc_gridave[,4], 
               list(bhistdbc_gridave[,1],bhistdbc_gridave[,2]),sum,na.rm=TRUE) 
 
wmmb_gridavemoyr=tapply(wmmb_gridave[,4], 
               list(wmmb_gridave[,1],wmmb_gridave[,2]),sum,na.rm=TRUE) 
 
bprojdbc_gridavemo=tapply(bprojdbc_gridave[,4], 
               list(bprojdbc_gridave[,2]),sum,na.rm=TRUE)/nyrs2 
 
bhistdbc_gridavemo=tapply(bhistdbc_gridave[,4], 
               list(bhistdbc_gridave[,2]),sum,na.rm=TRUE)/nyrsh2 
 
wmmb_gridavemo=tapply(wmmb_gridave[,4], 
               list(wmmb_gridave[,2]),sum,na.rm=TRUE)/nyrsh2 
 
bprojdbc_gridavemod=by(data=bprojdbc_gridave[,4],INDICES=bprojdbc_gridave[,2],FUN=iden
tity) 
 
bhistdbc_gridavemod=by(data=bhistdbc_gridave[,4],INDICES=bhistdbc_gridave[,2],FUN=iden
tity) 
 
wmmb_gridavemod=by(data=wmmb_gridave[,4],INDICES=wmmb_gridave[,2],FUN=identity) 
 
png(paste("Allmodels_moyrboxplot_gridave_curr_dailyBC.png",sep="")) 
boxplot((bhistdbc_gridavemoyr),xlim=c(0.5,12+0.5),boxfill=rgb(1,1,1,alpha=1),border=rg
b(1,1,1,alpha=1), 
         main=c(paste("Seasonal cycle of Precip. for entire domain",sep="")), 
         xlab="Month",ylab="Precip. (in)", 
         ylim=c(min(bhistdbc_gridavemoyr,bprojdbc_gridavemoyr,wmmb_gridavemoyr), 
                max(bhistdbc_gridavemoyr,bprojdbc_gridavemoyr,wmmb_gridavemoyr))) 
boxplot((bhistdbc_gridavemoyr),xaxt="n",yaxt="n",add=TRUE,boxfill="pink",border="red",
boxwex=0.2,at=(1:12)-.3) 
boxplot(wmmb_gridavemoyr,xaxt="n",yaxt="n",add=TRUE,boxfill="light 
blue",border="blue",boxwex=0.2,at=(1:12)+.3) 
lines((1:12),bhistdbc_gridavemo,lwd=2,col="red") 
lines((1:12),wmmb_gridavemo,lwd=2,col="blue") 
grid() 
abline(v=1:12,lty=3,col="grey") 
legend("topleft",legend=c(paste("Daily B.C. Sim.:",startyrh2,"-",endyrh2), 
      paste("Hist.:",startyrh2,"-",endyrh2)),fill=c("pink","light blue"), 
        lty=c(NA,NA),lwd=c(NA,NA),border=c("red","blue"),cex=0.6) 
dev.off() 
 
png(paste("Allmodels_modboxplot_gridave_curr_dailyBC.png",sep="")) 
boxplot((bhistdbc_gridavemod),xlim=c(0.5,12+0.5),boxfill=rgb(1,1,1,alpha=1),border=rgb
(1,1,1,alpha=1), 
         main=c(paste("Seasonal cycle of Precip. for entire domain",sep="")), 
         xlab="Month",ylab="Precip. (in)", 
         ylim=c(0,  
max(max(sapply(bhistdbc_gridavemod,max,simplify="vector")),max(sapply(bprojdbc_gridave
mod,max,simplify="vector")), 



171 
 

                    max(sapply(wmmb_gridavemod,max,simplify="vector"))))) 
boxplot((bhistdbc_gridavemod),xaxt="n",yaxt="n",add=TRUE,boxfill="pink",border="red",b
oxwex=0.2,at=(1:12)-.3) 
boxplot(wmmb_gridavemod,xaxt="n",yaxt="n",add=TRUE,boxfill="light 
blue",border="blue",boxwex=0.2,at=(1:12)+.3) 
grid() 
abline(v=1:12,lty=3,col="grey") 
legend("topleft",legend=c(paste("Daily Sim.:",startyrh2,"-",endyrh2), 
      paste("Hist.:",startyrh2,"-",endyrh2)),fill=c("pink","light blue"), 
        lty=c(NA,NA),lwd=c(NA,NA),border=c("red","blue"),cex=0.6) 
dev.off() 
 
png(paste("Allmodels_moyrboxplot_gridave_currfut_dailyBC.png",sep="")) 
boxplot((bhistdbc_gridavemoyr),xlim=c(0.5,12+0.5),boxfill=rgb(1,1,1,alpha=1),border=rg
b(1,1,1,alpha=1), 
         main=c(paste("Seasonal cycle of Precip. for entire domain",sep="")), 
         xlab="Month",ylab="Precip. (in)", 
         ylim=c(min(bhistdbc_gridavemoyr,bprojdbc_gridavemoyr,wmmb_gridavemoyr), 
                max(bhistdbc_gridavemoyr,bprojdbc_gridavemoyr,wmmb_gridavemoyr))) 
boxplot((bhistdbc_gridavemoyr),xaxt="n",yaxt="n",add=TRUE,boxfill="pink",border="red",
boxwex=0.2,at=(1:12)-.3) 
boxplot((bprojdbc_gridavemoyr),xaxt="n",yaxt="n",add=TRUE,boxfill="light 
green",border="dark green",boxwex=0.2,at=(1:12)) 
boxplot(wmmb_gridavemoyr,xaxt="n",yaxt="n",add=TRUE,boxfill="light 
blue",border="blue",boxwex=0.2,at=(1:12)+.3) 
lines((1:12),bhistdbc_gridavemo,lwd=2,col="red") 
lines((1:12),bprojdbc_gridavemo,lwd=2,col="dark green") 
lines((1:12),wmmb_gridavemo,lwd=2,col="blue") 
grid() 
abline(v=1:12,lty=3,col="grey") 
legend("topleft",legend=c(paste("Daily B.C. Sim.:",startyrh2,"-",endyrh2),paste("Daily 
B.C. Sim.:",startyr2,"-",endyr2), 
      paste("Hist.:",startyrh2,"-",endyrh2)),fill=c("pink","light green","light 
blue"), 
        lty=c(NA,NA,NA),lwd=c(NA,NA,NA),border=c("red","dark green","blue"),cex=0.6) 
dev.off() 
 
png(paste("Allmodels_modboxplot_gridave_currfut_dailyBC.png",sep="")) 
boxplot((bhistdbc_gridavemod),xlim=c(0.5,12+0.5),boxfill=rgb(1,1,1,alpha=1),border=rgb
(1,1,1,alpha=1), 
         main=c(paste("Seasonal cycle of Precip. for entire domain",sep="")), 
         xlab="Month",ylab="Precip. (in)", 
         ylim=c(0,  
max(max(sapply(bhistdbc_gridavemod,max,simplify="vector")),max(sapply(bprojdbc_gridave
mod,max,simplify="vector")), 
                    max(sapply(wmmb_gridavemod,max,simplify="vector"))))) 
boxplot((bhistdbc_gridavemod),xaxt="n",yaxt="n",add=TRUE,boxfill="pink",border="red",b
oxwex=0.2,at=(1:12)-.3) 
boxplot((bprojdbc_gridavemod),xaxt="n",yaxt="n",add=TRUE,boxfill="light 
green",border="dark green",boxwex=0.2,at=(1:12)) 
boxplot(wmmb_gridavemod,xaxt="n",yaxt="n",add=TRUE,boxfill="light 
blue",border="blue",boxwex=0.2,at=(1:12)+.3) 
grid() 
abline(v=1:12,lty=3,col="grey") 
legend("topleft",legend=c(paste("Daily B.C. Sim.:",startyrh2,"-",endyrh2),paste("Daily 
B.C. Sim.:",startyr2,"-",endyr2), 
      paste("Hist.:",startyrh2,"-",endyrh2)),fill=c("pink","light green","light 
blue"), 
        lty=c(NA,NA,NA),lwd=c(NA,NA,NA),border=c("red","dark green","blue"),cex=0.6) 
dev.off() 
} 
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Appendix C. R code for calculating average Everglades water levels by julian day 
 
############################################################################ 
 
interp_sfwmmstages <- function(){ 
 
############################################################################ 
 
library(reshape) 
library(RNetCDF) 
library(raster) 
library(rgdal) 
library(fields) 
#library(RColorBrewer) 
library(pals) 
library(foreach) 
library(parallel) 
library(doParallel) 
#library(tcltk) 
#library(doSNOW) 
#library(gdalUtils) 
library(rasterVis) 
library(lattice) 
library(magic) 
library(akima) 
library(concaveman) 
 
#Main variables 
SFWMM_dir="Z:/miriza/Work/FIU/FL_Building_Code/Data/Water_levels/SFWMD" 
setwd(SFWMM_dir) 
 
#Load shapefiles 
hydrog=readOGR("Z:/miriza/Work/FIU/FL_Building_Code/Data/GIS/swr_geography/umd_swr_hyd
rography.shp") 
basemap=readOGR("Z:/miriza/Work/FIU/FL_Building_Code/Data/GIS/basemap/basemap.shp") 
saltstr=readOGR("Z:/miriza/Work/FIU/FL_Building_Code/Data/GIS/structures/salinitycontr
olstructures.shp") 
drstr=readOGR("Z:/miriza/Work/FIU/FL_Building_Code/Data/GIS/structures/drainagefloodco
ntrolstructures.shp") 
 
#Read in SFWMM netCDF file 
#Proj4js.defs["ESRI:102258"] = "+proj=tmerc +lat_0=24.33333333333333 +lon_0=-81 
+k=0.9999411764705882 +x_0=200000 +y_0=0 +ellps=GRS80 +units=m +no_defs"; 
ncf=open.nc("Z:/miriza/Work/FIU/FL_Building_Code/Data/Rainfall/SFWMD/rain_v4.7_1914_20
16_sfwmd.nc") 
#SFWMM coordinates are in ft NAD1983 HARN StatePlane FL East FIPS0901 (but ESRI:102258 
is in m) 
cds=var.get.nc(ncf,"coords") 
cds=cds 
#Change SFWMM cell centroid coordinates to match projection of M-D MODFLOW grid 
d <- data.frame(x=cds[1,], y=cds[2,]) 
coordinates(d) <- c("x", "y") 
proj4string(d) <- CRS("+proj=tmerc +lat_0=24.33333333333333 +lon_0=-81 
+k=0.9999411764705882 +x_0=200000 +y_0=0 +ellps=GRS80 +units=ft +no_defs")  
CRS.new <- CRS("+init=epsg:26917") #m 
d.n <- spTransform(d, CRS.new) #m 
roco=t(var.get.nc(ncf,"roco")) 
rocoshift=roco 
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rocoshift[,2]=roco[,2]-29 
xys=d.n@coords 
xys=xys[(rocoshift[,2]>=1),] 
rocoshift=rocoshift[(rocoshift[,2]>=1),] 
ROWCOL=rocoshift[,1]*100+rocoshift[,2] 
close.nc(ncf) 
 
#Find SFWMM rocos for WCA-3B/ENP eastern-most cells 
wca3benp_east_rocos=rbind(c(32,27),c(31,27),c(30,27),c(29,27),c(28,27),c(27,27),c(26,2
6),c(25,26),c(24,26),c(23,26),c(22,26),c(21,26),c(20,26), 
                          
c(19,26),c(18,26),c(17,26),c(16,25),c(15,24),c(14,24),c(13,24),c(12,24),c(11,23),c(10,
24),c(9,24),c(8,25), 
                          c(7,25),c(6,26),c(5,27),c(4,25),c(3,22),c(2,21)) 
wca3benp_east_ROWCOL=wca3benp_east_rocos[,1]*100+wca3benp_east_rocos[,2] 
indx=which(ROWCOL%in%wca3benp_east_ROWCOL) 
x3b=xys[indx,1] 
y3b=xys[indx,2] 
 
#Find SFWMM cells west and up to WCA-3B/ENP eastern-most cells 
#Index will be 1 if 2x2 cell will be kept for interpolation 
indkeep=vector(mode="numeric",length=dim(rocoshift)[1]) 
for (r in 1:dim(wca3benp_east_rocos)[1]) { 
  indkeep[which(rocoshift[,1]==wca3benp_east_rocos[r,1] & 
rocoshift[,2]<=wca3benp_east_rocos[r,2])]=1 
} 
xxs=xys[indkeep==1,1] 
yys=xys[indkeep==1,2] 
concpoly=concaveman(as.matrix(cbind(xxs,yys)),concavity=1.2) 
 
#Read in raster with EDEN cells on the M-D MODFLOW grid 
#Proj4js.defs["EPSG:26917"] = "+proj=utm +zone=17 +ellps=GRS80 +datum=NAD83 +units=m 
+no_defs" 
n=raster("Z:/miriza/Work/FIU/FL_Building_Code/Data/Water_levels/MD_MODFLOW/eden_cells.
nc",crs="+proj=utm +zone=17 +ellps=GRS80 +datum=NAD83 +units=m +no_defs") 
#Get extent 
extn=bbox(n) 
#Centroids of cells on to which to interpolate the SFWMM data 
x0 = seq(extn[1,1]+250,extn[1,2]-250,500) 
y0 = seq(extn[2,2]-250,extn[2,1]+250,-500) 
p <- rasterToPoints(n, fun=function(x){x == 1}) 
#Coordinates of cells on which to interpolate the SFWMM data to 
#x0 = p[,1] 
#y0 = p[,2] 
#Go 1 SFWMM cell (2 mi = 3218.7 m) outside the NEXRAD extent 
#extn2=extn 
#extn2[,1]=extn2[,1]-3218.7 
#extn2[,2]=extn2[,2]+3218.7 
n2=as.array(n)[,,1] 
 
#Write out coordinates to get NGVD29 to NAVD88 datum conversion using Corpscon 6.0.1 
#Coordinates are in EPSG:26917 UTM Zone 17N NAD83 m 
grcoords=expand.grid(x0,y0) 
names(grcoords)=c("x","y") 
write.table(grcoords,file="MODFLOW_grid_coords.csv",sep=",",col.names=TRUE,row.names=T
RUE) 
grrocos=expand.grid(seq(1,ncol(n),1),seq(1,nrow(n),1)) 
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#Read in raster with ibound 
ibm=raster("Z:/miriza/Work/FIU/FL_Building_Code/Data/Rainfall/USGS_MODFLOW_NEXRAD/UMD_
ibound.nc",crs="+proj=utm +zone=17 +ellps=GRS80 +datum=NAD83 +units=m +no_defs") 
ibm[ibm!=5]=0 
ibm2=as.array(ibm)[,,1] 
 
#Get eden cells with ibm=5  
iii=which(n2==1 & ibm2==5,arr.ind=TRUE) 
 
#Find MODFLOW grid coordinates within concave hull polygon of SFWMM grid centroids 
inpoly=point.in.polygon(grcoords[,1],grcoords[,2],concpoly[,1],concpoly[,2]) 
indinpoly=which(inpoly==1) 
#Outside of polygon 
indoutpoly=which(inpoly==0) 
#Outside of polygon and also ib=5 (cells that require stages to be defined for BCs) 
ibmv=as.vector(ibm) 
indoutpolyib5=which(inpoly==0 & ibmv==5) 
#Inside of polygon and also ib=5  
indinpolyib5=which(inpoly==1 & ibmv==5) 
 
#For each MODFLOW cell in indoutpolyib5 get closest MODFLOW cell with data 
p=cbind(grcoords[indinpolyib5,1],grcoords[indinpolyib5,2]) 
q=cbind(grcoords[indoutpolyib5,1],grcoords[indoutpolyib5,2]) 
r=rdist(p,q) 
idclosest=apply(r,2,which.min) 
 
#Check that correct cells are being selected 
png("Inside_outside_WCA3ENP_polygon_cells.png",width=720,height=720) 
#plot(n) 
plot(xys[which(indkeep==1),1],xys[which(indkeep==1),2],pch=15,xlim=c(extn[1,1],extn[1,
2]),ylim=c(extn[2,1],extn[2,2]),asp=1, 
     main='Boundary cells in WCA3/ENP',xlab='',ylab='') 
lines(basemap) 
lines(hydrog) 
points(x0[iii[,2]],y0[iii[,1]],col='yellow',cex=0.5,pch=1) 
lines(concpoly[,1],concpoly[,2],col='blue',lwd=2.0) 
#points(grcoords[indinpoly,1],grcoords[indinpoly,2],col='black',cex=0.2) 
points(grcoords[indoutpolyib5,1],grcoords[indoutpolyib5,2],col='red',cex=0.5,pch=1) 
legend('topright',legend=c('SFWMM cells','Polygon','BC cells in polygon','BC cells 
outside polygon'),pch=c(15,NA,1,1), 
        col=c('black','blue','yellow','red'),lwd=c(NA,2.0,NA,NA)) 
dev.off() 
 
#Read in EDEN stage data (m NAVD88) for 1996-2010 
eden_stage=brick("Z:/miriza/Work/FIU/FL_Building_Code/Data/Water_levels/MD_MODFLOW/ede
n_stage.nc",crs="+proj=utm +zone=17 +ellps=GRS80 +datum=NAD83 +units=m +no_defs") 
eden_mean=calc(eden_stage,mean) 
eden_mean=mask(eden_mean,n,maskvalue=0,updatevalue=NA) 
eden_mean=mask(eden_mean,ibm,maskvalue=0,updatevalue=NA) 
 
#Read in topo (ft NGVD29) for CERP0 run 
cerp0_ael=read.csv("cerp0_ael.roco",header=FALSE) 
#Read in daily_stg_minus_lsel.bin for CERP0 run 
cerp0_dsml = read.table("cerp0_dsml.txt",sep="",header=TRUE) 
names(cerp0_dsml)[4:(dim(cerp0_dsml)[2])]=simplify2array(lapply(strsplit(names(cerp0_d
sml)[4:(dim(cerp0_dsml)[2])],"[.]"),FUN=function(x) 
as.numeric(x[2])*100+as.numeric(x[3]))) 
cerp0_stage = cerp0_dsml 
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x=vector(length=(dim(cerp0_dsml)[2]-3),mode='numeric') 
y=vector(length=(dim(cerp0_dsml)[2]-3),mode='numeric') 
#Add topo to daily_stg_minus_lsel.bin 
for (i in 4:(dim(cerp0_dsml)[2])) { 
  cell_topo=cerp0_ael[which(cerp0_ael[,1]==as.numeric(names(cerp0_dsml)[i])),2] 
  print(paste("i=",i,"cell topo=",cell_topo)) 
  cerp0_stage[,i]=cerp0_dsml[,i]+cell_topo 
  x[i-3]=xys[which(ROWCOL==as.numeric(names(cerp0_dsml)[i])),1] 
  y[i-3]=xys[which(ROWCOL==as.numeric(names(cerp0_dsml)[i])),2] 
} 
 
#Check coordinates of SFWMM cells read in 
plot(n) 
points(x,y,col='red',cex=0.5) 
 
cerp0_intstage = array(data=-999,dim=c(length(y0),length(x0),dim(cerp0_dsml)[1])) 
 
#Interpolate daily stage values for CERP0 run 
for (d in 1:(dim(cerp0_stage)[1])) { 
  print(paste("d=",d)) 
  intstage=interp(x,y,as.numeric(cerp0_stage[d,4:(dim(cerp0_stage)[2])]),x0,y0) 
  nas=which(!(is.na(intstage$z)),arr.ind=TRUE) 
  #points(x0[nas[,1]],y0[nas[,2]],cex=0.1) 
  for (ii in 1:dim(iii)[1]) { 
    cerp0_intstage[iii[ii,1],iii[ii,2],d]=(t(intstage$z))[iii[ii,1],iii[ii,2]] 
    
#print(paste("iii[ii,1]=",iii[ii,1],"iii[ii,2]=",iii[ii,2],"intstage=",cerp0_intstage[
iii[ii,1],iii[ii,2],d])) 
  } 
} 
 
 
#Replace values outside polygon 
for (io5 in 1:length(indoutpolyib5)) { 
  cerp0_intstage[grrocos[indoutpolyib5[io5],2],grrocos[indoutpolyib5[io5],1],]= 
                      
cerp0_intstage[grrocos[indinpolyib5[idclosest[io5]],2],grrocos[indinpolyib5[idclosest[
io5]],1],] 
  
print(paste(io5,indoutpolyib5[io5],grrocos[indoutpolyib5[io5],2],grrocos[indoutpolyib5
[io5],1],idclosest[io5],grrocos[idclosest[io5],2], 
        grrocos[idclosest[io5],1])) 
} 
 
 
cerp0=brick(cerp0_intstage,xmn=extn[1,1],xmx=extn[1,2],ymn=extn[2,1],ymx=extn[2,2],crs
="+proj=utm +zone=17 +ellps=GRS80 +datum=NAD83 +units=m +no_defs") 
cerp0_mean=calc(cerp0,mean) 
cerp0_mean=mask(cerp0_mean,n,maskvalue=0,updatevalue=NA) 
cerp0_mean=mask(cerp0_mean,ibm,maskvalue=0,updatevalue=NA) 
 
#Read in topo (ft NGVD29) for IncRF run 
incrf_ael=read.csv("incRF_ael.roco",header=FALSE) 
#Read in daily_stg_minus_lsel.bin for incrf run 
incrf_dsml = read.table("incRF_dsml.txt",sep="",header=TRUE) 
names(incrf_dsml)[4:(dim(incrf_dsml)[2])]=simplify2array(lapply(strsplit(names(incrf_d
sml)[4:(dim(incrf_dsml)[2])],"[.]"),FUN=function(x) 
as.numeric(x[2])*100+as.numeric(x[3]))) 
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incrf_stage = incrf_dsml 
x=vector(length=(dim(incrf_dsml)[2]-3),mode='numeric') 
y=vector(length=(dim(incrf_dsml)[2]-3),mode='numeric') 
#Add topo to daily_stg_minus_lsel.bin 
for (i in 4:(dim(incrf_dsml)[2])) { 
  cell_topo=incrf_ael[which(incrf_ael[,1]==as.numeric(names(incrf_dsml)[i])),2] 
  print(paste("i=",i,"cell topo=",cell_topo)) 
  incrf_stage[,i]=incrf_dsml[,i]+cell_topo 
  x[i-3]=xys[which(ROWCOL==as.numeric(names(incrf_dsml)[i])),1] 
  y[i-3]=xys[which(ROWCOL==as.numeric(names(incrf_dsml)[i])),2] 
} 
 
plot(n) 
points(x,y,col='red',cex=0.5) 
 
incrf_intstage = array(data=-999,dim=c(length(y0),length(x0),dim(incrf_dsml)[1])) 
 
#Interpolate daily stage values for incrf run 
for (d in 1:(dim(incrf_stage)[1])) { 
  print(paste("d=",d)) 
  intstage=interp(x,y,as.numeric(incrf_stage[d,4:(dim(incrf_stage)[2])]),x0,y0) 
  nas=which(!(is.na(intstage$z)),arr.ind=TRUE) 
  #points(x0[nas[,1]],y0[nas[,2]],cex=0.1) 
  for (ii in 1:dim(iii)[1]) { 
    incrf_intstage[iii[ii,1],iii[ii,2],d]=(t(intstage$z))[iii[ii,1],iii[ii,2]] 
    
#print(paste("iii[ii,1]=",iii[ii,1],"iii[ii,2]=",iii[ii,2],"intstage=",incrf_intstage[
iii[ii,1],iii[ii,2],d])) 
  } 
} 
 
#Replace values outside polygon 
for (io5 in 1:length(indoutpolyib5)) { 
  incrf_intstage[grrocos[indoutpolyib5[io5],2],grrocos[indoutpolyib5[io5],1],]= 
                      
incrf_intstage[grrocos[indinpolyib5[idclosest[io5]],2],grrocos[indinpolyib5[idclosest[
io5]],1],] 
  
print(paste(io5,indoutpolyib5[io5],grrocos[indoutpolyib5[io5],2],grrocos[indoutpolyib5
[io5],1],idclosest[io5],grrocos[idclosest[io5],2], 
        grrocos[idclosest[io5],1])) 
} 
 
incrf=brick(incrf_intstage,xmn=extn[1,1],xmx=extn[1,2],ymn=extn[2,1],ymx=extn[2,2],crs
="+proj=utm +zone=17 +ellps=GRS80 +datum=NAD83 +units=m +no_defs") 
incrf_mean=calc(incrf,mean) 
incrf_mean=mask(incrf_mean,n,maskvalue=0,updatevalue=NA) 
incrf_mean=mask(incrf_mean,ibm,maskvalue=0,updatevalue=NA) 
 
#Create plots 
minz=floor(2*min(min(getValues(cerp0_mean),na.rm=TRUE),min(getValues(incrf_mean),na.rm
=TRUE)))/2 
maxz=ceiling(2*max(max(getValues(cerp0_mean),na.rm=TRUE),max(getValues(incrf_mean),na.
rm=TRUE)))/2 
brks1=seq(minz,maxz,0.5) 
 
png("CERP0_mean_stage_6505.png",width=720,height=720) 
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plot(cerp0_mean,main=c("CERP0 mean stage 1965-2005 (ft 
NGVD29)",paste("mean=",round(cellStats(cerp0_mean,mean),2),sep="")), 
     breaks=brks1,col=jet(length(brks1))) 
lines(basemap) 
lines(hydrog) 
points(saltstr,pch=21,bg='red',col='black') 
points(drstr,pch=22,bg='blue',col='black') 
points(x,y,pch=3,col='black',cex=0.5) 
legend('topright',legend=c('Salinity ctrl. str','Drainage str.','SFWMM grid 
points'),pch=c(21,22,3),col='black',pt.bg=c('red','blue',NA)) 
dev.off() 
 
cellStats(cerp0_mean,mean) #6.515426 
 
png("IncRF_mean_stage_6505.png",width=720,height=720) 
plot(incrf_mean,main=c("10% Rainfall Increase mean stage 1965-2005 (ft 
NGVD29)",paste("mean=",round(cellStats(incrf_mean,mean),2),sep="")), 
     breaks=brks1,col=jet(length(brks1))) 
lines(basemap) 
lines(hydrog) 
points(saltstr,pch=21,bg='red',col='black') 
points(drstr,pch=22,bg='blue',col='black') 
points(x,y,pch=3,col='black',cex=0.5) 
legend('topright',legend=c('Salinity ctrl. str','Drainage str.','SFWMM grid 
points'),pch=c(21,22,3),col='black',pt.bg=c('red','blue',NA)) 
dev.off() 
 
cellStats(incrf_mean,mean) #6.422174 
 
diff_mean=cerp0_mean-incrf_mean 
 
png("CERP0-IncRF_mean_stage_6505.png",width=720,height=720) 
brks=seq(-2,2,0.25) 
plot(diff_mean,main=c("CERP0 - 10% Inc. RF stage 
(ft)",paste("mean=",round(cellStats(diff_mean,mean),2),sep="")), 
     col=rev(brewer.rdbu(length(brks))),breaks=brks, 
     legend.args=list(text='Head difference (ft)', side=4, font=1, 
line=2.75,cex.lab=0.5)) 
lines(basemap) 
lines(hydrog) 
points(saltstr,pch=21,bg='red',col='black') 
points(drstr,pch=22,bg='blue',col='black') 
points(x,y,pch=3,col='black',cex=0.5) 
legend('topright',legend=c('Salinity ctrl. str','Drainage str.','SFWMM grid 
points'),pch=c(21,22,3),col='black',pt.bg=c('red','blue',NA)) 
dev.off() 
 
cellStats(diff_mean,mean) #0.09325231 
 
#Get julian day averages 
jd=(strptime(paste(cerp0_dsml$Mo,cerp0_dsml$Da,cerp0_dsml$Year,sep="/"),format="%m/%d/
%Y"))$yday+1 
jd[jd==366]=365 
 
cerp0_jdmean=stackApply(cerp0,indices=jd,fun=mean) 
incrf_jdmean=stackApply(incrf,indices=jd,fun=mean) 
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#Read in datum conversion offset created from Corpscon6 based on 
MODFLOW_grid_coords.csv 
#Then elevation in ft NAVD88 = elevation in ft NGVD29 + datum_offset (negative) 
datum_offset=read.csv("MODFLOW_cell_datum_shift_vertcon05.csv",header=TRUE) 
datum_offsetarray=array(datum_offset[,2],dim=c(ncol(n),nrow(n))) 
datum_offsetraster=raster(t(datum_offsetarray),xmn=extn[1,1],xmx=extn[1,2],ymn=extn[2,
1],ymx=extn[2,2],crs="+proj=utm +zone=17 +ellps=GRS80 +datum=NAD83 +units=m +no_defs") 
 
png("datum_offset_vertcon05.png",width=720,height=720) 
plot(datum_offsetraster,col=rev(brewer.rdbu(20)),main="elev. (ft NAVD88) = elev. (ft 
NGVD29) + offset") 
lines(basemap) 
lines(hydrog) 
points(saltstr,pch=21,bg='red',col='black') 
points(drstr,pch=22,bg='blue',col='black') 
points(x,y,pch=3,col='black',cex=0.5) 
dev.off() 
 
#Convert data from ft NGVD29 to m NAVD88 
cerp0_jdmean_mnavd88=overlay(cerp0_jdmean,datum_offsetraster,fun=function(r1,r2) 
{return((r1+r2)/3.28)}) 
incrf_jdmean_mnavd88=overlay(incrf_jdmean,datum_offsetraster,fun=function(r1,r2) 
{return((r1+r2)/3.28)}) 
 
#Reclassify values <-300 to -999 again 
cerp0_jdmean_mnavd88=reclassify(cerp0_jdmean_mnavd88,cbind(-Inf,-300,-999)) 
incrf_jdmean_mnavd88=reclassify(incrf_jdmean_mnavd88,cbind(-Inf,-300,-999)) 
 
#Repeat values for Julian day every year for 1965-2005 
cerp0_daily_mnavd88=subset(cerp0_jdmean_mnavd88,jd) 
incrf_daily_mnavd88=subset(incrf_jdmean_mnavd88,jd) 
 
#Save as netCDF and RData files 
writeRaster(cerp0_daily_mnavd88,"CERP0_daily_stage_mNAVD88_6505_julrep.nc",format="CDF
",varname="stage",varunit="m", 
            longname="Stage for CERP0 run (m 
NAVD88)",xname="x",yname="y",zname="t",zunit=paste("days since",min(cerp0_dsml$Year)), 
            NAflag=-999,overwrite=TRUE) 
 
writeRaster(incrf_daily_mnavd88,"IncRF_daily_stage_mNAVD88_6505_julrep.nc",format="CDF
",varname="stage",varunit="m", 
            longname="Stage for 10% Inc. RF run (m 
NAVD88)",xname="x",yname="y",zname="t",zunit=paste("days since",min(incrf_dsml$Year)), 
            NAflag=-999,overwrite=TRUE) 
 
save(cerp0_daily_mnavd88,file="CERP0_daily_stage_mNAVD88_6505_julrep.RData") 
save(incrf_daily_mnavd88,file="IncRF_daily_stage_mNAVD88_6505_julrep.RData") 
 
#Repeat values for Julian day every year for 1996-2010 
dates2=as.POSIXlt(seq(as.Date("1996/1/1"), as.Date("2010/12/31"),"days")) 
jd2=dates2$yday + 1 
jd2[jd2==366]=365 
 
cerp0_daily_mnavd88_2=subset(cerp0_jdmean_mnavd88,jd2) 
incrf_daily_mnavd88_2=subset(incrf_jdmean_mnavd88,jd2) 
 
#Save as netCDF and RData files 
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writeRaster(cerp0_daily_mnavd88_2,"CERP0_daily_stage_mNAVD88_9610_julrep.nc",format="C
DF",varname="stage",varunit="m", 
            longname="Stage for CERP0 run (m 
NAVD88)",xname="x",yname="y",zname="t",zunit=paste("days 
since",(min(dates2$year)+1900)), 
            NAflag=-999,overwrite=TRUE) 
 
writeRaster(incrf_daily_mnavd88_2,"IncRF_daily_stage_mNAVD88_9610_julrep.nc",format="C
DF",varname="stage",varunit="m", 
            longname="Stage for 10% Inc. RF run (m 
NAVD88)",xname="x",yname="y",zname="t",zunit=paste("days 
since",(min(dates2$year)+1900)), 
            NAflag=-999,overwrite=TRUE) 
 
save(cerp0_daily_mnavd88_2,file="CERP0_daily_stage_mNAVD88_9610_julrep.RData") 
save(incrf_daily_mnavd88_2,file="IncRF_daily_stage_mNAVD88_9610_julrep.RData") 
 
 
#Convert EDEN mean from m NAVD88 to ft NGVD29 and plot 
eden_mean_ftngvd29=overlay(eden_mean,datum_offsetraster,fun=function(r1,r2) 
{return(3.28*r1-r2)}) 
png("EDEN_mean_stage_9610.png",width=720,height=720) 
plot(eden_mean_ftngvd29,main=c("EDEN mean stage 1996-2010 (ft 
NGVD29)",paste("mean=",round(cellStats(eden_mean_ftngvd29,mean),2),sep="")), 
     breaks=brks1,col=jet(length(brks1))) 
lines(basemap) 
lines(hydrog) 
points(saltstr,pch=21,bg='red',col='black') 
points(drstr,pch=22,bg='blue',col='black') 
points(x,y,pch=3,col='black',cex=0.5) 
legend('topright',legend=c('Salinity ctrl. str','Drainage str.','SFWMM grid 
points'),pch=c(21,22,3),col='black',pt.bg=c('red','blue',NA)) 
dev.off() 
 
png("CERP0-EDEN_mean_stage.png",width=720,height=720) 
diff_meance=cerp0_mean-eden_mean_ftngvd29 
brks=seq(-2,2,0.25) 
plot(diff_meance,main=c("CERP0 - EDEN stage 
(ft)",paste("mean=",round(cellStats(diff_meance,mean),2),sep="")), 
     col=rev(brewer.rdbu(length(brks))),breaks=brks, 
     legend.args=list(text='Head difference (ft)', side=4, font=1, 
line=2.75,cex.lab=0.5)) 
lines(basemap) 
lines(hydrog) 
points(saltstr,pch=21,bg='red',col='black') 
points(drstr,pch=22,bg='blue',col='black') 
points(x,y,pch=3,col='black',cex=0.5) 
legend('topright',legend=c('Salinity ctrl. str','Drainage str.','SFWMM grid 
points'),pch=c(21,22,3),col='black',pt.bg=c('red','blue',NA)) 
dev.off() 
 
png("IncRF-EDEN_mean_stage.png",width=720,height=720) 
diff_meanincrf=incrf_mean-eden_mean_ftngvd29 
brks=seq(-2.25,2.25,0.25) 
plot(diff_meanincrf,main=c("10% Inc. RF - EDEN stage 
(ft)",paste("mean=",round(cellStats(diff_meanincrf,mean),2),sep="")), 
     col=rev(brewer.rdbu(length(brks))),breaks=brks, 
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     legend.args=list(text='Head difference (ft)', side=4, font=1, 
line=2.75,cex.lab=0.5)) 
lines(basemap) 
lines(hydrog) 
points(saltstr,pch=21,bg='red',col='black') 
points(drstr,pch=22,bg='blue',col='black') 
points(x,y,pch=3,col='black',cex=0.5) 
legend('topright',legend=c('Salinity ctrl. str','Drainage str.','SFWMM grid 
points'),pch=c(21,22,3),col='black',pt.bg=c('red','blue',NA)) 
dev.off() 
 
#Plot some timeseries at some gages in S. Glades together with VA Key stages 
vakey=read.csv("Z:/miriza/Work/FIU/FL_Building_Code/Data/Water_levels/VAKey_comparison
s.csv",stringsAsFactors=FALSE) 
vakey[,1]=as.Date(vakey[,1],"%m/%d/%Y") #These are in ft NAVD88 
ro=seq(160,171) 
co=seq(5,12) 
for (r in ro) { 
  for (c in co) { 
    cerp0_ts=cerp0_daily_mnavd88_2[r,c] 
    eden_ts=eden_stage[r,c]  
    
rng=c(min(cbind(cerp0_ts,eden_ts,vakey[,2:4]*0.3048)),max(cbind(cerp0_ts,eden_ts,vakey
[,2:4]*0.3048))) 
    png(paste("Stage_timeseries_at_R",r,"C",c,".png",sep=""), width=1200,height=720) 
    plot(vakey[,1],cerp0_ts[1,],ylim=rng,type='l',xlab="Date",ylab="Water levels (m 
NAVD88)", 
         main=paste("Water levels at R",r,"C",c,sep="")) 
    lines(vakey[,1],vakey[,2]*0.3048,col='blue') 
 lines(vakey[,1],vakey[,4]*0.3048,col='grey') 
    lines(vakey[,1],eden_ts[1,],col='red') 
    lines(vakey[,1],vakey[,3]*0.3048,col='green') 
    
legend('topright',legend=c('CERP0',names(vakey)[2],names(vakey)[4],'Eden',names(vakey)
[3]), 
        col=c('black','blue','grey','red','green'),lty=1) 
    dev.off() 
  } 
} 
 
} 
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Appendix D. Description of boundary condition file (ibound) 
 

The Miami-Dade MODFLOW model pre-processing utilities use a file called umd_ibound.ref, which defines 
nine (9) different zones of boundary conditions based on an id assigned to each cell with values from 0 to 
8 (Figure 85). In particular, the Python pre-processing script UMD_Scenario_BND.py, which defines drain 
and general head boundary (GHB) boundary conditions for the model, handles each ibound zone 
differently as described below. As described in Hughes and White (2016) “coastal cells were defined to be 
coastal GHB or DRN cells on a daily basis using the average daily stage at Virginia Key. GHBs were specified 
for all coastal boundary cells having a surface elevation less than the stage at Virginia Key to allow for 
bidirectional water exchange based on the difference between the Biscayne aquifer and overlying coastal 
water bodies. Conversely, DRNs were specified for all coastal boundary cells having a surface elevation 
greater than or equal to the surface-water stage at Virginia Key to allow groundwater discharge at the 
surface in coastal areas.” GHB and drain boundary conditions are usually only defined in the top layer of 
the model (layer 1) with the exception of cells on the northern and western boundaries for which GHBs 
are defined in all three model layers. 

The handling of cells in each ibound zone often depends on another variable called isource, which defines 
whether the water on the cell is freshwater or seawater. If isource = 0, sources and sinks have the same 
fluid density as the active zone at the top of the aquifer. Zones with isource of 2, such as the cells in the 
Turkey Point cooling canals, have sources and sinks with density equal to that of seawater. Zones with 
isource of -2 have sources with the same fluid density as zone 2 (seawater), while sinks have the same 
fluid density as the zone at the top of the aquifer.  This option is used when simulating the ocean bottom 
where infiltrating water is salt while exfiltrating water is of the same type as water at the top of the 
aquifer.” (Bakker et al., 2013). In previous versions of the Miami-Dade MODFLOW model, zones with an 
isource of -2 are defined based on the mean sea level during the last year of the simulation period (Figure 
48), and this is approach we follow. 

 

Ibound zone definitions 
 

Zone with ibound = 0 (red): 

These are inactive model cells. No boundary conditions are defined in this zone. 

Zone with ibound = 1 (blue): 

These are the main computationally active model cells. No boundary conditions defined here. 

Zone with ibound = 2 (green): 

These are current ocean and coastal cells.  

Cells in this zone are handled differently depending on the value of isource. If isource is equal to 0, then 
no boundary conditions are created for these cells and the cells are computationally active. Otherwise 
(i.e. when isource = -2, when the cell is under water during for the MSL of the last year of simulation), 
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GHBs or drains are defined for the cells based on equivalent freshwater heads. The freshwater head is 
computed based on a saltwater head = max (cell topography, daily stage at Virginia Key tidal station). 

Zone with ibound = 3 (purple): 

These are cells immediately east of the Turkey Point cooling canals. GHBs or drains are defined for these 
cells based on equivalent freshwater heads. The freshwater head is computed based on a saltwater head 
= max (cell topography, daily stage at Virginia Key tidal station – 0.11 m), consistent with Hughes and 
White (2016). 

Zone with ibound = 4 (orange): 

These are cells on the Turkey Point cooling canals. GHBs or drains are defined for these cells based on 
equivalent freshwater heads. The freshwater head is computed based on a saltwater head = max (cell 
topography, daily stage at Virginia Key tidal station + 0.19 m), consistent with Hughes and White (2016). 

Zone with ibound = 5 (yellow): 

These are cells in the Water Conservation Areas (WCA) and Everglades National Park (ENP). GHBs or drains 
are defined for these cells based on a head computed based on the max (historical stage from EDEN 
network, cell topography, daily stage at Virginia Key station). The heads are converted to equivalent 
freshwater heads only when isource equals -2 for the cell (i.e. when the cell is under water during the MSL 
of the last year of simulation). 

Zone with ibound = 6 (brown): 

These are cells in the Southern Glades. GHBs or drains are defined for these cells based on a head 
computed based on the max (interpolated stage, cell topography, daily stage at Virginia Key tidal station). 
The interpolated stage for these cells is based on interpolation of stage data for zones 2, 3, 4, 5 and 8. The 
computed head is converted to freshwater heads only when isource equals -2 for the cell (i.e. when the 
cell is under water during the MSL of the last year of simulation). 

Zone with ibound = 7 (pink): 

These are cells north of the C-111 canal.  

Cells in this zone are handled differently depending on the value of isource. If isource equals 0, then no 
boundary conditions are created for these cells and the cells are computationally active. Otherwise (i.e. 
when isource = -2, when the cell is under water during for the MSL of the last year of simulation), GHBs 
or drains are defined for the cells based on equivalent freshwater heads. The freshwater head is computed 
based on a saltwater head = max (interpolated stage, cell topography, daily stage at Virginia Key tidal 
station). The interpolated stage for these cells is based on interpolation of stage data for zones 2, 3, 4, 5 
and 8. 

Zone with ibound = 8 (gray): 

GHBs are defined for the three model layers based on interpolated daily historical stages at surface water 
and groundwater sites: S30_H (SW), G-2034 (GW), G-1225 (GW), G-1473 (GW), and Virginia Key (SW). 
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Figure 85. Boundary condition ids for Miami-Dade MODFLOW cells 
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Figure 86. Freshwater/saltwater source (isource) for the 1996-2010 calibration run. Cells marked with white '+' are below the 
2010 historical mean sea level at Virginia Key and their isource value is (for the most part) equal to -2 (blue). 
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Appendix E. MODFLOW input file modifications for scenario simulations 
 

The following MODFLOW package input files are specified in the MODFLOW name file (.NAM) and were 
modified to simulate the scenarios as part of this project depending on how each model component is 
modeled (e.g. sea level rise scenario, land use, rainfall/RET).  

.BAS – MODFLOW basic file = f (SLR scenario) 

• ibound*.ref files – Defines active and inactive model areas. No changes in our simulations (same 
as used in calibration) 

• ihead*.ref files = f (SLR scenario) - Initial head files are obtained from a long-term simulation 
ending in 2054 with tidal water levels along the same SLR curve as in the scenario being simulated. 

.DIS – MODFLOW model discretization file – No changes in our simulations (same as used in calibration) 

.LPF – MODFLOW layer property flow package file = f (LU/quarries) – All scenarios use the same .LPF 
file, which is based on 2018 permitted quarry coverage. 

.OC – MODFLOW output control file – No changes in our simulations (same as used in calibration) 

.NWT – MODFLOW Newton solver package file – No changes in our simulations (same as used in 
calibration) 

.GFB – MODFLOW general flux boundary package file = f (rainfall, RET, LU). Most of these files are 
generated by the Python script MakeScenarioMET.py, which has been modified to handle different land 
use and rainfall assumptions. 

• rech*.ref files = f (rainfall); 0.0254 multiplier (conversion from inches to m) used with LOCA bias-
corrected future rainfall; 0.0257 (0.0254 * 1.05) used with NEXRAD historical rainfall where 1.05 
is a bias-correction factor for NEXRAD. 

• umd_nexrad_mult*.ref file = f (LU) – Contains fractions of cells that are pervious or impervious 
and not directly connected to the drainage network (1 – DCIA). All scenarios use the same file, 
which is based on 2030 land use. 

• scenario_2010_rec*.bin files = f (rainfall, RET, LU) – Recreational irrigation computed based on 
2030 land use (for low and medium density urban cells only) and rainfall/RET for the particular 
scenario run. They have ‘2010’ as part of their name since the irrigation has been scaled to 2010 
annual recreational irrigation withdrawals in the county. A 0.0254 (inches to m conversion) 
multiplier in the input file remains the same regardless of rainfall dataset used. Python script must 
be modified to use appropriate multipliers for rainfall and RET. 

• scenario_2010_ag*.bin files = f (rainfall, RET, LU) – Agricultural irrigation computed based on 2030 
land use and rainfall for the particular scenario run. They have ‘2010’ as part of their name since 
the irrigation has been scaled to 2010 annual agricultural irrigation withdrawals in the county. A 
0.0254 (inches to m conversion) multiplier in the input file remains the same regardless of rainfall 
dataset used. Python script must be modified to use appropriate multipliers for rainfall and RET. 

• septic_return_2010.ref – No changes in our simulations (same as used in scenarios by the USGS). 
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.ETS – MODFLOW ET segments package file = f (RET, LU). Most of these files are generated by the Python 
script MakeScenarioMET.py, which has been modified to handle different land use and rainfall 
assumptions. 

• ret*.ref files = f (RET); 0.00105 multiplier (0.001 conversion of mm to m * 1.05 open water 
multiplier) used when assuming RET stays the same as historically; 0.0011 multiplier (0.001 
conversion from mm to m * 1.05 open water multiplier * 1.05 assumed future increase in RET) 
used when assuming that future RET will increase by 5% due to increases in temperature. 

• umd_ets_petm_*_*2030.ref = f (LU) – All scenarios use the same. It is based on the 2030 land 
use. This file defines the proportion of the maximum ET rate for a given ET segment intersection. 

.GHB – MODFLOW general head boundary condition file = f (SLR scenario, western boundary 
assumption). Most of these files are generated by the Python script UMD_Scenario_BND.py, which has 
been modified to handle different boundary condition assumptions. 

• ghb*.bin files = f (SLR scenario, western boundary assumption) 

.DRN – MODFLOW drain boundary condition file = f (SLR scenario, western boundary assumption). Most 
of these files are generated by the Python script UMD_Scenario_BND.py, which has been modified to 
handle different boundary condition assumptions. 

• drn*.bin files = f (SLR scenario, western boundary assumption) 

.WEL – MODFLOW well boundary condition file = f (wellfield pumpage assumption). Most scenario runs 
use the same wellfield pumpage file as Scenario run 1 for 2030-2040 from the USGS. 

.SWR – MODFLOW surface water routing package file = f (SLR scenario, rainfall, RET, LU). Most datasets 
stay the same as in the model calibration except for the following: 

• rech*.ref files = f (rainfall); 0.0254 multiplier (conversion from inches to m) used with LOCA bias-
corrected future rainfall; 0.0257 (0.0254 * 1.05) used with NEXRAD historical rainfall where 1.05 
is a bias-correction factor for NEXRAD. 

• ret*.ref files = f (RET); 0.00105 multiplier (0.001 conversion of mm to m * 1.05 open water 
multiplier) used when assuming RET stays the same as historically; 0.0011 multiplier (0.001 
conversion from mm to m * 1.05 open water multiplier * 1.05 assumed future increase in RET) 
used when assuming that future RET will increase by 5% due to increases in temperature. 

• umd_istage*.ref file = f (SLR scenario) – Dataset 14a file with initial conditions for the surface 
water network obtained from a long-term simulation ending in 2054 with tidal water levels along 
the same SLR curve as in the scenario being simulated. 

• swr_dcia_dataset*.ref file = f (LU, rainfall) – Defined as an external file in the .NAM file instead of 
in the .SWR file. It has references to a files with the fraction of directly-connected impervious area 
(DCIA) on each cell that is routed as direct runoff to each SWR reach based on a mapping of cells 
to closest SWR reach. It references the rech*.ref files which are a function of rainfall (f (rainfall)) 
and whose multiplier depends on rainfall dataset used as described above. 
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• VAKey*SWR1.ref file = f (SLR scenario) – Defined as an external file in the .NAM file instead of in 
the. SWR file.  It has the tidal boundary condition applied downstream of salinity control 
structures (in ft NAVD88 with a 0.3048 conversion factor from ft to m specified at the top of the 
file). 

.SWI – MODFLOW saltwater intrusion package file = f (SLR scenario, LU) 

• umd_izeta*.ref file = f (SLR scenario) – Initial (vertical) location of the saltwater/freshwater 
interface obtained from a long-term simulation ending in 2054 with tidal water levels along the 
same SLR curve as in the scenario being simulated. 

• umd_isource*.ref file = f (SLR scenario) – Defines density of water (saltwater vs. freshwater) for 
sinks and sources on every model grid cell. Consistent with the USGS scenarios, it is defined based 
on the mean sea level for the last year of simulation in our scenarios (2069). 

• umd_Sy_L1_*.ref file = f (LU) – Defines the aquifer porosity which is based on 2018 permitted 
quarry coverage.  

Table 11. Detailed descriptions of changes to MODFLOW input files for the future scenario and sensitivity runs. 

Run short-name LOW SLR HIGH SLR 

HIGH SLR + 
NO 

PUMPAGE 

LOW SLR + 
HIST 

RAIN/RET 

HIGH SLR + 
HIST 

RAIN/RET 

Run description 

Low SLR 
scenario 
(IPCC 
median) 

High SLR 
scenario 
(USACE 
High) 

High SLR 
scenario 
with no 
pumpage 

Low SLR 
scenario 
with 
historical 
rainfall 

High SLR 
scenario 
with 
historical 
rainfall 

Rainfall           

1996-2010 NEXRAD rainfall with 1.05 
correction factor       X X 

Bias-corrected LOCA rainfall for scenario 
pr_MRI-CGCM3_r1i1p1_rcp85 in 2055-
2069 (no correction factor applied since 
bias-corrected to SFWMM rainfall dataset 
for 1991-2005) X X X     
Reference evapotranspiration           
1996-2010 RET from the USGS       X X 

1996-2010 RET from the USGS with 1.05 
adjustment factor due to future 
temperature increase X X X     
Land use           
2030 land use and DCIA X X X X X 
2018 permitted quarry lakes X X X X X 
Calibrated crop coefficients X X X X X 
Groundwater properties           
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Run short-name LOW SLR HIGH SLR 

HIGH SLR + 
NO 

PUMPAGE 

LOW SLR + 
HIST 

RAIN/RET 

HIGH SLR + 
HIST 

RAIN/RET 

Updated to reflect additional 2018 
permitted quarry locations (update both 
lpf file and swi file) X X X X X 
Recharge           

Ag. Irrigation, rec. irrigation, rainfall and ET 
based on corresponding rainfall, LU and 
DCIA (umd_nexrad_mult) with adjustment 
factors derived from 2010 land use and 
water use data X X X X X 
Septic return for 2010 X X X X X 
SWR package rainfall and RET           

Updated to reflect the same datasets used 
in recharge calculations X X X X X 
PWS pumpage           
No pumpage     X     
Future Pumpage as in USGS Scenario 1 for 
the period 2030-2040 X X   X X 
Western boundary condition           

Water levels in WCA3 and Eastern ENP 
from CERP0 SFWMM run (average for 
Julian day at each cell is repeated every 
year) X X X X X 
Tidal boundary condition           

Predicted sea levels for 2055-2069 + SLR 
from IPCC AR5 RCP8.5 median curve X     X   

Predicted sea levels for 2055-2069 + SLR 
from USACE High curve   X X   X 
All boundary conditions           

GHB and DRN boundary conditions based 
on corresponding western BC and sea 
levels and ibound array X X X X X 

Definition of source of water (fresh or 
saline) for every cell (isource array) based 
on 2069 MSL for corresponding SLR curve X X X X X 

Initial location of saltwater interface (izeta) 
based on long-term run up to 1954 along 
low SLR scenario X     X   

Initial location of saltwater interface (izeta) 
based on long-term run up to 1954 along 
high SLR scenario   X X   X 
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Run short-name LOW SLR HIGH SLR 

HIGH SLR + 
NO 

PUMPAGE 

LOW SLR + 
HIST 

RAIN/RET 

HIGH SLR + 
HIST 

RAIN/RET 
Structures and operations           

Same as 1996-2010 effective gate openings X X X X X 
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Appendix F. Relevant figures from USGS Miami-Dade MODFLOW model documentation 
 

The following figures were obtained from the USGS Miami-Dade MODFLOW model by Hughes and 
White (2016), with permission from the authors. 

 

Figure 87. Study area in Southeastern Florida (Figure 1 of Hughes and White, 2016). 



191 
 

 

Figure 88. Location of primary and secondary surface-water control structures (Figure 9a of Hughes and White, 2016). 
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Figure 89. Average municipal water use in the study area for the period 1996-2010 (Figure 18 of Hughes and White, 2016). 
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Appendix G. Simulated canal stages for the High SLR + no pumpage sensitivity run 
 

 

Figure 90. Observed and simulated stages at surface-water gages in the study area for the calibration run (red) and the High SLR 
+ no pumpage sensitivity run. 
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Appendix II.  Updating Existing Rainfall Maps 
 

This appendix describes the work performed to update existing rainfall maps in the Florida Building Code. 
For this purpose, we have evaluated the most recent rainfall data and studies available from South Florida 
Water Management District (SFWMD), National Oceanographic and Atmospheric Administration (NOAA) 
and other agencies (i.e. Miami-Dade County) to develop 100-year, rainfall for durations of 1 hour up to 3 
days.  Based on this analysis, spatial maps of rainfall depth were produced.  

For this task, we have assembled a dataset of rainfall data up to year 2018 and developed a time series of 
annual extremes for various durations of 1 hour up to 7 days.  We used the extreme value analysis 
methods using the statistical software packages in R (open source statistical software package) to 
determine the design rainfall magnitudes for 100-year return period for various durations.  The resulting 
values were mapped across the Miami-Dade County using appropriate spatial interpolation/smoothing 
methods to produce the rainfall loading maps using GIS tools. For further validation of the maps, they will 
be compared with the published data available from SFWMD and NOAA. 

Finally, the LOCA downscaled climate data product by the University of California-San Diego was evaluated 
to determine potential future changes in rainfall extremes over Miami-Dade County using quantile 
mapping techniques for bias-correction. 
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Historical rainfall data sources 
 

Various sources of historical rainfall data were evaluated for inclusion into a dataset for depth-duration-
frequency (DDF) analysis. These will be described in the next sections. In the end, only rainfall data from 
NOAA Atlas 14 Volume 9 and from the South Florida Water Management District’s DBHydro database 
were used in this task (Figure 91). The chosen rainfall stations were based on balancing the desire of using 
the most recent annual maxima rainfall data available and the desire of including sufficient years in the 
DDF analysis for reliable fitting of parameters. 

 

 

Figure 91. Rainfall stations in Miami-Dade County and vicinity 
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NOAA Atlas 14 Volume 9 
 

NOAA Atlas 14 contains estimates of precipitation depth-duration-frequency (DDF) curves along with 
associated 90% confidence intervals for the United States and territories at both weather stations and as 
a gridded product with 30 arc-second resolution (approx. 0.5 mi).  Supplementary information available 
as part of this product includes the annual maximum series (AMS) data used in developing the DDF curves, 
analysis of the AMS seasonality and trends, and the temporal distribution of heavy precipitation. The 
results are published through the Precipitation Frequency Data Server (PFDS) at 
http://hdsc.nws.noaa.gov/hdsc/pfds. The AMS data is generally available up to the years 2011-2012, 
depending on the station. 

Volume 9 of NOAA Atlas 14 covers the Southeastern states including Florida. The methodology used in 
developing the DDF/IDF curves is documented at  

http://www.nws.noaa.gov/oh/hdsc/PF_documents/Atlas14_Volume9.pdf.  

AMS series were downloaded from PFDS for 23 weather stations in the vicinity of Miami-Dade County 
(Figure 91, Figure 92, and Table 12). Sources of weather station data for the Miami-Dade County used in 
Atlas 14 include: NOAA-National Climatic Data Center NCDC (prefix 08) and SFWMD-DBHydro database 
(prefix 90) (see Table 4.2.1 in NOAA, 2013).  Periods of records at these stations can go back as far as 1840 
and end in 2011-2012 (See Appendix 1, and Appendix A.1 of NOAA, 2013). A total of 15 NOAA Atlas 14 
stations in the county have hourly AMS data available (Table 12). 

Precipitation is recorded at clock-based (constrained) intervals of 15-min, 1-hour or 1-day (these are called 
“base duration”) at these weather stations. Data at the base duration were accumulated over the 
durations of interest (1-hour, 2-hour, 3-hour, 6-hour, 12-hour, 1-day, 2-day, 3-day, 4-day, 7-day, 10-day, 
20-day, 30-day, 45-day and 60-day) to develop constrained AMS for each duration. Due to the use of clock-
based precipitation measurements, the constrained AMS series underestimates actual maxima (which in 
theory should be based on moving windows of a certain duration). In order to convert the constrained 
AMS series to unconstrained AMS values to be used in DDF development, NOAA Atlas 14 estimated 
correction factors which were applied to durations of 1-6 hours and 1-7 days (Table 13 and Table 14; from 
Tables 4.5.1 and 4.5.2 in NOAA, 2013). To avoid any confusion, all the AMS data is provided by NOAA as 
constrained values for all durations regardless of the base monitoring timestep of the original data (S. 
Pavlovic, NOAA, pers. comm. 9/16/2016).  

Code was developed in the R programming language in order to extract AMS data for the 23 weather 
stations of interest in the NOAA Atlas 14 dataset, apply correction factors, and extract the most recent 30 
years of available AMS data at each station. A separate dataset was developed with AMS data for the 22 
stations (14 hourly, 8 daily) with sufficient years of AMS data up to the year 2005 (marked with ‘*’ in Table 
12). One station had less than 20 years of AMS data available for the period ending in 2005, so it was 
eliminated of the second dataset. This second dataset was used in bias-correction of projected 
precipitation extremes based on the LOCA statistically downscaled dataset, as explained later in this 
document. 

http://hdsc.nws.noaa.gov/hdsc/pfds
http://www.nws.noaa.gov/oh/hdsc/PF_documents/Atlas14_Volume9.pdf
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Table 12. NOAA Atlas 14 stations used in this project. Station ids with a ‘*’ have 20-30 years of AMS data available up to the 
year 2005. 

STATION 
ID STATION NAME AGENCY 

LAT 
(degrees) 

LONG 
(degrees) 

MIN 
DURATION 

08-3165* FT LAUDERDALE INTL AP NCDC 26.0719 -80.1536 hourly 

08-3909* HIALEAH NCDC 25.8175 -80.2858 hourly 

08-4091* HOMESTEAD EXP STN NCDC 25.5 -80.5 hourly 

08-5658 MIAMI BEACH NCDC 25.8064 -80.1336 hourly 

08-5663* MIAMI INTL AP NCDC 25.7906 -80.3164 hourly 

08-5668* MIAMI WSO CITY NCDC 25.7167 -80.2833 hourly 

90-0185* MRF122 SFWMD FL 25.47 -80.3464 hourly 

90-0186* MRF123 SFWMD FL 25.3669 -80.3764 hourly 

08-6988* PENNSUCO 5 WNW NCDC 25.9297 -80.4539 hourly 

90-0705* S18C-R SFWMD FL 25.3306 -80.525 hourly 

90-0728* S332-R SFWMD FL 25.4217 -80.5897 hourly 

08-8780* 
TAMIAMI TRL 40 MI 
BEND NCDC 25.7608 -80.8242 hourly 

08-9010* TRAIL GLADE RANGES NCDC 25.7647 -80.4775 hourly 

90-0004* 3AS+R SFWMD FL 26.0821 -80.6915 hourly 

90-0007* 3ASW+R SFWMD FL 25.9898 -80.8362 hourly 

08-3020* FLAMINGO RS NCDC 25.1422 -80.9144 daily 

08-3163* FT LAUDERDALE NCDC 26.1019 -80.2011 daily 

08-5678* MIAMI 12 SSW NCDC 25.65 -80.3 daily 

90-0176* MRF114 SFWMD FL 26.0603 -80.2317 daily 

90-0179* MRF117 SFWMD FL 25.8269 -80.3442 daily 

08-6406* OASIS RS NCDC 25.8581 -81.0319 daily 

08-7020* PERRINE 4W NCDC 25.5819 -80.4361 daily 

08-7760* 
ROYAL PALM RANGER 
STA NCDC 25.3867 -80.5936 daily 
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Table 13. Correction factors applied to constrained AMS data across hourly durations. 

Duration (hours) 1 2 3 6 >6 

Correction factor 1.09 1.04 1.02 1.01 1.00 

 

Table 14. Correction factors applied to constrained AMS data across daily durations. 

Duration (days) 1 2 3 4 7 >7 

Correction factor 1.12 1.04 1.03 1.02 1.01 1.00 
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Figure 92. Availability of Atlas 14 AMS data for 1-hour (top) and 1-day (bottom) durations. Cyan boxes indicate years with valid 
AMS data. Blue dots indicate the last 30 years of available data. 
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South Florida Water Management District’s DBHydro daily rainfall data 
 

Rainfall data from the South Florida Water Management District’s (SFWMD) DBHydro database were 
obtained for 30 stations in the vicinity of Miami-Dade County with sufficiently long periods of record (>20-
30 years) (Figure 91). After further investigation, it was found that nine (9) of these stations were 
duplicates of NOAA Atlas 14 stations even when they often did not plot on top of each other due to 
differences in the provided significant figures for coordinates. This left 21 rainfall stations for further 
analysis. The rainfall data at these DBHydro stations is reported on a daily timestep and comes from 
various agencies including the SFWMD, the United States Geological Survey, and Everglades National Park. 
Data at some of the stations can start as early as 1941, but is generally available since the 1980s at most 
stations (Figure 93). The data is provided with daily data quality qualifiers (Table 15), which can be used 
to assess whether a particular value is reliable or not. 

In order to develop a reliable timeseries of annual maxima (AMS) at each DBHydro rainfall station, it was 
necessary to first assess whether there was enough daily data present during each year. Too many missing 
values would bias the calculated annual maxima. Therefore, we followed the same criteria used by NOAA 
(Figure 4.3.1 of NOAA Atlas 14 Volume 9, 2013) to extract annual maxima for durations of 1-7 days. The 
calculated annual maxima for durations 1-7 days in a certain a year is considered reliable if the following 
conditions are met: 

• Less than 20% of daily data is missing 
• Less than 20% of wet season data is missing (wet season defined by NOAA as the months of 

March-October for daily durations). 
• Less than 33% of daily data was accumulated for periods over 1 day 
• Less than 15% of daily wet season data was accumulated for periods over 1 day  

These criteria were programmed in R, and resulted in one station (DBKey 5815) being dropped completely 
due to frequent rainfall accumulations over multiple days. The next step was calculating the AMS 
timeseries each of the remaining 20 stations for durations of 1-7 days, while making sure that annual 
maxima for a certain duration were equal to or exceeded the annual maxima for the previous lower 
duration as done in NOAA Atlas 14. Subsequently, the constrained series were converted to unconstrained 
by applying the correction factors in Table 14. An additional check was performed again to make sure that 
unconstrained annual maxima for a certain duration were equal to or exceeded the annual maxima for 
the previous lower duration.  

The most recent 30 years of unconstrained AMS at each station will be used in the final analysis. NOAA 
Atlas 14 volume 9 only used rainfall stations with at least 30 years of valid AMS values. However, in areas 
with low station density, stations with as little as 20 years of data were included in the dataset. We follow 
the same approach here. The remaining 20 DBHydro stations all had between 19-30 years of valid AMS 
data available (Table 16) and therefore were included in our dataset. As a final check, a recursive version 
of the Grubbs’ statistical test for outliers (Grubbs, 1950) was used in order to identify potential erroneous 
AMS values at each station and for each duration. Due to the relatively short data records (19-30 years), 
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the validity of this test in properly identifying outliers is questionable. However, it provided a methodology 
for flagging and investigating high values. 

AMS for the years 1997, 1999, and 2017 were consistently identified as outlier values at a large number 
of stations based on the application of the Grubbs’ statistical test in R. Examination of the rainfall 
timeseries showed that these occurred on exactly the same dates at a large number of stations and were 
frequently associated with known storm or high rainfall events (e.g. Hurricane Irma in 2017). Most outliers 
were considered valid with the exception of some events during Hurricane Irma in stations in central 
Everglades National Park (DBKeys 6040, 6041, G6149, and G6152) where rainfall amounts of up to 19 
in/day were recorded. These large rainfall amounts were in disagreement with the SFWMD’s NEXRAD 
rainfall maps and with NOAA’s official rainfall totals for Hurricane Irma (see Figure 12 of 
https://www.nhc.noaa.gov/data/tcr/AL112017_Irma.pdf, accessed May 6, 2019). Therefore, the 2017 
AMS values for these four stations were changed to missing. As a result, both G6149 and G6152 did not 
have enough reliable annual maximum values available and were eliminated from the analysis. In the end, 
a total of 18 SFWMD daily rainfall stations remained in the dataset. 

The years 1998 and 2000 were also outlier years at a few stations; however, these large rainfall values 
happened on the same date at nearby stations; therefore, they were also assumed to be valid. Finally, an 
isolated high AMS value at the rainfall station with DBKey H2005 in the year 2005 corresponded to a high 
rainfall event on 5/31/2005, which was corroborated by inspection of SFWMD’s NEXRAD rainfall maps 
(https://apps.sfwmd.gov/nexrad2) and by comparison with NOAA ATLAS 14 station 08-8780. The final 
years with valid AMS values at each SFWMD station are shown in Figure 93. 

A separate dataset was developed with AMS data for the four (4) daily stations with sufficient years of 
AMS data up to the year 2005 (marked with ‘*’ in Table 16). This second dataset was used in bias-
correction of projected precipitation extremes based on the LOCA statistically downscaled dataset, as 
explained later in this document. 

 

 

https://www.nhc.noaa.gov/data/tcr/AL112017_Irma.pdf
https://apps.sfwmd.gov/nexrad2
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Figure 93. Availability of SFWMD rainfall data for daily durations. Cyan boxes indicate years with valid AMS data. Blue dots 
indicate the last 30 years of available data. Station labeled by its DBKey. 

 

Table 15. Rainfall data qualifiers used in SFWMD's DBHydro database. 

Qualifier Meaning 

A  Accumulated rainfall 

M  Missing 

N  Not yet available 

X  Included in next amount marked A 

P  Provisional data subject to revision 

!  Normal limits exceeded 
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Table 16. DBhydro daily rainfall stations used in this project. DBKeys with a ‘*’ have 20-30 years of AMS data available up to the 
year 2005. 

DBKEY STATION AGENCY 
LAT 

(degrees) 
LONG 

(degrees) 

6038 NP-P36 ENP 25.52833 -80.79528 

6039 NP-P38 ENP 25.37056 -80.83361 

6040 NP-203 ENP 25.62389 -80.73889 

6041 NP-206 ENP 25.54500 -80.67194 

6044 NP-201 ENP 25.71778 -80.71944 

6308* WHEELER_R DADE 25.73528 -80.30111 

6310* STONEB_R DADE 25.91306 -80.17528 

7095 NP-EPR ENP 25.28056 -80.50806 

15237 NP-EV8 ENP 25.34583 -80.47889 

G6147 NP-205 ENP 25.68944 -80.86472 

H1969 R-127 ENP 25.35278 -80.60639 

H1974 NP-N10 ENP 25.46194 -80.60528 

H1994 NP-R3110 ENP 25.44722 -80.62639 

H1999 NP-P35 ENP 25.46083 -80.86472 

H2001* NP-P37 ENP 25.28583 -80.68861 

H2003 NP-ROB ENP 25.43889 -80.53639 

H2005* NP-FMB ENP 25.76056 -80.82417 

H6053 NP-CHP ENP 25.22917 -80.70361 
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South Florida Water Management District’s DBHydro breakpoint (hourly) rainfall data 
 

Breakpoint rainfall data from the South Florida Water Management District’s (SFWMD) DBHydro database 
were obtained for 25 stations in the vicinity of Miami-Dade County with sufficiently long periods of record 
(>20-30 years). The rainfall data at these SFWMD stations is reported whenever there are breakpoints 
(changes) in the measurements. The breakpoint data spans the period 1997-present. The data is provided 
with quality qualifiers (Table 15), which can be used to assess whether a particular value is reliable or not. 

The runivg (interval value generator) program developed by the SFWMD was run on the SFWMD network 
to compute hourly rainfall sums from the breakpoint data at these stations (Appendix A. C-shell script to 
run runivg program on the SFWMD network). The hourly timeseries generated by the program can only 
have no qualifier or an “M” (missing) qualifier. In the case when only partial breakpoint data is available 
during an hour, the program computes the sum, the value is given an “M” qualifier, and the percentage 
of missing data during the hour is given. In our analysis, we set every hourly value with an “M” qualifier 
and more than 10% missing data during the hour as missing (NA). 

In order to develop a reliable timeseries of annual maxima (AMS) at each DBHydro hourly rainfall station, 
it was necessary to first assess whether there was enough hourly data present during each year. Too many 
missing values would bias the calculated annual maxima. Therefore, we followed the same criteria used 
by NOAA (Figure 4.3.1 of NOAA Atlas 14 Volume 9, 2013) to extract annual maxima for durations of 1 hour 
to 7 days. The calculated annual maximum for durations of 1 hour to 7 days at a station in a certain a year 
is considered reliable if the following conditions are met: 

• Less than 20% of daily data is missing 
• Less than 20% of wet season data is missing (wet season defined by NOAA as the months of 

March-October for daily durations and May-October for hourly durations). 

These criteria were programmed in R, and resulted in five (5) stations (3AS3W3+R, MBTS+R, S12D+R, 
S179-R, S332-R) being dropped completely due to high frequency of missing hourly values. The next step 
was calculating the AMS timeseries each of the remaining 20 stations for durations of 1 hour to 7 days, 
while making sure that annual maxima for a certain duration were equal to or exceeded the annual 
maxima for the previous lower duration as done in NOAA Atlas 14. Subsequently, the constrained series 
were converted to unconstrained by applying the correction factors in Table 13. An additional check was 
performed again to make sure that unconstrained annual maxima for a certain duration were equal to or 
exceeded the annual maxima for the previous lower duration.  

After further investigation, it was found that two (2) of the remaining stations were duplicates of NOAA 
Atlas 14 stations (S18C-R and S20F-R).  The remaining 18 DBHydro hourly rainfall stations (Table 17) all 
had between 20-24 years of valid AMS data available (Figure 94) and were included in our dataset. As a 
final check, a recursive version of the Grubbs’ statistical test for outliers (Grubbs, 1950) was used in order 
to identify potential erroneous AMS values at each station and for each duration. Due to the relatively 
short data records (20-24 years), the validity of this test in properly identifying outliers is questionable. 
However, it provided a methodology for flagging and investigating high values. 
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AMS for the years 1999, 2000, 2005 were consistently identified as outlier values at a large number of 
stations based on the application of the Grubbs’ statistical test in R. Examination of the rainfall timeseries 
showed that these occurred on similar dates and times at a large number of stations and were frequently 
associated with known storm or high rainfall events (e.g. Hurricane Irene in 1999, TS. Leslie in 2000, 
Hurricane Katrina in 2005). Therefore, these large values were considered valid. Isolated outlier hours or 
days were corroborated by inspection of SFWMD’s NEXRAD rainfall maps 
(https://apps.sfwmd.gov/nexrad2) and by comparison with other SFWMD and NOAA ATLAS 14 stations in 
the vicinity of the station in question.  

Table 17. DBhydro breakpoint (aggregated to hourly) rainfall stations used in this project 

DBKEY STATION AGENCY 
LAT 
(degrees) 

LONG 
(degrees) 

IX715 JBTS+R WMD 25.22444 -80.54 

IY085 MDTS+R WMD 25.27861 -80.395 

IY095 MIAMI+R WMD 25.82694 -80.3442 

90593 S123-R WMD 25.61028 -80.3078 

90610 S177-R WMD 25.40306 -80.5583 

90605 S21-R WMD 25.54306 -80.3308 

90559 S21A-R WMD 25.51944 -80.3461 

90607 S26-R WMD 25.80722 -80.2603 

90581 S27-R WMD 25.85111 -80.1883 

90569 S28Z-R WMD 25.91333 -80.2931 

90560 S29-R WMD 25.92861 -80.1514 

90608 S29Z-R WMD 25.96194 -80.2625 

90570 S30-R WMD 25.95639 -80.4317 

IY618 S331W+R WMD 25.61028 -80.5094 

90567 S334-R WMD 25.76167 -80.5022 

90583 S335-R WMD 25.77583 -80.4825 

IY649 S336+R WMD 25.76111 -80.4969 

90584 S338-R WMD 25.66083 -80.4808 

 

https://apps.sfwmd.gov/nexrad2


206 
 

 

Figure 94. Availability of SFWMD rainfall data for hourly durations. Cyan boxes indicate years with valid AMS data. Blue dots 
indicate the last 20-30 years of available data. Station labeled by its name. 

 

South Florida Water Management District’s NEXRAD rainfall data 
 

Since 2002, the SFWMD has been acquiring gage-corrected radar rainfall data on a 2 km x 2 km grid from 
various vendors (https://apps.sfwmd.gov/nexrad2/docs/aboutSFWMDNEXRADdata.pdf), and makes this 
data available to the public at various time intervals on a web interface located at 
https://apps.sfwmd.gov/nexrad2. The quality of the data and of the gage-correction methodology have 
improved over the years especially under the new vendor since 2007; however, the relatively short length 
of the dataset (16 years) limits its use in depth-duration-frequency analysis. In spite of this and despite 
the 2 km x 2 km grid resolution limitation, the interface has been an invaluable tool in aiding quality 
control and quality assurance of gage rainfall from other sources.  

 

https://apps.sfwmd.gov/nexrad2/docs/aboutSFWMDNEXRADdata.pdf
https://apps.sfwmd.gov/nexrad2
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Miami Dade County rainfall data 
 

Hourly historical rainfall data at 42 stations throughout Miami -Dade County for 1995-2019 were provided 
by the Miami-Dade Water and Sewer Department (WASD). The data provided is in raw format and has 
not undergone a rigorous quality assurance and quality control (QA/QC) process. Examination of the data 
showed numerous instances of negative values of various magnitudes (all of which are faulty 
measurements according WASD staff), instances of the same value repeating hour after hour, instances 
of extremely high daily values (e.g. 100-300 inches/day), instances of extremely high isolated hourly values 
(10+ inches/hour) many of which are on the last or first timestep of the day, among others. 

An attempt was made to remove questionable values from the dataset, initially defined as those that 
exceeded the 1-in-100-year and 1-in-1000-year rainfall depths for hourly and daily durations from NOAA 
Atlas 14 stations in the county (1-in-100 year: 5.7 inches/hr, and 16 inches/day; 1-in-1000 year: 8.5 
inches/hr, and 26 inches/day).  However, many recorded values exceeded these limits by large amounts. 
Although in many instances the extremely high values happened during days when the SFWMD’s NEXRAD 
maps showed high rainfall activity in the region, the magnitudes still seemed unreasonably high even 
though they were point values. Extremely high hourly and daily rainfall values also occurred at various 
stations during days with little to no rainfall activity in the region based on inspection of both the South 
Florida Water Management Model’s 2-mi x 2-mi rainfall binary file (1965-2016 data) and the SFWMD 
NEXRAD maps (2002-2019). This reduces the trust in the data for the type of quantitative analysis used in 
this study.  

Code was written in R with the purpose of automating a QA/QC process for the Miami-Dade WASD rainfall 
data. From 150 stations in total, 55 had valid hourly rainfall data from 1995-2019. Negative data values at 
these 55 stations were set as missing (NA). As a first pass, hourly rainfall values exceeding the 1-in-1000-
year depth of 8.5 inches/yr based on NOAA Atlas 14 stations in the county, were also set to missing (NA). 
All hourly values for days exceeding the 1-in-1000-year daily rainfall depth of 26 inches/day were removed 
as well. Later on, if the data quality assessment turned out to be successful at some stations, a Grubbs’ 
statistical test would be used for further outlier identification and possible exclusion from the annual 
maxima series. 

These 55 stations were further assessed to determine whether there was enough daily data present 
during each year for the calculated annual maxima to be valid. Too many missing values would bias the 
calculated annual maxima. Therefore, we followed the same criteria used by NOAA (Figure 4.3.1 of NOAA 
Atlas 14 Volume 9, 2013) to extract annual maxima for durations of 1 hour to 7 days. The calculated annual 
maxima in a certain a year is considered reliable if the following conditions are met: 

• Less than 20% of daily data is missing 
• Less than 20% of wet season data is missing (wet season defined by NOAA as the months of 

March-October for daily durations and May-October for hourly durations). 
• Less than 33% of daily data was accumulated for periods over 1 day – This criterion was not 

applicable to WASD rainfall data. 
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• Less than 15% of daily wet season data was accumulated for periods over 1 day – This criterion 
was not applicable to WASD rainfall data. 

It was found that only 12 stations met all the criteria above for the minimum desired number of years (20 
years). It was then observed that many of the remaining 12 stations had entire years, which had been 
designated as valid AMS years, with all values equal to zero. Once those years were eliminated from these 
stations, only 6 stations were left for analysis. Later, it was noticed how the computed AMS values for 
some years at some of these stations were extremely low even for durations of 7 days. Furthermore, quite 
often the calculated annual maxima were the same across durations, which seemed unreasonable based 
on experience at other nearby stations.  

Due to the numerous issues found with the data, it was decided to not include this dataset as part of this 
project. 

 

Florida State University’s COAPS rainfall data 
 

The state climatologist at Florida State University’s Center for Ocean-Atmospheric Prediction Studies 
(COAPS) in the past provided us with NOAA NCDC daily rainfall data at what he considered the most 
reliable stations in the state of Florida. As part of this project, we were provided with more recent data 
up to the year 2017. Further investigation of this dataset showed that all the stations were already 
included in the NOAA Atlas 14 Volume 9 AMS dataset. 

 

University of Florida’s IFAS FAWN rainfall data 
 

The University of Florida’s Institute of Food and Agricultural Sciences (IFAS) Florida Automated Weather 
Network (FAWN) provides near-real time weather information directed towards agricultural users 
throughout the state of Florida (https://fawn.ifas.ufl.edu/). Historical rainfall, precipitation and other 
weather data is available for download at timesteps ranging from 15 minutes to daily, at 
https://fawn.ifas.ufl.edu/data/fawnpub/. Only two FAWN stations (Homestead and Fort Lauderdale) are 
located in the vicinity of Miami-Dade County. Of these two, only Homestead has sufficient years of data 
(1997-2018). However, further investigation showed that this is likely the same station as NOAA’s 
Homestead Experimental Station (08-4091); therefore, it was excluded from our analysis. 

 

GROWER network rainfall data 
 

Within the last few years, a network of weather stations, under the name of GROWER, has been 
established in farms throughout the state. Data is available for download from the University of Florida’s 

https://fawn.ifas.ufl.edu/
https://fawn.ifas.ufl.edu/data/fawnpub/
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IFAS at: https://fawn.ifas.ufl.edu/mffw/index.html. Due to the short period of data availability this dataset 
was not used in this project. 

 

CoCoRaHS rainfall data 
 

The Community Collaborative Rain, Hail and Snow Network (https://www.cocorahs.org) is a non-profit, 
community-based group of volunteers which measure and map precipitation over the United States.  Data 
for Miami-Dade County was downloaded from: their export interface at 
http://data.cocorahs.org/cocorahs/export/exportmanager.aspx using this specific export link: 
http://data.cocorahs.org/export/exportreports.aspx?ReportType=MultiDay&dtf=1&Format=CSV&State=
FL&County=MD&ReportDateType=reportdate&StartDate=1/1/1990&EndDate=4/4/2019&TimesInGMT=
False. Rainfall data was only available sporadically between 2007-2019 at 27 stations in the county. Due 
to the limited data availability, this dataset was not used in this project. 

 

 

  

https://fawn.ifas.ufl.edu/mffw/index.html
https://www.cocorahs.org/
http://data.cocorahs.org/cocorahs/export/exportmanager.aspx
http://data.cocorahs.org/export/exportreports.aspx?ReportType=MultiDay&dtf=1&Format=CSV&State=FL&County=MD&ReportDateType=reportdate&StartDate=1/1/1990&EndDate=4/4/2019&TimesInGMT=False
http://data.cocorahs.org/export/exportreports.aspx?ReportType=MultiDay&dtf=1&Format=CSV&State=FL&County=MD&ReportDateType=reportdate&StartDate=1/1/1990&EndDate=4/4/2019&TimesInGMT=False
http://data.cocorahs.org/export/exportreports.aspx?ReportType=MultiDay&dtf=1&Format=CSV&State=FL&County=MD&ReportDateType=reportdate&StartDate=1/1/1990&EndDate=4/4/2019&TimesInGMT=False
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Statistically-downscaled historical and projected model rainfall 
 

SFWMD staff has in the past evaluated various statistically downscaled climate data products in terms of 
their ability to capture historical seasonal and long-term rainfall temporal and spatial patterns in south 
Florida. Based on analyses done by Irizarry and SFWMD staff, it was observed that the University of 
California’s LOCA product generally did a better job than the US Bureau of Reclamation’s BCCA (Bias-
Correction Constructed Analogues) downscaled data product at capturing rainfall patterns in the state 
(Irizarry et al., 2016), particularly during extreme events. For this reason and also due to the fact that the 
LOCA product was used to guide the 4th US National Climate Assessment report 
(https://scenarios.globalchange.gov/), this dataset was chosen and further evaluated for providing future 
estimates of rainfall extremes as part of this project. A description of the LOCA dataset follows. 

The University of California at San Diego has used Localized Constructed Analogues technique (LOCA) to 
downscale 32 global climate models from the World Climate Research Programme (WCRP) Coupled Model 
Intercomparison Project phase 5 (CMIP5) archive at a 1/16th degree (approx. 4.3 miles; 6.9 km) spatial 
resolution. LOCA covers North America from central Mexico through Southern Canada. LOCA is a statistical 
downscaling technique that uses past history to add improved fine-scale detail to global climate models 
(Pierce et al., 2014). First, a pool of candidate observed analog days is chosen by matching the model field 
to be downscaled to observed days over the region that is positively correlated with the point being 
downscaled, which leads to a natural independence of the downscaling results to the extent of the domain 
being downscaled. Then the one candidate analog day that best matches in the local area around the grid 
cell being downscaled is the single analog day used there. 

Most grid cells are downscaled using only the single locally selected analog day, but locations whose 
neighboring cells identify a different analog day use a weighted combination of the center and adjacent 
analog days to reduce edge discontinuities. By contrast, existing constructed analog methods typically use 
a weighted average of the same 30 analog days for the entire domain. By greatly reducing this averaging, 
LOCA produces better estimates of extreme days, constructs a more realistic depiction of the spatial 
coherence of the downscaled field, and reduces the problem of producing too many light-precipitation 
days. 

The historical period for LOCA is 1950-2005, and there are two future representative concentration 
pathway (RCP) scenarios available over the period 2006-2100 (although some models stop in 2099). RCP 
4.5 and RCP 8.5, correspond to medium-low (4.5 W/m2) and high (8.5 W/m2) year 2000 radiative forcing 
values, respectively. The variables currently available are daily minimum and maximum temperature, and 
daily precipitation. Over the next year they will be running the VIC hydrological model with the 
downscaled data, which will give many more variables, such as snow cover, soil moisture, runoff, and 
humidity, all at a 1/16th degree spatial resolution on a daily timescale. More information on LOCA can be 
found at http://loca.ucsd.edu/.  

 

http://loca.ucsd.edu/
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Retrospective historical and predicted daily rainfall for 30 downscaled model runs for each of the two 
RCPs in LOCA (60 runs in total) were downloaded for use in this project. The downscaled CMIP5 runs in 
LOCA are listed in Table 18. 

Table 18. CMIP5 models downscaled by the University of San Diego’s LOCA project and used in this project. 

Modeling Center (or Group) Institute ID Model Name 

Commonwealth Scientific and Industrial Research 
Organization (CSIRO) and Bureau of Meteorology 
(BOM), Australia 

CSIRO-BOM 
ACCESS1.0 

ACCESS1.3 

Beijing Climate Center, China Meteorological 
Administration 

BCC 
BCC-CSM1.1 

 

Canadian Centre for Climate Modelling and Analysis CCCMA 
CanESM2 

 

National Center for Atmospheric Research NCAR CCSM4 

Community Earth System Model Contributors NSF-DOE-NCAR 
CESM1(BGC) 

CESM1(CAM5) 

Centre National de Recherches Météorologiques / 
Centre Européen de Recherche et Formation 
Avancée en Calcul Scientifique 

CNRM-CERFACS CNRM-CM5 

Commonwealth Scientific and Industrial Research 
Organization in collaboration with Queensland 
Climate Change Centre of Excellence 

CSIRO-QCCCE CSIRO-Mk3.6.0 

EC‐Earth (European Earth System Model)  EC-EARTH EC-EARTH 

IAP (Institute of Atmospheric Physics, Chinese Acad
emy of Sciences, Beijing, China) and THU (Tsinghua 
University)  

LASG-CESS FGOALS-g2 

NIMR (National Institute of Meteorological Researc
h, Seoul, South Korea) in association with the Met 
Office Hadley Centre, UK  

NIMR/KMA HADGEM2-AO 

Met Office Hadley Centre, Fitzroy Road, Exeter, Dev
on, EX1 3PB, UK  

MOHC HADGEM2-CC 
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Modeling Center (or Group) Institute ID Model Name 

HADGEM2-ES 

NOAA Geophysical Fluid Dynamics Laboratory NOAA GFDL 

GFDL-CM3 

GFDL-ESM2G 

GFDL-ESM2M 

NASA Goddard Institute for Space Studies NASA GISS 
GISS-E2-H 

GISS-E2-R 

Institut Pierre-Simon Laplace IPSL 
IPSL-CM5A-LR 

IPSL-CM5A-MR 

Japan Agency for Marine-Earth Science and 
Technology, Atmosphere and Ocean Research 
Institute (The University of Tokyo), and National 
Institute for Environmental Studies 

MIROC 
MIROC-ESM 

MIROC-ESM-CHEM 

Atmosphere and Ocean Research Institute (The 
University of Tokyo), National Institute for 
Environmental Studies, and Japan Agency for 
Marine-Earth Science and Technology 

MIROC 
 

MIROC5 

Max-Planck-Institut für Meteorologie (Max Planck 
Institute for Meteorology) 

MPI-M 
MPI-ESM-MR 

MPI-ESM-LR 

Meteorological Research Institute MRI MRI-CGCM3 

Norwegian Climate Centre NCC NorESM1-M 

*Note: Ensemble member r1i1p1 used for each model for both RCP45 and RCP85 with the exception of CCSM4_r6i1p1 for RCP45, 
CCSM4_r6i1p1 for RCP85, EC-EARTH_r8i1p1for RCP45, EC-EARTH_r2i1p1 for RCP85, GISS-E2-H_r6i1p3, GISS-E2-R_r6i1p1, GISS-
E2-H_r2i1p1for RCP85, and GISS-E2-R_r2i1p1 for RCP85. 
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DDF curve fitting across durations using At-site RFA 
 

The Generalized Extreme Value (GEV) distribution family is frequently used in Extreme Value Theory to 
model block (e.g. seasonal or annual) maxima of rainfall and is described by the following cumulative 
distribution function (Fisher and Tippett, 1928; Jenkinson, 1955; Coles, 2001; Katz et al., 2002): 

 

𝑃𝑃(𝑋𝑋 ≤ 𝑥𝑥)  =  𝐹𝐹(𝑥𝑥)  = 𝑒𝑒𝑒𝑒𝑒𝑒 �− �1 + 𝜉𝜉 �
𝑥𝑥 − 𝜇𝜇
𝜎𝜎

��
−1/𝜉𝜉

� 

Equation 9 

 

where μ, σ, and ξ are the location, scale, and shape parameters, respectively, of the GEV, which can be fit 
to annual maximum data using maximum likelihood estimation (MLE) or L-moments methods. x can be 
either rainfall intensity (i) or depth (D). This distribution models the maxima of a series of independent 
and identically distributed observations and is an appropriate distribution for analyzing extreme values. It 
encapsulates three distinct extreme value distributions by means of the shape parameter: Gumbel (ξ=0), 
which is light tailed and unlimited; Fréchet (ξ>0), which has a lower limit at μ-σ/ξ and is heavy tailed; and 
the reverse Weibull (ξ<0), which has an upper limit at μ-σ/ξ and is short tailed. 

In developing depth-duration-frequency (DDF) curves for a station or region, the Generalized Extreme 
Value distribution is often fit to annual maximum series (AMS) at various durations independently. 
However, it is possible for the fitted cumulative distribution functions (CDF) for consecutive durations to 
cross, which are reflected in the DDF curves as decreasing quantiles with increasing duration. This violates 
the physical constraint that rainfall depth quantiles at longer durations must exceed quantiles at shorter 
durations for a given return period. An objective in fitting GEV curves to the AMS (as opposed to just using 
empirical quantiles) is to extrapolate to large return periods (small exceedance frequencies) beyond the 
length of the AMS record. It has been shown that these extreme quantiles are very sensitive to the fitted 
parameters, especially to the shape parameter (ξ). The estimated shape parameter can have large errors 
and can be very noisy especially when estimated from short datasets using MLE. The large variation in 
estimated shape parameter across durations increases the chance of crossing CDFs.  

Various methods exist in the literature to develop robust and consistent DDF/IDF curves based on annual 
maximum series (AMS) for different durations. These methods typically make assumptions about the 
variation of the GEV parameters in time (duration) and/or space as well as the relationship between these 
parameters. Some methods also pool data in time or space to improve the robustness of the GEV 
parameter estimates. In a previous study, Irizarry et al. (2016) employed the methodology of “At-Site 
Regional Frequency Analysis” (ASRFA) (Ayuso-Muñoz et al. 2015) to develop consistent DDF curves for 
rainfall stations in the state of Florida. It is a variation of the typical RFA methods where data for nearby 
stations to the station being fitted are grouped together in order to improve the GEV parameter fitting. 
ASRFA exchanges space (stations) for time (durations). 
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In ASRFA, all durations at a station are fit simultaneously by pooling AMS data for all durations at the 
particular station. R package {nsRFA} includes functions to implement this method. The quantile function 
as a function of the ASRFA method is given by: 

𝑥𝑥(𝐹𝐹, 𝑖𝑖,𝑑𝑑) = �𝜇𝜇𝑅𝑅(𝑑𝑑) −
𝜎𝜎𝑅𝑅(𝑑𝑑)
𝜉𝜉𝑅𝑅(𝑑𝑑)

�1 − (−𝑙𝑙𝑙𝑙𝑙𝑙)−𝜉𝜉𝑅𝑅(𝑑𝑑)�� 𝑥𝑥(𝑖𝑖,𝑑𝑑) 

Equation 10 

𝜇𝜇(𝑖𝑖,𝑑𝑑) = 𝜇𝜇𝑅𝑅  𝑥𝑥(𝑖𝑖,𝑑𝑑) 

Equation 11 

𝜎𝜎(𝑖𝑖,𝑑𝑑) = 𝜎𝜎𝑅𝑅  𝑥𝑥(𝑖𝑖,𝑑𝑑) 

Equation 12 

𝜉𝜉(𝑖𝑖,𝑑𝑑) = 𝜉𝜉𝑅𝑅(𝑑𝑑) 

Equation 13 

 

Where i is the location of interest, F is the annual non-exceedance probability, which is related to the 
return period Tr by F = 1-1/(Tr) , d is the duration, 𝑥𝑥(𝐹𝐹, 𝑖𝑖, 𝑑𝑑) is the quantile function for the GEV at station 
i for duration d, (𝜇𝜇,𝜎𝜎, 𝜉𝜉) are the GEV location, scale and shape parameters, (𝜇𝜇𝑅𝑅 ,𝜎𝜎𝑅𝑅 , 𝜉𝜉𝑅𝑅) are the regional 
(i.e. factor for all durations) GEV location, scale and shape parameters, 𝑥𝑥(𝑖𝑖, 𝑑𝑑) is the mean annual 
maximum (MAM) at station i for duration of interest d.  

As observed in Equation 10-Equation 13, the ASRFA method assumes that the GEV location and scale 
parameters are proportional to the MAM for a certain duration with the proportionality constant being 
the same across durations. Some theoretical limitations of the ASRFA approach are identified by Irizarry 
et al. (2016); however, the method was used here since it requires minimal user input and can be 
automated to produce consistent DDF curves at a large number of stations and across many data sources.  

The ASRFA method was used in fitting consistent DDF curves to daily historical and downscaled-model 
AMS data at daily stations in Miami-Dade County for durations of 1, 2, 3, 4 and 7 days. For stations with 
hourly historical AMS data available, DDF curves were additionally fit for durations of 1, 2, 3, 6 and 12 
hours.  

DDF curves were fit for two different sets of historical observations. The first set consisted of a total of 59 
stations with sufficient AMS data available up to the year 2018 (33 hourly and 26 daily stations). As an 
example, Figure 95 shows the GEV cumulative distribution function (CDF) fitted to the normalized annual 
maxima at station S30-R for durations from 1 hour to 7 days. It is evident that the At-site RFA method is 
appropriate for usage at this station due to the fact that the normalized AMS values do not depart much 
from the fitted CDF line. Figure 96 shows the GEV CDFs for the durations of interest, while Figure 97 shows 
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the resulting DDF curves for the durations and return periods of interest. This first set was used to develop 
the main “official” maps of extremes for various durations and return periods. 

Figure 98 shows contour maps of interpolated 1-in-100-year hourly rainfall totals based on thin plate 
spline (TPS) smoothing of the fitted DDF data at each station with sufficient AMS data available up to the 
year 2018. Fitted 1-in-100-year hourly rainfall totals range from 3.5 to 8.2 inches with most values below 
6.5 inches with the exception of two outlier stations: S29-R and 08-4091. A smoothing or lambda factor 
of 0.02 was used in the Tps function of the fields package in R to generalize the surface and smooth out 
low and high outliers. This resulted in fitted values ranging from 4.8 to 5.7 inches for the 1-in-100-year 
hourly rainfall events. 

Figure 99 shows that fitted 1-in-100-year daily rainfall totals range from 7.7 to 18.2 inches with most 
values below 15 inches with the exception of the same two outlier stations: S29-R and 08-4091. It is 
important to note that rainfall amounts of up to 19 in/day were recorded during Hurricane Irma in stations 
in central Everglades National Park (DBKeys 6040, 6041, G6149, and G6152), although these were 
considered suspect and removed from the dataset early on.  After generalizing the surface using TPS with 
a smoothing factor of 0.02, the fitted values range from 8.1 to 13.7 inches for the 1-in-100-year daily 
rainfall events. Contour maps of 1-in-100 year rainfall totals for other daily and sub-daily durations are 
included in Appendix B. Contour maps of 1-in-100-year rainfall depths based on historical data. Table 19 
shows the range in the 1-in-100 year fitted rainfall totals at individual stations for the durations of interest, 
and the rainfall totals based on the generalized surfaces developed using the TPS smoothing method with 
lambda=0.02. The at-station range is more conservative in that it includes high outliers. Professional 
judgment must be exercised when deciding on a set of design values. 

A second set of historical DDF curves was developed from 26 stations with sufficient AMS data available 
up to the year 2005 (14 hourly and 12 daily stations). This second set was be used to bias-correct the LOCA 
statistically downscaled extreme precipitation projections for the period 2050-2079. This is due to the 
desire to limit the historical data for bias-correction to a period common to the LOCA historical period 
which ends in 2005. 
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Figure 95. GEV CDF curve fitted to normalized annual maxima at station S30-R using the At-site RFA method. 

GEV fits at station S30-R  

for the historical period ending in 2018 

 

Figure 96. GEV CDFs fitted for various durations at station S30-R using the At-site RFA method. 
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DDF curves fitted at station S30-R  

for the historical period ending in 2018

 

Figure 97. DDF curves fitted at station S30-R for various durations and return periods of interest based on the At-site RFA 
method. 

 

Table 19. Range of 1-in-100-year rainfall totals fit at individual stations and those from generalized surface based on TPS 
method with lambda=0.02. 

Duration Range of fit rainfall totals at stations 
(inches) 

Range of rainfall totals from 
generalized surface based on TPS 

method with lambda=0.02 (inches) 
60-min 3.5-8.2 4.8-5.7 
2-hour 4.7-10.8 6.1-7.6 
3-hour 5.2-12.4 6.4-8.9 
6-hour 5.9-15.3 7.2-10.6 
12-hour 6.5-16.8 7.8-11.9 
24-hour 7.7-18.2 8.1-13.7 
2-day 9.3-21.4 9.5-16.3 
3-day 9.8-22.9 10.7-18.0 
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Figure 98. Interpolated 1-in-100-year hourly rainfall totals (inches) based on TPS smoothing of station data (black dots) using a 
lambda value of 0.02. 
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Figure 99. Interpolated 1-in-100-year daily rainfall totals (inches) based on TPS smoothing of station data (black dots) using a 
lambda value of 0.02. 
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Quantile mapping for bias-correction of precipitation projections 
 

Quantile mapping (QM), a CDF matching method (Panofsky and Brier, 1968), is typically applied to bias-
correct entire precipitation timeseries from climate model simulations but the method can similarly be 
used to bias-correct annual maximum precipitation series (AMS) or DDF/IDF curves. The expression for 
quantile mapping is given by: 

 

 

Equation 14 

where  is the adjusted quantile for the model (m) projections (p) for the future period,  is 
the CDF of the observations (o) in the current baseline period (c) ,  is the CDF of the model (m) in 
the current baseline period (c) ,  is the quantile for the model projections in the future baseline 
period.  F-1 means the inverse of the CDF (i.e. the quantile function). The CDFs are developed based on 
data spanning decades and centered around some year of interest. 

QM uses only information from the current period to correct for future biases. Therefore, it assumes that 
biases are stationary and that they will persist into the future. In other words, it assumes that 

, so that as the mean changes, the variance and skew do not, which is unlikely under 
climate change. Furthermore, if a future projected value is outside the historical range, then some sort of 
extrapolation is required.  

To avoid the limitations of QM, other methods have been developed such as Quantile Delta Mapping 
(QDM). As shown in Cannon et al. (2015), QM tends to inflate trends in precipitation extreme indices 
projected by GCMs, whereas QDM is not as prone to this problem. QDM preserves model-projected 
changes in quantiles, while simultaneously correcting for systematic biases across quantiles (Cannon et 
al., 2015). QDM also attempts to bridge the gap between point estimates for the observations vs. grid cell 
estimates in the model. However, it is important to note that changes in the mean may not be adequately 
preserved by QDM.  

QDM can be applied in an additive form or a multiplicative form. Here we used the multiplicative version 
of quantile delta mapping (MQDM) to bias-correct future rainfall DDF curves derived from LOCA 
statistically downscaled CMIP5 model precipitation data with AMS values for various durations fit using 
the ASRFA method. The multiplicative form (MQDM) is better suited to correcting variables like 
precipitation where preserving relative changes is important in order to respect the Clausius-Clapeyron 
equation which relates the amount of atmospheric moisture to temperature changes simulated by the 
models.  Figure 100 shows MQDM method based on hypothetical data. 

Multiplicative QDM is given by: 

 

Equation 15 
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which is equivalent to: 

 

Equation 16 

 

where G is the annual non-exceedance probability (CDF value) and is equal to 1-P, P is the annual 
exceedance probability (AEP) which is related to the return period T by 1/P = T (i.e. G=1-1/T), and 
is the CDF for the model (m) projections (p) for the future period. 

 

 

 

Figure 100. Diagram showing the Multiplicative Quantile Delta Method for hypothetical data.  

 F is the non-exceedance probability of interest. The quantiles corresponding to F are given by CDF1-1: F-1o-c(F) for the observed 
current baseline, CDF2-1: F-1m-c(F) for the model current baseline, CDF3-1: F-1m-p(F) for the model projected (future) period. The 
corresponding adjusted quantile for the model projected (future) period is CDF4-1: F-1m-p adjust(F) = F-1m-p(F)*{F-1o-c(F)/F-1m-c(F)}. The 
distances a and b are different in MQDM due to the use of a ratio in the bias correction equation.  However, a and b would be 
equal in Additive Quantile Delta Method. 
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At-Site RFA for the observational dataset in the current baseline period 
 

In order to reduce biases in the application of MQDM, it is important that the timeseries of annual maxima 
used to derive the three CDFs of interest (𝐹𝐹𝑜𝑜−𝑐𝑐 ,𝐹𝐹𝑚𝑚−𝑐𝑐,𝐹𝐹𝑚𝑚−𝑝𝑝) using At-site RFA all have approximately equal 
length. It is well known that the GEV shape parameter tends to be underestimated with shorter record 
lengths where the largest extremes may not be captured. Ideally a record length of 30-40 years as a 
minimum is required for adequate GEV fitting. However, due to the sparsity of historical rainfall data in 
the county, we chose the last 20-30 years of available historical AMS data between 1950-2005 at each 
station as our current baseline (historical) period. The lumping of AMS data across durations in the ASRFA 
method effectively increases the data available for fitting the shape parameter at the expense of 
constraining it to be constant across durations. We found a total of 26 stations from NOAA Atlas 14 and 
SFWMD with 20-30 years of AMS data (12 daily and 14 hourly stations) within the chosen current baseline 
period, as described in previous sections.  

Appendix C. Maps of At-site RFA parameters and DDF curves for the observational dataset in the current 
baseline period (Last 30 years up to 2005) includes maps of the fitted DDF values for hourly and daily 
durations and 1-in-100 year return period based on the chosen 20-30 years of observational AMS data at 
each of the 26 weather stations in Miami-Dade County (𝐹𝐹𝑜𝑜−𝑐𝑐).  The fitted shape parameter, which is 
assumed constant between durations in ASRFA, is mostly positive with negative values at 5/26 stations.  

As seen in Figure 113, the fitted hourly 1-in-100 year extremes range from 4.3-7.9 inches, which is 
generally consistent with the range of 3.5-8.2 inches obtained for the historical period ending in 2019 
(Figure 98), although the spatial patterns differ somewhat. Overall the fitted daily 1-in-100 year extremes 
range from 8.7-17.8 in/day, which is generally consistent with the range of 7.7-18.2 in/day obtained for 
the historical period ending in 2019, although the spatial pattern differs (Figure 99). The pattern of higher 
daily extremes near the coast of Miami-Dade County seen in Figure 114 is similar to the pattern obtained 
by Irizarry et al. (2016). However, Figure 114 shows the highest daily extremes occurring in a northeast to 
southwest swath that is slightly inland from the coast, with lower values right along the coast. Coastal 
extremes in Miami-Dade County did not exceed 13.6 in/day in the previous DDF fits performed by Irizarry 
et al. (2016); however, it is worth nothing that the previous analysis used a smaller number of stations in 
the county and a different baseline period.  

The spatial patterns in Figure 113 and  Figure 114 are also very similar to those in the official NOAA Atlas 
14 cartographic DDF maps for the hourly and daily 1-in-100 year events (see 
ftp://hdsc.nws.noaa.gov/pub/hdsc/data/se/fl100y60m.pdf and 
ftp://hdsc.nws.noaa.gov/pub/hdsc/data/se/fl100y24h.pdf) although the ranges are slightly larger in our 
fits. The official NOAA Atlas 14 fitted DDF values in the county range from 11.4-16.0 in/day for the 100-
year daily event, and 4.4-5.7 in/hour for 100-year hourly event. The similarity in the spatial pattern with 
the official NOAA Atlas 14 cartographic maps is due to the fact that 22 out of the 26 stations in the 
historical dataset (ending in 2005) are from NOAA Atlas 14. 

 

ftp://hdsc.nws.noaa.gov/pub/hdsc/data/se/fl100y60m.pdf
ftp://hdsc.nws.noaa.gov/pub/hdsc/data/se/fl100y24h.pdf
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At-Site RFA for the downscaled model dataset in the current baseline period 
 

The same 20-30 years selected for 𝐹𝐹𝑜𝑜−𝑐𝑐 derivation at each of the 26 weather stations identified in the 
previous station were used to develop 𝐹𝐹𝑚𝑚−𝑐𝑐  (model current-baseline CDFs) based on At-Site RFA 
methodology applied to model AMS data for the closest downscaled-model grid cell (Figure 101). Figure 
102 shows goodness-of-fit statistics comparing fitted extremes from downscaled model output to fitted 
extremes from the observational dataset for durations (1, 2, 3, 4, and 7 days) and return periods of interest 
(2, 5, 10, 25, 100 years). It can be noticed that extremes are significantly underestimated in the 
downscaled model data with median ratios (𝐹𝐹𝑚𝑚−𝑐𝑐

−1 (𝐺𝐺)/𝐹𝐹𝑜𝑜−𝑐𝑐−1 (𝐺𝐺): modeled/observed DDF precipitation 
depths) ranging from 0.50-0.95 depending on duration and frequency of analysis (Table 20-Table 24). The 
largest errors mainly occur in the daily rainfall and propagates to longer durations. These large biases are 
also reflected in the Nash-Sutcliffe efficiency statistics which are often small and even negative for some 
models, meaning that the average of the observations is a better fit than the downscaled model. The 
range of extremes is also smaller in the downscaled models than in the observational dataset as reflected 
in an increasing absolute bias with return period (not shown) and in the standard deviation ratio (which 
is on average smaller than 1).  

 

Figure 101. Location of NOAA Atlas 14 and SFWMD weather stations (open circles) and LOCA grid cells (red closed circles).  
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Figure 102. Boxplot of goodness of fit-statistics for downscaled model versus observed DDF precipitation depth values across 
models for the current baseline period. Data for all durations and return periods has been pooled together. Box goes from Q1 to 
Q3 with Q2 in the middle and whiskers extend 1.5*IQR from the box. Bias: Model Bias (inches), RMSE: Root mean square error 
(inches), MAE: Mean absolute error (inches), Ratio: Average of modeled/observed values, SDRatio: Ratio of modeled to observed 
standard deviation, R2: Coefficient of determination (R2), NS: Nash-Sutcliffe Efficiency. 

 

Figure 103 shows the Taylor diagram (Taylor, 2001) for all downscaled models when all durations and 
frequencies of interest are combined. All downscaled models behave similarly in terms of pattern 
correlation, centered root mean square difference, and standard deviation when compared to the 
observational dataset. When the durations and return periods of interest are analyzed individually (not 
shown), the spatial pattern correlation is much smaller (generally less than 0.5, and even negative for 
some models).  The apparent improved performance obtained when all durations and return are analyzed 
is an artifact of lumping data of different magnitudes together. 
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Figure 103. Taylor Diagram for downscaled model versus observed DDF precipitation depth values across all models for the current 
baseline period. Data for all durations and return periods of interest are pooled together. Light gray curves indicate the centered 
root mean squared difference between the model and the observations. The observational data is represented by the open-circle 
marker on the horizontal axis. The closer a model point is to the observational data point, the better the model performance. “In 
general, the Taylor diagram characterizes the statistical relationship between two fields, a "test" field (often representing a field 
simulated by a model) and a "reference" field (usually representing “truth”, based on observations). Note that the means of the 
fields are subtracted out before computing their second order statistics, so the diagram does not provide information about overall 
biases, but solely characterizes the centered pattern error.” (Taylor, 2001). 

 

The biases in extremes found in the downscaled models, result from a combination of factors: 1) 
Comparison of point data in the observational dataset against areal data in the downscaled model dataset 
(approx. 18.5 mi2 grid cell resolution), 2) Lack of corrections from constrained to unconstrained extremes 
in the downscaled model dataset, 3) Actual model biases.  Based on Figure 1-5 of U.S. Weather Bureau’s 
Technical Paper 29 (1958), areal reduction factors for an area approximately 18.5 mi2 (grid cell size) in size 
and a 24-hour duration would be about 0.98. Based on Table 14, correction factors from constrained to 
unconstrained annual maximum series would range from 1.12 for 24-hour duration to 1.01 for 7-day 
duration. Combining these two sets of correction factors would result in model to observation ratios of 
0.88 (i.e. 0.98/1.12), 0.94, 0.95, 0.96, 0.97 for 1, 2, 3, 4, and 7-day durations, respectively. These are much 
larger than most of the computed median ratios (0.50-0.95) between modeled/observed DDF 
precipitation depths described above, pointing to large actual model biases.   
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The inability of CMIP5 climate models at capturing (increases in) extreme precipitation in the latter part 
of the 20th century-early 21st century has been observed by Wuebbles et al. (2014) and Asadieh and 
Krakauer (2015) for the entire Continental US and North America, respectively.  As indicated by SFEC 
(2016) this underestimation of extremes in the state of Florida is due to a “cold bias in the western Atlantic 
which limits the deep convection within cold fronts and tropical storms.  The Atlantic Warm Pool (AWP) 
in the simulations is much smaller than observed.  Our findings are consistent with Emanuel (2013) 
concerns with the CMIP models being able to simulate tropical cyclones and Kozar and Misra (2013) 
concerns with the cold bias in the western Atlantic.” Based on our results for the state of Florida, these 
biases remain even after LOCA’s statistical downscaling and general bias-correction of the CMIP5 climate 
model output.  

Two LOCA runs best match the historical extremes for the durations and return periods of interest: GISS-
E2-R_r6i1p1 and NorESM1-M_r1i1p1. However, even these two runs underestimate the daily 1-in-100-
year event by 37%, but the 7-day 1-in-100-year event is only underestimated by 5-10% in these runs. 
Interestingly, these two LOCA model runs perform very differently when it comes to annual averages. 
GISS-E2-R_r6i1p1 underestimates the annual total rainfall in the period 1991-2005 by 6.68 in/year, while 
NorESM1-M_r1i1p1 underestimates it by just 1.09 in/yr. After bias-correcting, GISS-E2-R_r6i1p1 daily 
rainfall projections, future average annual rainfall under the RCP45 scenario for the period 2055-2069 is 
reduced by 2.3 in/yr compared to the observed 1991-2005 average, but rainfall in the RCP85 scenario is 
increased by 1.93 in/yr. Based on the daily bias-corrected daily NorESM1-M_r1i1p1 output, future annual 
total rainfall decreases by 7.46 in/yr in the RCP45 scenario and decreases by 10.26 in/yr under the RCP85 
scenario. This highlights some of the uncertainties inherent in the statistically downscaled models and the 
difficulty in selecting output from a single model for planning. 

Appendix D. Maps of At-site RFA DDF curves for the downscaled model dataset (LOCA) in the current 
baseline period (Last 30 years up to 2005) shows maps of the 5th, 50th and 95th percentile of DDF 
precipitation depths across the downscaled models in the current baseline period for a daily duration and 
a 100-year return period. The overall spatial pattern is one of higher values in a band going from the 
northwest corner of the county to the southeast corner. The band of higher extremes slightly inland from 
the coast that was found in the observational dataset and previous studies is not captured by the 
downscaled models. Comparison with the DDF maps from observational dataset shows major widespread 
underestimation of extremes in the downscaled models by as much as 100% in coastal areas of most 
models. Even the 95th percentile values are much lower than the observed fitted daily 100-year extremes 
(5-12 in/day vs. 8.7-17.8 in/day in the observational dataset). The MQDM technique will essentially 
remove these large biases by adjusting the projected future modeled extremes by the bias ratio estimated 
from the current baseline period.  
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Table 20. Differences in 24-hr DDF precipitation depths in inches (%) for various return periods for downscaled models (LOCA) 
versus observations in the current baseline period. 5-95th percentiles across models shown. 

Perc.  24-hr_2-year 24-hr_5-year 24-hr_10-year 24-hr_25-year 24-hr_50-year 24-hr_100-year 
5% -2.2 (-46%) -3.06 (-46.8%) -3.73 (-48%) -4.66 (-49.2%) -5.43 (-49.8%) -6.28 (-50.2%) 

10% -2.18 (-45.6%) -3.01 (-46.3%) -3.63 (-46.6%) -4.5 (-47.2%) -5.23 (-47.7%) -6.05 (-48.1%) 
50% -2.1 (-43.8%) -2.88 (-44.1%) -3.43 (-44%) -4.26 (-44.9%) -4.92 (-45%) -5.64 (-45.2%) 
90% -2.01 (-41.9%) -2.75 (-42.1%) -3.27 (-42.2%) -4 (-41.9%) -4.67 (-42.4%) -5.39 (-42.2%) 
95% -1.94 (-40.6%) -2.65 (-40.9%) -3.2 (-41.2%) -3.93 (-41.2%) -4.34 (-39.4%) -4.75 (-37.3%) 

 

Table 21. Differences in 2-day DDF precipitation depths in inches (%) for various return periods for downscaled models (LOCA) 
versus observations in the current baseline period. 5-95th percentiles across models shown.  

Perc. 2-day_2-year 2-day_5-year 2-day_10-year 2-day_25-year 2-day_50-year 2-day_100-year 
5% -1.9 (-33.7%) -2.63 (-34.1%) -3.23 (-35.2%) -4.11 (-36.6%) -4.85 (-37.3%) -5.66 (-37.8%) 

10% -1.85 (-32.7%) -2.6 (-33.8%) -3.11 (-34%) -3.9 (-34.6%) -4.59 (-35.1%) -5.36 (-35.6%) 
50% -1.7 (-30.1%) -2.33 (-30.4%) -2.8 (-30.4%) -3.53 (-31.2%) -4.16 (-31.7%) -4.85 (-32%) 
90% -1.55 (-27.4%) -2.11 (-27.4%) -2.56 (-27.7%) -3.17 (-27.9%) -3.72 (-27.9%) -4.32 (-27.8%) 
95% -1.53 (-27.1%) -2.09 (-27%) -2.5 (-27.2%) -3.04 (-26.4%) -3.28 (-24.2%) -3.56 (-22.3%) 

 

Table 22. Differences in 3-day DDF precipitation depths in inches (%) for various return periods for downscaled models (LOCA) 
versus observations in the current baseline period. 5-95th percentiles across models shown.  

Perc. 3-day_2-year 3-day_5-year 3-day_10-year 3-day_25-year 3-day_50-year 3-day_100-year 
5% -1.71 (-27.5%) -2.36 (-28.1%) -2.96 (-29.4%) -3.82 (-30.8%) -4.55 (-31.6%) -5.35 (-32.1%) 

10% -1.65 (-26.9%) -2.35 (-27.8%) -2.86 (-28.2%) -3.61 (-28.9%) -4.26 (-29.2%) -5.08 (-29.8%) 
50% -1.5 (-24.2%) -2.04 (-24%) -2.49 (-24.3%) -3.16 (-25.1%) -3.76 (-25.8%) -4.44 (-25.9%) 
90% -1.32 (-21.2%) -1.85 (-21.6%) -2.2 (-21.2%) -2.69 (-21.1%) -3.18 (-21.1%) -3.74 (-21%) 
95% -1.28 (-20.6%) -1.76 (-20.6%) -2.14 (-20.9%) -2.49 (-19.1%) -2.68 (-17.2%) -2.85 (-15.1%) 

 

Table 23. Differences in 4-day DDF precipitation depths in inches (%) for various return periods for downscaled models (LOCA) 
versus observations in the current baseline period. 5-95th percentiles across models shown.  

Perc.  4-day_2-year 4-day_5-year 4-day_10-year 4-day_25-year 4-day_50-year 4-day_100-year 
5% -1.62 (-24.4%) -2.26 (-25.2%) -2.84 (-26.4%) -3.71 (-27.9%) -4.44 (-28.8%) -5.26 (-29.3%) 

10% -1.56 (-23.7%) -2.22 (-24.5%) -2.72 (-25.1%) -3.51 (-26.2%) -4.13 (-26.1%) -4.98 (-27%) 
50% -1.41 (-21.3%) -1.94 (-21.4%) -2.35 (-21.5%) -2.99 (-22.1%) -3.55 (-22.7%) -4.22 (-23.1%) 
90% -1.25 (-18.9%) -1.73 (-19.2%) -2.01 (-18%) -2.53 (-18.3%) -3.01 (-18.4%) -3.55 (-18%) 
95% -1.23 (-18.7%) -1.63 (-17.9%) -1.99 (-17.9%) -2.24 (-15.7%) -2.37 (-13.8%) -2.48 (-11.6%) 

 

Table 24. Differences in 7-day DDF precipitation depths in inches (%) for various return periods for downscaled models (LOCA) 
versus observations in the current baseline period. 5-95th percentiles across models shown.  

Perc.  7-day_2-year 7-day_5-year 7-day_10-year 7-day_25-year 7-day_50-year 7-day_100-year 
5% -1.64 (-20.9%) -2.34 (-22%) -2.88 (-22.6%) -3.76 (-24%) -4.54 (-24.9%) -5.41 (-25.7%) 

10% -1.58 (-20.1%) -2.26 (-21.2%) -2.84 (-22.4%) -3.67 (-23.3%) -4.36 (-24.2%) -5.25 (-25.4%) 
50% -1.43 (-18.3%) -1.94 (-18%) -2.46 (-19.1%) -3.05 (-19%) -3.64 (-19.5%) -4.36 (-20.1%) 
90% -1.26 (-16%) -1.74 (-16.1%) -1.99 (-15.3%) -2.55 (-15.8%) -3.06 (-16.1%) -3.66 (-15.7%) 
95% -1.23 (-15.7%) -1.66 (-15.4%) -1.95 (-14.9%) -2.13 (-12.6%) -2.21 (-10.7%) -2.24 (-8.4%) 
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At-Site RFA for the downscaled model dataset in the future projection period 
 

A set of 𝐹𝐹𝑚𝑚−𝑝𝑝(model projected/future CDF) curves were derived by applying At-site RFA to model-derived 
AMS data at each of the 26 weather station locations in Miami-Dade County for the 30-year period 
centered around 2065 (𝐹𝐹𝑚𝑚−𝑝𝑝1: 2050-2079). Maps of the 5th, 50th and 95th percentile of fitted 
precipitation extremes across the downscaled models in the period centered at 2065 for a daily duration 
and a 100-year return period are shown in Appendix E. Maps of At-site RFA DDF curves for the downscaled 
model dataset (LOCA) in the future period centered in 2065 (2050-2079). Maps of the changes in extremes 
with respect to the fitted extremes for the downscaled models in the current baseline period (last 30 years 
up to 2005) are also included.  

Table 25-Table 29 show the changes in precipitation depths in inches (%) for the durations and return 
periods of interest. It can be noticed that although some models predict increases in extremes, others 
predict decreases. Figure 104  shows that about half the of the models predict negative overall changes 
in extremes in the future period centered in 2065 compared to the current baseline period. However, the 
predicted increases are generally larger than the predicted decreases. The median changes are less than 
0.5 inches for the county as a whole for the durations and return periods analyzed.  

Percentage-wise, the predicted changes are more significant and these ratios are the foundation for the 
MQDM bias-correction method. Based on the 5th percentile, median, and 95th percentile of all models, 
the 24 hour/100-year precipitation depth is expected to change by -14.5%, +5.7%, and +44.7%. Comparing 
Table 25-Table 29 and Table 20-Table 24, it is evident that the projected changes in extremes are generally 
smaller than the biases in the downscaled models. For example, the projected changes in the 24-
hour/100-year events range from -1.0 to +2.5 inches, whereas the corresponding downscaled model 
biases are on the order of -4.8 to -6.3 inches. Therefore, these relatively large percentage changes will 
have a significant impact on the adjusted 2065 extremes after MQDM implementation.   
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Table 25. Changes in 24-hr DDF precipitation depths in inches (%) for various return periods for the future period centered at 
2065 versus the current baseline period. 5-95th percentiles across models shown. 

Perc. 24-hr_2-year 24-hr_5-year 24-hr_10-year 24-hr_25-year 24-hr_50-year 24-hr_100-year 
5% -0.42 (-16.1%) -0.45 (-12.6%) -0.52 (-12.1%) -0.57 (-11%) -0.74 (-10.6%) -1.04 (-14.5%) 

10% -0.29 (-10.4%) -0.37 (-10.5%) -0.44 (-9.8%) -0.5 (-8.7%) -0.62 (-9.7%) -0.83 (-10.1%) 
50% -0.01 (0.2%) 0.03 (1.6%) 0.01 (1.8%) 0.06 (2.5%) 0.14 (3.9%) 0.2 (5.7%) 
90% 0.29 (11.8%) 0.5 (15%) 0.77 (19.9%) 1.22 (25%) 1.45 (27.2%) 1.65 (29.3%) 
95% 0.35 (13.6%) 0.69 (19.6%) 0.91 (21.9%) 1.3 (28.3%) 1.83 (36.6%) 2.52 (44.7%) 

 

Table 26. Changes in 2-day DDF precipitation depths in inches (%) for various return periods for the future period centered at 
2065 versus the current baseline period. 5-95th percentiles across models shown. 

Perc. 2-day_2-year 2-day_5-year 2-day_10-year 2-day_25-year 2-day_50-year 2-day_100-year 
5% -0.58 (-14.4%) -0.67 (-13.4%) -0.76 (-12.1%) -0.99 (-11.8%) -1.19 (-11.1%) -1.63 (-13.6%) 

10% -0.48 (-12.8%) -0.58 (-10.4%) -0.73 (-10.7%) -0.86 (-10.6%) -1 (-10.3%) -1.31 (-10.7%) 
50% -0.06 (-1%) -0.02 (0.3%) 0.01 (1.6%) 0.08 (2.2%) 0.18 (3.9%) 0.19 (5.2%) 
90% 0.42 (11.2%) 0.78 (16%) 1.16 (20.1%) 1.9 (26.5%) 2.18 (28.7%) 2.42 (31.2%) 
95% 0.5 (14.6%) 1.1 (21.1%) 1.43 (23.5%) 1.96 (30%) 2.8 (38.6%) 3.84 (46.2%) 

 

Table 27. Changes in 3-day DDF precipitation depths in inches (%) for various return periods for the future period centered at 
2065 versus the current baseline period. 5-95th percentiles across models shown. 

Perc. 3-day_2-year 3-day_5-year 3-day_10-year 3-day_25-year 3-day_50-year 3-day_100-year 
5% -0.68 (-14.7%) -0.79 (-12.9%) -0.88 (-12.2%) -1.13 (-11.9%) -1.41 (-11.4%) -1.81 (-13.8%) 

10% -0.57 (-12.9%) -0.67 (-10.8%) -0.76 (-9.7%) -0.99 (-9.4%) -1.29 (-10.2%) -1.66 (-10.9%) 
50% -0.02 (0%) -0.02 (0.5%) -0.03 (0.3%) 0.02 (1.2%) 0.13 (3.2%) 0.07 (5.4%) 
90% 0.51 (12.1%) 0.93 (15.9%) 1.41 (20.4%) 2.2 (26.8%) 2.51 (28.1%) 2.97 (32.3%) 
95% 0.6 (14%) 1.27 (22.9%) 1.78 (25.3%) 2.47 (31%) 3.4 (39.8%) 4.66 (46.2%) 

 

Table 28. Changes in 4-day DDF precipitation depths in inches (%) for various return periods for the future period centered at 
2065 versus the current baseline period. 5-95th percentiles across models shown. 

Perc. 4-day_2-year 4-day_5-year 4-day_10-year 4-day_25-year 4-day_50-year 4-day_100-year 
5% -0.75 (-14.8%) -0.88 (-13.3%) -0.98 (-11.7%) -1.15 (-11.7%) -1.76 (-13.3%) -2.05 (-14.9%) 

10% -0.62 (-12%) -0.76 (-10.7%) -0.86 (-10%) -1.07 (-9.5%) -1.34 (-10.4%) -1.81 (-12%) 
50% -0.05 (-0.7%) -0.02 (0.3%) -0.01 (0.5%) -0.01 (1.2%) 0.13 (3%) 0.09 (5%) 
90% 0.48 (10.6%) 1 (15.1%) 1.58 (20.1%) 2.2 (24.2%) 2.76 (26.7%) 3.38 (30.7%) 
95% 0.66 (13.5%) 1.27 (19.7%) 1.78 (22.5%) 2.78 (29.6%) 3.57 (37%) 4.84 (42.6%) 

 

Table 29. Changes in 7-day DDF precipitation depths in inches (%) for various return periods for the future period centered at 
2065 versus the current baseline period. 5-95th percentiles across models shown. 

Perc. 7-day_2-year 7-day_5-year 7-day_10-year 7-day_25-year 7-day_50-year 7-day_100-year 
5% -0.86 (-13.9%) -1.08 (-12.8%) -1.24 (-12.4%) -1.52 (-13.1%) -2.32 (-14.9%) -2.9 (-15.9%) 

10% -0.67 (-10.6%) -0.94 (-11.2%) -1.03 (-10.2%) -1.37 (-10.6%) -1.78 (-11.9%) -2.24 (-13.6%) 
50% -0.08 (-0.8%) -0.05 (0.5%) 0 (0.2%) 0.14 (1.7%) 0.24 (3.7%) 0.38 (5.9%) 
90% 0.46 (8.6%) 1.1 (14.4%) 1.71 (18.3%) 2.77 (24%) 3.52 (28.6%) 4.41 (31.5%) 
95% 0.78 (12.9%) 1.39 (18.3%) 2.21 (22.6%) 3.17 (28%) 4.33 (34%) 5.51 (39.6%) 
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Figure 104. Percentage of downscaled models showing negative overall changes in extreme by RCP category for the future 
period centered at 2065. There is a total of 30 models for RCP45 and 30 for RCP85. 

 

MQDM implementation to bias-correct the downscaled dataset for the future projection period  
 

As shown in the previous sections, changes in extremes projected by the downscaled models for the 
future period 2050-2079 (centered in 2065) are smaller than the downscaled model biases (i.e. the trend 
signal is much smaller than the bias). This reduces the confidence in the projected changes in extremes 
even after adjustment with MQDM. 

An unexpected issue was encountered when using MQDM to adjust projected DDF depth values for the 
two future periods of interest. It was found that about 1.5% of the adjusted curves (𝐹𝐹𝑚𝑚−𝑝𝑝 𝑎𝑎𝑎𝑎𝑎𝑎.1) decrease 
with increasing return period. Further investigation showed that the issue arises more frequently when a 
negative shape parameter (and hence, a short-tail) for 𝐹𝐹𝑚𝑚−𝑝𝑝 and/or 𝐹𝐹𝑜𝑜−𝑐𝑐  is combined with a positive shape 
parameter (and hence, a long-tail) for 𝐹𝐹𝑚𝑚−𝑐𝑐. This is illustrated in Figure 105 and can be confirmed from 
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inspection of Equation 15-Equation 16. A semi-parametric method (SPM) was employed in order to 
smooth out the DDF curves and make them more consistent (see Irizarry et al., 2016 for more details). 
Figure 106 shows an example of the adjusted DDF curves after SPM smoothing. 

Appendix F. Maps of adjusted DDF curves for the downscaled model dataset (LOCA) in the future period 
centered in 2065 (2050-2079) shows maps of the 5th, 50th and 95th percentile of adjusted future DDF 
precipitation depths across the downscaled models for a daily duration and a 100-year return period for 
the future period centered at 2065 (𝐹𝐹𝑚𝑚−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝.1: 2050-2079). Table 30-Table 34 show the changes in 
precipitation depths in inches (%) with respect to the observations for the current baseline period for the 
durations and return periods of interest. As expected, the percentage changes (i.e. ratios) are very close 
to those for the unadjusted series (Table 25-Table 29). Small differences are possibly due to the use of 
SPM at some stations as described above. As expected from Table 25-Table 29 and the large model biases, 
the 5th percentile of adjusted future precipitation is generally lower than the observed current baseline 
values, the 50th percentile is slightly higher for the longer return periods, while  larger positive changes 
are estimated for the 95th percentile at all stations especially for the less frequent events. The median 
changes are less than 1 inch for the county as a whole for the durations and return periods analyzed.  

Comparison of (Appendix F. Maps of adjusted DDF curves for the downscaled model dataset (LOCA) in the 
future period centered in 2065 (2050-2079))  against the maps of unadjusted DDF depths for the same 
period (Appendix E. Maps of At-site RFA DDF curves for the downscaled model dataset (LOCA) in the future 
period centered in 2065 (2050-2079)) shows that the daily depths nearly doubled due to the adjustments 
made by MQDM. Similarly, the differences against the appropriate current baseline values (𝐹𝐹𝑚𝑚−𝑐𝑐  in the 
case of the unadjusted values; 𝐹𝐹𝑜𝑜−𝑐𝑐  in the case of the adjusted values) also doubled especially the highest 
differences. The spatial pattern now more closely resembles that of the observed current baseline (𝐹𝐹𝑜𝑜−𝑐𝑐) 
DDF maps in (Appendix C. Maps of At-site RFA parameters and DDF curves for the observational dataset 
in the current baseline period (Last 30 years up to 2005)). In particular, the band of higher values slightly 
inland from the coast is back.  
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Figure 105. Decreasing adjusted quantiles with return period can result when using MQDM under certain shape parameter 
combinations. In such cases, QM could fix the issue the vast majority of the time. 

 

Figure 106. SPM smoothing of adjusted projected DDF curves for a sample station and model. 
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Table 30. Changes in adjusted 24-hr DDF precipitation depths in inches (%) for various return periods for the future period 
centered at 2065 versus observations in the current baseline period. 5-95th percentiles across models shown. 

Perc. 24-hr_2-year 24-hr_5-year 24-hr_10-year 24-hr_25-year 24-hr_50-year 24-hr_100-year 
5% -0.75 (-16.1%) -0.83 (-12.6%) -0.95 (-12.1%) -1.03 (-10.8%) -1.1 (-10.2%) -1.4 (-12.8%) 

10% -0.51 (-10.6%) -0.65 (-10.5%) -0.74 (-9.8%) -0.81 (-8.7%) -0.91 (-9.6%) -1.12 (-9.5%) 
50% 0.02 (0.2%) 0.09 (1.4%) 0.12 (1.8%) 0.26 (2.5%) 0.46 (3.9%) 0.85 (5.7%) 
90% 0.57 (11.7%) 0.97 (15%) 1.56 (20%) 2.32 (25%) 2.9 (27.2%) 3.58 (29.3%) 
95% 0.64 (13.6%) 1.25 (19.6%) 1.67 (21.9%) 2.71 (28.4%) 3.89 (36.6%) 5.34 (44.8%) 

 

Table 31. Changes in adjusted 2-day DDF precipitation depths in inches (%) for various return periods for the future period 
centered at 2065 versus observations in the current baseline period. 5-95th percentiles across models shown. 

Perc.   2-day_2-year 2-day_5-year 2-day_10-year 2-day_25-year 2-day_50-year 2-day_100-year 
5% -0.8 (-14.4%) -1.01 (-13.2%) -1.12 (-12%) -1.33 (-11.8%) -1.43 (-11.1%) -1.65 (-12.2%) 

10% -0.72 (-12.6%) -0.8 (-10.4%) -0.95 (-10.7%) -1.12 (-10.6%) -1.21 (-9.8%) -1.5 (-10.4%) 
50% -0.04 (-1%) 0.03 (0.3%) 0.14 (1.6%) 0.31 (2.2%) 0.59 (4%) 1.03 (5.2%) 
90% 0.6 (11.1%) 1.22 (16%) 1.84 (20.1%) 2.89 (26.4%) 3.59 (28.6%) 4.32 (30.9%) 
95% 0.83 (14.3%) 1.58 (21.1%) 2.1 (23.5%) 3.31 (30%) 4.79 (38.6%) 6.4 (46.1%) 

 

Table 32. Changes in adjusted 3-day DDF precipitation depths in inches (%) for various return periods for the future period 
centered at 2065 versus observations in the current baseline period. 5-95th percentiles across models shown. 

Perc. 3-day_2-year 3-day_5-year 3-day_10-year 3-day_25-year 3-day_50-year 3-day_100-year 
5% -0.89 (-14.5%) -1.07 (-12.9%) -1.21 (-12.2%) -1.36 (-11.5%) -1.6 (-10.9%) -2.01 (-13.1%) 

10% -0.78 (-12.7%) -0.86 (-10.8%) -0.92 (-9.7%) -1.13 (-9.2%) -1.27 (-9.9%) -1.54 (-10.1%) 
50% 0.02 (0%) 0.05 (0.4%) 0.03 (0.3%) 0.28 (1.8%) 0.53 (3.2%) 0.88 (5.5%) 
90% 0.7 (11.3%) 1.29 (15.7%) 1.99 (20.4%) 3.24 (26.8%) 3.84 (27.9%) 4.92 (32.1%) 
95% 0.86 (14%) 1.87 (22.9%) 2.51 (25.3%) 3.73 (31%) 5.38 (39.8%) 6.98 (46.2%) 

 

Table 33. Changes in adjusted 4-day DDF precipitation depths in inches (%) for various return periods for the future period 
centered at 2065 versus observations in the current baseline period. 5-95th percentiles across models shown. 

Perc.  4-day_2-year 4-day_5-year 4-day_10-year 4-day_25-year 4-day_50-year 4-day_100-year 
5% -0.96 (-14.6%) -1.16 (-13.1%) -1.24 (-11.7%) -1.4 (-11.3%) -1.86 (-11.8%) -2.43 (-14.1%) 

10% -0.76 (-12%) -0.93 (-10.7%) -1.03 (-10%) -1.13 (-9%) -1.45 (-9.7%) -1.74 (-11%) 
50% -0.02 (-0.6%) 0.04 (0.3%) 0.03 (0.4%) 0.29 (1.8%) 0.54 (3.3%) 0.85 (5.1%) 
90% 0.7 (10.7%) 1.32 (15%) 2.11 (20.1%) 3.18 (24.6%) 3.97 (27.1%) 5.08 (31.2%) 
95% 0.89 (13.5%) 1.74 (19.9%) 2.45 (23.1%) 3.79 (29.6%) 5.34 (37.2%) 6.93 (42.8%) 

 

Table 34. Changes in adjusted 7-day DDF precipitation depths in inches (%) for various return periods for the future period 
centered at 2065 versus observations in the current baseline period. 5-95th percentiles across models shown. 

Perc. 7-day_2-year 7-day_5-year 7-day_10-year 7-day_25-year 7-day_50-year 7-day_100-year 
5% -1.09 (-14.1%) -1.34 (-12.8%) -1.55 (-12.4%) -1.91 (-12.8%) -2.24 (-13.4%) -3.04 (-15.9%) 

10% -0.81 (-10.6%) -1.14 (-11.1%) -1.26 (-10.1%) -1.47 (-10.2%) -1.94 (-11.6%) -2.42 (-12.9%) 
50% -0.05 (-0.8%) 0.08 (0.5%) 0.07 (0.2%) 0.25 (1.4%) 0.74 (3.5%) 1.07 (5.6%) 
90% 0.66 (8.4%) 1.55 (14.4%) 2.3 (18.3%) 3.59 (23.9%) 5.01 (28.6%) 6.22 (31.5%) 
95% 0.99 (12.9%) 1.96 (18.2%) 2.76 (22.4%) 4.2 (28%) 5.75 (34%) 7.56 (39.5%) 
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Quantile mapping for temporal downscaling of precipitation projections 
 

A modified version of the Quantile mapping (QM) equation can be used to temporally downscale extremes 
from daily to sub-daily durations based on the historical fitted DDF curve for the sub-daily duration of 
interest. The approach is similar to the methodology employed by Tetratech (2015).  

𝑥𝑥�𝑚𝑚−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝.𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  𝐹𝐹𝑜𝑜−𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
−1 [𝐹𝐹𝑚𝑚−𝑐𝑐 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

∗ �𝑥𝑥�𝑚𝑚−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝.𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�] 

Equation 17 

where 𝑥𝑥�𝑚𝑚−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝.𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is the subdaily adjusted quantile for the model (m) projections (p) for the future 
period,  𝐹𝐹𝑜𝑜−𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖 is the CDF of the daily observations (o) in the current baseline period (c) ,  𝐹𝐹𝑚𝑚−𝑐𝑐 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

∗  
is the bias-corrected CDF of the daily model (m) data in the current baseline period (c) , 𝑥𝑥�𝑚𝑚−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝.𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is 
the daily adjusted quantile for the model (m) projections (p) for the future. F-1 means the inverse of the 
CDF (i.e. the quantile function). The CDFs are developed based on data spanning decades and centered 
around some year of interest. It is important to note that the bias-corrected CDF of the daily model (m) 
data in the current baseline period (c), 𝐹𝐹𝑚𝑚−𝑐𝑐 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

∗ , equals the CDF of the daily observations (o) in the 
current baseline period (o), 𝐹𝐹𝑜𝑜−𝑐𝑐 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑; therefore, Equation 17 can be re-written as: 

𝑥𝑥�𝑚𝑚−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝.𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  𝐹𝐹𝑜𝑜−𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
−1 [𝐹𝐹𝑜𝑜−𝑐𝑐 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝑥𝑥�𝑚𝑚−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝.𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�] 

Equation 18 

Equation 18 was applied to the adjusted future daily model quantiles for the return periods of interest to 
obtain sub-daily quantiles for durations of 1, 2, 3, 6, and 12 hours at the stations with hourly AMS data. 

Appendix F. Maps of adjusted DDF curves for the downscaled model dataset (LOCA) in the future period 
centered in 2065 (2050-2079) shows maps of the 5th, 50th and 95th percentile of adjusted future DDF 
precipitation depths across the downscaled models for hourly duration and a 100-year return period for 
the future period centered at 2065 (𝐹𝐹𝑚𝑚−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝.1: 2050-2079). Table 35-Table 39 show the changes in 
precipitation depths in inches (%) with respect to the observations for the current baseline period for the 
sub-daily durations and return periods of interest. As expected, the percentage changes are very close to 
those for the daily durations from which the sub-daily extremes were derived (Table 30). The 5th 
percentile of overall adjusted future precipitation is generally lower than the observed current baseline 
values, the 50th percentile is slightly higher for the longer return periods, while larger positive changes 
are estimated for the 95th percentile at all stations especially for the less frequent events. The median 
changes are less than 1 inch for the county as a whole for the durations and return periods analyzed.  

 

 

 

 



235 
 

Table 35. Changes in adjusted 1-hr DDF precipitation depths in inches (%) for various return periods for the future period 
centered at 2065 versus observations in the current baseline period. 5-95th percentiles across models shown. 

Perc. 60-min_2-year 60-min_5-year 60-min_10-year 60-min_25-year 60-min_50-year 60-min_100-year 
5% -0.37 (-17.5%) -0.37 (-12.8%) -0.42 (-12.3%) -0.47 (-11.4%) -0.53 (-11.3%) -0.75 (-13.3%) 

10% -0.22 (-10.5%) -0.32 (-11.3%) -0.38 (-10.8%) -0.37 (-8.8%) -0.46 (-9.4%) -0.58 (-11.1%) 
50% 0 (0.1%) 0.04 (1.5%) 0.11 (3%) 0.17 (3.5%) 0.26 (5.4%) 0.39 (7.1%) 
90% 0.27 (12.8%) 0.45 (15.5%) 0.67 (19.8%) 1.09 (25.9%) 1.32 (27.8%) 1.67 (30.9%) 
95% 0.32 (14.8%) 0.65 (22.6%) 0.86 (25%) 1.3 (31.1%) 1.78 (37.5%) 2.34 (43.8%) 

 

Table 36. Changes in adjusted 2-hr DDF precipitation depths in inches (%) for various return periods for the future period 
centered at 2065 versus observations in the current baseline period. 5-95th percentiles across models shown. 

Perc.  2-hr_2-year 2-hr_5-year 2-hr_10-year 2-hr_25-year 2-hr_50-year 2-hr_100-year 
5% -0.46 (-17.5%) -0.46 (-12.8%) -0.52 (-12.3%) -0.6 (-11.4%) -0.68 (-11.3%) -0.93 (-13.3%) 

10% -0.28 (-10.5%) -0.4 (-11.3%) -0.47 (-10.8%) -0.47 (-8.8%) -0.58 (-9.4%) -0.74 (-11.1%) 
50% 0.01 (0.1%) 0.04 (1.5%) 0.13 (3%) 0.22 (3.5%) 0.33 (5.4%) 0.5 (7.1%) 
90% 0.34 (12.8%) 0.55 (15.5%) 0.83 (19.8%) 1.35 (25.9%) 1.63 (27.8%) 2.06 (30.9%) 
95% 0.4 (14.8%) 0.8 (22.6%) 1.07 (25%) 1.62 (31.1%) 2.21 (37.5%) 2.9 (43.8%) 

 

Table 37. Changes in adjusted 3-hr DDF precipitation depths in inches (%) for various return periods for the future period 
centered at 2065 versus observations in the current baseline period. 5-95th percentiles across models shown. 

Perc.  3-hr_2-year 3-hr_5-year 3-hr_10-year 3-hr_25-year 3-hr_50-year 3-hr_100-year 
5% -0.5 (-17.5%) -0.5 (-12.8%) -0.57 (-12.3%) -0.65 (-11.4%) -0.74 (-11.3%) -1.02 (-13.3%) 

10% -0.3 (-10.5%) -0.44 (-11.3%) -0.52 (-10.8%) -0.52 (-8.8%) -0.64 (-9.4%) -0.8 (-11.1%) 
50% 0.01 (0.1%) 0.05 (1.5%) 0.15 (3%) 0.24 (3.5%) 0.37 (5.4%) 0.56 (7.1%) 
90% 0.37 (12.8%) 0.6 (15.5%) 0.91 (19.8%) 1.49 (25.9%) 1.78 (27.8%) 2.26 (30.9%) 
95% 0.44 (14.8%) 0.89 (22.6%) 1.18 (25%) 1.78 (31.1%) 2.42 (37.5%) 3.17 (43.8%) 

 

Table 38. Changes in adjusted 6-hr DDF precipitation depths in inches (%) for various return periods for the future period 
centered at 2065 versus observations in the current baseline period. 5-95th percentiles across models shown. 

Perc.  6-hr_2-year 6-hr_5-year 6-hr_10-year 6-hr_25-year 6-hr_50-year 6-hr_100-year 
5% -0.59 (-17.5%) -0.59 (-12.8%) -0.67 (-12.3%) -0.75 (-11.4%) -0.84 (-11.3%) -1.19 (-13.3%) 

10% -0.36 (-10.5%) -0.52 (-11.3%) -0.6 (-10.8%) -0.6 (-8.8%) -0.74 (-9.4%) -0.91 (-11.1%) 
50% 0.01 (0.1%) 0.06 (1.5%) 0.17 (3%) 0.27 (3.5%) 0.44 (5.4%) 0.69 (7.1%) 
90% 0.44 (12.8%) 0.7 (15.5%) 1.08 (19.8%) 1.74 (25.9%) 2.08 (27.8%) 2.66 (30.9%) 
95% 0.51 (14.8%) 1.05 (22.6%) 1.38 (25%) 2.08 (31.1%) 2.83 (37.5%) 3.71 (43.8%) 

 

Table 39. Changes in adjusted 12-hr DDF precipitation depths in inches (%) for various return periods for the future period 
centered at 2065 versus observations in the current baseline period. 5-95th percentiles across models shown. 

Perc.  12-hr_2-year 12-hr_5-year 12-hr_10-year 12-hr_25-year 12-hr_50-year 12-hr_100-year 
5% -0.68 (-17.5%) -0.68 (-12.8%) -0.77 (-12.3%) -0.85 (-11.4%) -0.95 (-11.3%) -1.36 (-13.3%) 

10% -0.41 (-10.5%) -0.6 (-11.3%) -0.69 (-10.8%) -0.7 (-8.8%) -0.83 (-9.4%) -1.04 (-11.1%) 
50% 0.01 (0.1%) 0.07 (1.5%) 0.2 (3%) 0.3 (3.5%) 0.53 (5.4%) 0.81 (7.1%) 
90% 0.51 (12.8%) 0.8 (15.5%) 1.25 (19.8%) 2.02 (25.9%) 2.42 (27.8%) 3.08 (30.9%) 
95% 0.59 (14.8%) 1.21 (22.6%) 1.6 (25%) 2.4 (31.1%) 3.27 (37.5%) 4.28 (43.8%) 

 



236 
 

References 
 

Asadieh B., Krakauer N. Y. 2015. Global trends in extreme precipitation: climate models versus 
observations. Hydrol. Earth Syst. Sci. 19: 877–891. 

Ayuso-Muñoz J. L., Ayuso-Ruiz P., Taguas E. V., García-Marín A. P., Estévez J., Pizarro-Tapia R. 2015. A more 
efficient rainfall intensity-duration-frequency relationship by using an at-site regional frequency analysis: 
Application at mediterranean climate locations. Water Resources Management 29:3243–3263. 
DOI:10.1007/s11269-015-0993-z. 

Coles S. 2001. An Introduction to Statistical Modeling of Extreme Values. Springer-Verlag; 227. 

Emanuel K. A. 2013: Downscaling CMIP5 climate models shows increased tropical cyclone activity over 
the 21st century. Proc. Nat. Acad. Sci. 110. doi:10.1073/pnas.1301293110.   

Fisher R. A., Tippett L. H. C. 1928. Limiting forms of the frequency distribution of the largest or smallest 
member of a sample. Proceedings of the Cambridge Philosophical Society 24:189-190. 

Grubbs, F. E. 1950. Sample Criteria for testing outlying observations. Ann. Math. Stat. 21, 1, 27-58. 

Irizarry M., Obeysekera J., Dessalegne T. 2016. Determination of Future Intensity-Duration-Frequency 
Curves for Level of Service Planning Projects. Task 2 - Deliverable 2.1 Conduct an extreme rainfall analysis 
in climate model outputs to determine temporal changes in IDF curves. Prepared for South Florida Water 
Management District.  

Jenkinson A. F. 1955. The frequency distribution of the annual maximum (or minimum) of meteorological 
elements. Quarterly Journal of the Royal Meteorological Society 81:158-171. 

Katz R. W., Parlange M. B., Naveau P. 2002. Statistics of extremes in hydrology. Advances in Water 
Resources 25: 1287–1304. 

Kozar M., Misra V. 2013, Evaluation of twentieth-century Atlantic Warm Pool simulations in historical 
CMIP5 Runs. Climate Dynamics 41(9/10):2375. 

NOAA. 2013.  Precipitation-Frequency Atlas of the United States, Southeastern States. NOAA Atlas 14 
Volume 9 Version 2.0, S. Perica, D. Martin, S. Pavlovic, I. Roy, M. St. Laurent, C. Trypaluk, D. Unruh, M. 
Yekta, G. Bonnin, NOAA, National Weather Service, Silver Spring, MD. 

Panofsky H. W., Brier G. W. 1968. Some Applications of Statistics to Meteorology. The Pennsylvania State 
University Press: Philadelphia. 

Pierce D. W., Cayan D. R., Thrasher B. L. 2014. Statistical downscaling using Localized Constructed Analogs 
(LOCA). Journal of Hydrometeorology 15:2558–2585. 

South Florida Engineering and Consulting, LLC. 2016. Task 3 Report – Review of future rainfall extremes. 
Estimating the impact of projected global warming on magnitude and frequency of extreme rainfall events 
within the South Florida Water Management District. 



237 
 

 

Taylor K. E. 2001. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. 
Res. 106: 7183-7192. 

Tetratech. 2015. Hydrologic Design Standards under Future Climate for Grand Rapids, Michigan.  Prepared 
by Tetratech for the City of Grand Rapids, Michigan. 

Wuebbles D. et al. 2014. CMIP5 climate model analyses. Climate extremes in the United States. Bulletin 
of the American Meteorological Society: 571-583. 

  



238 
 

Appendix A. C-shell script to run runivg program on the SFWMD network 
 

#!/bin/csh -f 
 
foreach station_id (`cat rfmiami.dat`) 
  echo "Working on ...." $station_id 
  if (-e tempfil ) /bin/rm tempfil 
  if (-e ${station_id}_hourly.dat ) /bin/rm ${station_id}_hourly.dat 
  touch tempfil 
  echo 1 > tempfil 
  echo $station_id >> tempfil 
  echo H >> tempfil 
  echo 199105222300","201904162300 >> tempfil 
  echo SUM >> tempfil 
  echo ${station_id}_hourly.dat >> tempfil 
 
  echo "Calling runivg" 
  #runivg at: /k_wmp/ka_db/dcvp/prod/bin/runivg 
  runivg < tempfil 
 
  echo "Done with runivg for ..." $station_id 
 
end 
 
 
Contents of rfmiami.dat: 
 
3AS3W3+R 
JBTS+R 
MBTS+R 
MDTS+R 
MIAMI+R 
S123-R 
S12D+R 
S177-R 
S179-R 
S18C-R 
S20F-R 
S21A-R 
S21-R 
S26-R 
S27-R 
S28Z-R 
S29Z-R 
S29-R 
S30-R 
S331W+R 
S332-R 
S334-R 
S335-R 
S336+R 
S338-R 
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Appendix B. Contour maps of 1-in-100-year rainfall depths based on historical data 
 

(Units: inches) 

 

Figure 107. Interpolated 1-in-100-year 2-hour rainfall totals (inches) based on based on TPS smoothing of station data (black 
dots) using a lambda value of 0.02. 
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Figure 108. Interpolated 1-in-100-year 3-hour rainfall totals (inches) based on based on TPS smoothing of station data (black 
dots) using a lambda value of 0.02. 
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Figure 109. Interpolated 1-in-100-year 6-hour rainfall totals (inches) based on based on TPS smoothing of station data (black 
dots) using a lambda value of 0.02. 
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Figure 110. Interpolated 1-in-100-year 12-hour rainfall totals (inches) based on based on TPS smoothing of station data (black 
dots) using a lambda value of 0.02. 
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Figure 111. Interpolated 1-in-100-year 2-day rainfall totals (inches) based on based on TPS smoothing of station data (black 
dots) using a lambda value of 0.02. 
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Figure 112. Interpolated 1-in-100-year 3-day rainfall totals (inches) based on based on TPS smoothing of station data (black 
dots) using a lambda value of 0.02. 
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Appendix C. Maps of At-site RFA parameters and DDF curves for the observational 
dataset in the current baseline period (Last 30 years up to 2005) 
 
(Units: inches) 

1-in-100-year hourly rainfall totals for the observational dataset  

in the current baseline period 

 
Figure 113. DDF precipitation depths (inches) fit to Atlas 14 AMS data in the current baseline period (last 30 years up to 2005, 
𝐹𝐹𝑜𝑜−𝑐𝑐) for hourly duration, 100-year return period. 
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1-in-100-year daily rainfall totals for the observational dataset  

in the current baseline period 

 

Figure 114. DDF precipitation depths (inches) fit to Atlas 14 AMS data in the current baseline period (last 30 years up to 2005, 
𝐹𝐹𝑜𝑜−𝑐𝑐) for daily duration, 100-year return period. 
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Appendix D. Maps of At-site RFA DDF curves for the downscaled model dataset (LOCA) in 
the current baseline period (Last 30 years up to 2005) 
 

(Note: 5th, 50th, 95th percentiles can come from different models at different locations; Units: inches) 

 

5th percentile of 1-in-100-year daily rainfall totals from LOCA  

for the current baseline period 

 
Figure 115.5th percentile of DDF precipitation depths (inches) fit to downscaled model (LOCA) AMS data in the current baseline 
period (last 30 years up to 2005, 𝐹𝐹𝑚𝑚−𝑐𝑐) for 24-hour duration, 100-year return period. 
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50th percentile of 1-in-100-year daily rainfall totals from LOCA  

for the current baseline period 

 
 

Figure 116. 50th percentile of DDF precipitation depths (inches) fit to downscaled model (LOCA) AMS data in the current baseline 
period (last 30 years up to 2005, 𝐹𝐹𝑚𝑚−𝑐𝑐) for 24-hour duration, 100-year return period. 
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95th percentile of 1-in-100-year daily rainfall totals from LOCA  

for the current baseline period 

 
 

Figure 117. 95th percentile of DDF precipitation depths (inches) fit to downscaled model (LOCA) AMS data in the current baseline 
period (last 30 years up to 2005, 𝐹𝐹𝑚𝑚−𝑐𝑐) for 24-hour duration, 100-year return period. 
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5th percentile of differences in 1-in-100-year daily rainfall totals  

(LOCA – observations) for the current baseline period 

 

Figure 118. 5th percentile of DDF precipitation depths (inches) fit to downscaled model (LOCA) AMS data minus DDF 
precipitation depths fit to Atlas 14 AMS data in the current baseline period (last 30 years up to 2005) (𝐹𝐹𝑚𝑚−𝑐𝑐- 𝐹𝐹𝑜𝑜−𝑐𝑐) for 24-hour 
duration, 100-year return period. 
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50th percentile of differences in 1-in-100-year daily rainfall totals  

(LOCA – observations) for the current baseline period 

 

Figure 119. 50th percentile of DDF precipitation depths (inches) fit to downscaled model (LOCA) AMS data minus DDF 
precipitation depths fit to Atlas 14 AMS data in the current baseline period (last 30 years up to 2005) (𝐹𝐹𝑚𝑚−𝑐𝑐- 𝐹𝐹𝑜𝑜−𝑐𝑐) for 24-hour 
duration, 100-year return period. 
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95th percentile of differences in 1-in-100-year daily rainfall totals 

(LOCA – observations) for the current baseline period 

 

 

Figure 120. 95th percentile of DDF precipitation depths (inches) fit to downscaled model (LOCA) AMS data minus DDF 
precipitation depths fit to Atlas 14 AMS data in the current baseline period (last 30 years up to 2005) (𝐹𝐹𝑚𝑚−𝑐𝑐- 𝐹𝐹𝑜𝑜−𝑐𝑐) for 24-hour 
duration, 100-year return period. 

 

  



253 
 

Appendix E. Maps of At-site RFA DDF curves for the downscaled model dataset (LOCA) in 
the future period centered in 2065 (2050-2079)  
 

(Note: 5th, 50th, 95th percentiles can come from different models at different locations; Units: inches) 

 

5th percentile of 1-in-100-year daily rainfall totals from LOCA  

for the future projection period 

 
 

Figure 121. 5th percentile of DDF precipitation depths (inches) fit to downscaled model (LOCA) AMS data in the future projection 
period centered in 2065 (2050-2079, 𝐹𝐹𝑚𝑚−𝑝𝑝1) for 24-hour duration, 100-year return period. 
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50th percentile of 1-in-100-year daily rainfall totals from LOCA  

for the future projection period 

 
 

Figure 122. 50th percentile of DDF precipitation depths (inches) fit to downscaled model (LOCA) AMS data in the future 
projection period centered in 2065 (2050-2079, 𝐹𝐹𝑚𝑚−𝑝𝑝1) for 24-hour duration, 100-year return period. 
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95th percentile of 1-in-100-year daily rainfall totals from LOCA  

for the future projection period 

 
 

Figure 123. 95th percentile of DDF precipitation depths (inches) fit to downscaled model (LOCA) AMS data in the future 
projection period centered in 2065 (2050-2079, 𝐹𝐹𝑚𝑚−𝑝𝑝1) for 24-hour duration, 100-year return period. 
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5th percentile of differences in 1-in-100-year daily rainfall totals  

for future - current baseline period in LOCA 

 

 
Figure 124. 5th percentile of DDF precipitation depths (inches) fit to downscaled model (LOCA) AMS data for the future period 
centered in 2065 (2055-2079) minus the current baseline period (last 30 years up to 2005) (𝐹𝐹𝑚𝑚−𝑝𝑝1 − 𝐹𝐹𝑚𝑚−𝑐𝑐) for 24-hour duration, 
100-year return period. 
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50th percentile of differences in 1-in-100-year daily rainfall totals  

for future - current baseline period in LOCA 

 
Figure 125. 50th percentile of DDF precipitation depths (inches) fit to downscaled model (LOCA) AMS data for the future period 
centered in 2065 (2055-2079) minus the current baseline period (last 30 years up to 2005) (𝐹𝐹𝑚𝑚−𝑝𝑝1 − 𝐹𝐹𝑚𝑚−𝑐𝑐) for 24-hour duration, 
100-year return period. 
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95th percentile of differences in 1-in-100-year daily rainfall totals  

for future - current baseline period in LOCA 

 

Figure 126. 95th percentile of DDF precipitation depths (inches) fit to downscaled model (LOCA) AMS data for the future period 
centered in 2065 (2055-2079) minus the current baseline period (last 30 years up to 2005) (𝐹𝐹𝑚𝑚−𝑝𝑝1 − 𝐹𝐹𝑚𝑚−𝑐𝑐) for 24-hour duration, 
100-year return period. 
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Appendix F. Maps of adjusted DDF curves for the downscaled model dataset (LOCA) in 
the future period centered in 2065 (2050-2079)  
 

(Note: 5th, 50th, 95th percentiles can come from different models at different locations; Units: inches) 

 

5th percentile of adjusted 1-in-100-year daily rainfall totals from LOCA  

for the future projection period 

 

 

Figure 127. 5th percentile of adjusted DDF precipitation depths (inches) for the future projection period centered in 2065 (2050-
2079, 𝐹𝐹𝑚𝑚−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝.1) for 24-hour duration, 100-year return period. 
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50th percentile of adjusted 1-in-100-year daily rainfall totals from LOCA  

for the future projection period 

 
 

Figure 128. 50th percentile of adjusted DDF precipitation depths (inches) for the future projection period centered in 2065 (2050-
2079, 𝐹𝐹𝑚𝑚−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝.1) for 24-hour duration, 100-year return period. 
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95th percentile of adjusted 1-in-100-year daily rainfall totals from LOCA  

for the future projection period 

 

Figure 129. 95th percentile of adjusted DDF precipitation depths (inches) for the future projection period centered in 2065 (2050-
2079, 𝐹𝐹𝑚𝑚−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝.1) for 24-hour duration, 100-year return period. 
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5th percentile of differences in 1-in-100-year daily rainfall totals  

for future adjusted LOCA projections – observations in the current baseline 
period 

 
Figure 130. 5th percentile of adjusted DDF precipitation depths (inches) for the period centered in 2065 (2050-2079) minus DDF 
precipitation depths fit to observational data in the current baseline period (last 30 years up to 2005) (𝐹𝐹𝑚𝑚−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝.1 − 𝐹𝐹𝑜𝑜−𝑐𝑐) for 24-
hour duration, 100-year return period. 
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50th percentile of differences in 1-in-100-year daily rainfall totals  

for future adjusted LOCA projections – observations in the current baseline 
period-

 
Figure 131. 50th percentile of adjusted DDF precipitation depths (inches) for the period centered in 2065 (2050-2079) minus DDF 
precipitation depths fit to observational data in the current baseline period (last 30 years up to 2005) (𝐹𝐹𝑚𝑚−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝.1 − 𝐹𝐹𝑜𝑜−𝑐𝑐) for 24-
hour duration, 100-year return period. 
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95th percentile of differences in 1-in-100-year daily rainfall totals  

for future adjusted LOCA projections – observations in the current baseline 
period 

 
Figure 132. 95th percentile of adjusted DDF precipitation depths (inches) for the period centered in 2065 (2050-2079) minus DDF 
precipitation depths fit to observational data in the current baseline period (last 30 years up to 2005) (𝐹𝐹𝑚𝑚−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝.1 − 𝐹𝐹𝑜𝑜−𝑐𝑐)  for 
24-hour duration, 100-year return period. 
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5th percentile of adjusted 1-in-100-year hourly rainfall totals from LOCA  

for the future projection period 

 

Figure 133. 5th percentile of adjusted DDF precipitation depths (inches) for the future projection period centered in 2065 (2050-
2079) for 1-hour duration, 100-year return period. 
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50th percentile of adjusted 1-in-100-year hourly rainfall totals from LOCA  

for the future projection period 

 

Figure 134. 50th percentile of adjusted DDF precipitation depths (inches) for the future projection period centered in 2065 (2050-
2079) for 1-hour duration, 100-year return period. 
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95th percentile of adjusted 1-in-100-year hourly rainfall totals from LOCA  

for the future projection period 

 

Figure 135. 95th percentile of adjusted DDF precipitation depths (inches) for the future projection period centered in 2065 (2050-
2079) for 1-hour duration, 100-year return period. 
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5th percentile of differences in 1-in-100-year hourly rainfall totals  

for future adjusted LOCA projections – observations in the current baseline 
period 

 

Figure 136. 5th percentile of adjusted DDF precipitation depths (inches) for the period centered in 2065 (2050-2079) minus DDF 
precipitation depths fit to observational data in the current baseline period (last 30 years up to 2005) for 1-hour duration, 100-
year return period. 
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50th percentile of differences in 1-in-100-year hourly rainfall totals  

for future adjusted LOCA projections – observations in the current baseline 
period 

 

Figure 137. 50th percentile of adjusted DDF precipitation depths (inches) for the period centered in 2065 (2050-2079) minus DDF 
precipitation depths fit to observational data in the current baseline period (last 30 years up to 2005) for 1-hour duration, 100-
year return period. 
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95th percentile of differences in 1-in-100-year hourly rainfall totals  

for future adjusted LOCA projections – observations in the current baseline 
period 

 

Figure 138. 95th percentile of adjusted DDF precipitation depths (inches) for the period centered in 2065 (2050-2079) minus DDF 
precipitation depths fit to observational data in the current baseline period (last 30 years up to 2005) for 1-hour duration, 100-
year return period. 
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Appendix G. R code used in the extreme rainfall analysis 
 

The R code used in the rainfall analysis (Task II) is included in this appendix. In the analysis of historical 
observational data up to the year 2019, only functions getAMSobs and grubbs.flag and fitGEV were called. 
In the bias-correction analysis of LOCA data the following functions were called in order. 

 

• getAMSobs and grubbs.flag 

• station2cellmap 

• subset_loca 

• getAMS 

• fitGEVall which calls fitGEV 

• doEQM 

• computeGOFquants was called three times: to compare Fo-c vs. Fm-c, Fm-c vs. Fm-p1, and Fo-c vs. Fm-

padj.1 

• contourmap_Tps – was used to smooth out at-station values of fitted extremes 
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############################################################################ 
 
getAMSobs <- function(){ 
 
#Function to compute AMS for various observational rainfall datasets 
 
############################################################################ 
 
#Libraries used 
library(lubridate) 
library(zoo) 
library(lattice) 
library(tidyr) 
library(outliers) 
library(ggplot2) 
library(stringr) 
library(data.table) 
library(abind) 
 
datadir="Z:/miriza/Work/FIU/FL_Building_Code/Data/Rainfall/" 
#Number of years to get data for 
numys=30 
#Cutoff year before which to get the numys 
cutyr=2019 
############################################################################### 
#Compute AMS from SFWMD daily rainfall data 
############################################################################### 
setwd(paste(datadir,"/SFWMD/",sep="")) 
 
 
#Definition of wet season in NOAA Atlas 14 volume 9 
#For daily durations 
wetseas=seq(3,10,1) 
wetseasd=245 
 
#Read in SFWMD rainfall data 
#Note: Blank fields (corresponding to missing or not yet available values) are read as 
NA 
SFWMDrain=read.csv(paste(datadir,"/SFWMD/SFWMD_data.csv",sep="")) 
nstas=((ncol(SFWMDrain)-3)/2) 
 
yrs=SFWMDrain[,2] 
uyrs=unique(yrs) 
ndays=365+1*leap_year(unique(yrs)) 
mos=SFWMDrain[,3] 
 
#Durations of interest for SFWMD data 
sdursdays=c(1,2,3,4,7) 
ndurs=length(sdursdays) 
ams=array(dim=c(ndurs,length(uyrs),nstas)) 
amsoutin=array(dim=c(length(uyrs),nstas)) 
amsoutin[,]=0 
 
 
#SFWMD DBHydro data qualifiers 
#A: accumulated rainfall 
#M: Missing 
#N: Not yet available 
#X: Included in next amount marked A 
#P: Provisional data subject to revision 
#!: Normal limits exceeded 
 
#Go through each SFWMD structure and get AMS 



273 
 

#Based on following flowchart in Fig. 4.3.1 of NOAA Atlas 14 vol. 9 (p.11) 
for (s in 1:nstas) { 
  print(paste("s=",s)) 
  sdata=SFWMDrain[,(2*s+2)] 
  squal=SFWMDrain[,(2*s+3)] 
  sdata[squal=='X']=NA 
  databyqual=tapply(sdata,list('yrs'=yrs,'squal'=squal),function(x) length(x)) 
 
  #Overall percentage of zero values  
  szero=tapply(sdata,yrs,function(x) sum(x==0,na.rm=TRUE)) 
  szero=100*szero/ndays  
  #print(range(szero,na.rm=TRUE)) 
   
  #Overlal percentage of missing and zero values 
  szeromiss=tapply(sdata,yrs,function(x) sum(x==0)+sum(is.na(x))) 
  szeromiss=100*szeromiss/ndays 
  #print(range(szeromiss,na.rm=TRUE)) 
   
  #range(sdata[squal=='M' | squal=='N'],na.rm=TRUE) 
  #Overall percentage missing 
  smiss=tapply(sdata,yrs,function(x) sum(is.na(x))) 
  smiss=100*smiss/ndays 
  print(range(szero[smiss<=2])) 
   
  #Percentage missing for wet season 
  swmiss=tapply(sdata,list('yrs'=yrs,'mos'=mos),function(x) sum(is.na(x))) 
  swmiss=100*rowSums(swmiss[,wetseas],na.rm=TRUE)/wetseasd 
   
  #Percentage accumulated 
  if (is.na(match("X",colnames(databyqual)))) { 
    sacc=vector(mode="integer",length=length(uyrs)) 
 swacc=vector(mode="integer",length=length(uyrs)) 
  }  
  else { 
    sacc=100*rowSums(databyqual[,c("X","A")],na.rm=TRUE)/ndays 
   
    #Percentage accumulated for wet season 
    swacc=tapply(sdata,list('yrs'=yrs,'mos'=mos,'squal'=squal),function(x) length(x)) 
    swacc=100*rowSums(swacc[,wetseas,c("X","A")],na.rm=TRUE)/wetseasd 
 
    #Get runs with qualifiers "X" or "A", to do this first replace all "A" with "X" 
    #squal2=squal 
    #squal2[squal2=="A"]="X" 
    #sruns=rle(as.vector(squal2)) 
    #saxruns=sruns$lengths[which(sxaruns$values=="X")] 
    #Gives location of last element of the run 
    #srunends=cumsum(sruns$length) 
    #runyrs=yrs[srunends[which(sxaruns$values=="X")]] 
    #Percentage of runs less than 1 day duration 
    #Threshold run lengths are 1 day for durations of 1, 2 and 3 days 
    #srunl=100*tapply(saxruns,list('yrs'=runyrs),function(x) 
sum(x<1))/tapply(saxruns,list('yrs'=runyrs),function(x) length(x)) 
    #This is irrelevant, srunl will be equal to 0 for all years for durations of 1, 2, 
and 3 days based on the definition of a run 
    #runmos=mos[srunends[which(sxaruns$values=="X")]] 
    #temp1=tapply(saxruns,list('yrs'=runyrs,'mos'=runmos),function(x) sum(x<1)) 
    #temp2=tapply(saxruns,list('yrs'=runyrs,'mos'=runmos),function(x) length(x)) 
    
#swrunl=100*rowSums(temp1[,wetseas],na.rm=TRUE)/rowSums(temp2[,wetseas],na.rm=TRUE) 
    #swrunl[is.na(swrunl)]=0 
  } 
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  #Check whether to compute AMS for the station for the particular year based on the 
conditions above  
  #amsoutin is 0 if there is not enough data to compute AMS for that year 
  #amsoutin is 1 if there is enough data to compute AMS for that year 
  iy=0 
  for (y in uyrs) { 
    iy=iy+1 
 if (smiss[iy]<20 && swmiss[iy]<20 && sacc[iy] < 33 && swacc[iy] < 15) { 
   amsoutin[iy,s]=1 
    }   
  } 
   
  print(paste("SFWMD station DBKEY: ",colnames(SFWMDrain)[(2*s+2)],", AMS valid values: 
",sum(amsoutin[,s]),sep="")) 
   
  for (u in 1:ndurs) { 
    print(paste("u = ",u,sep="")) 
    k=sdursdays[u] 
 #rs=tapply(sdata,list('yrs'=yrs),function(x) ave(x,FUN=function(x) 
c(rollsum(x,k),rep(NA,k-1)),k=k)) 
    rs=tapply(sdata,list('yrs'=yrs),function(x,k) c(rollsum(x,k),rep(NA,k-1)),k=k)  
    ams[u,,s]=unlist(lapply(rs,function(x) max(as.numeric(x),na.rm=TRUE)))  
    rm(rs)  
  } 
} 
ams[ams<0]=NA 
 
colnames(amsoutin)=colnames(SFWMDrain[seq(4,ncol(SFWMDrain)-1,2)]) 
rownames(amsoutin)=uyrs 
dimnames(ams)[[1]]=paste(sdursdays,"-day",sep="") 
dimnames(ams)[[2]]=uyrs 
dimnames(ams)[[3]]=colnames(SFWMDrain[seq(4,ncol(SFWMDrain)-1,2)]) 
 
ams2=ams 
#Exclude years with not enough values for accurate AMS 
exclind=which(amsoutin==0,arr.ind=TRUE) 
ams2[cbind(rep(1:3,each=1647),rep(exclind[,1],3),rep(exclind[,2],3))]=NA 
#Check that for a certain year the AMS totals for n days are greater than the totals for 
(n-1) days 
#If not, set the total for n days to the total for (n-1) days 
for (s in 1:nstas) { 
  for (u in 1:(ndurs-1)) { 
    ams2[(u+1),,s]=pmax(ams2[u,,s],ams2[(u+1),,s],na.rm=TRUE) 
  } 
} 
 
#Convert the AMS from constrained to unconstrained using NOAA ATLAS14 conversion factors 
amsunc=ams2 
amsunc[1,,]=ams2[1,,]*1.12 #1-day 
amsunc[2,,]=ams2[2,,]*1.04 #2-day  
amsunc[3,,]=ams2[3,,]*1.03 #3-day  
amsunc[4,,]=ams2[4,,]*1.02 #4-day  
amsunc[5,,]=ams2[5,,]*1.01 #7-day 
#Again, check that for a certain year the AMS totals for n days are greater than the 
totals for (n-1) days 
#If not, set the total for n days to the total for (n-1) days 
for (s in 1:nstas) { 
  for (u in 1:(ndurs-1)) { 
    amsunc[(u+1),,s]=pmax(amsunc[u,,s],amsunc[(u+1),,s],na.rm=TRUE) 
  } 
} 
 
#Cut off data based on cutoff year cutyr 
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amsoutin=amsoutin[which(as.numeric(rownames(amsoutin))<=cutyr),] 
amsunc=amsunc[,which(as.numeric(rownames(amsoutin))<=cutyr),] 
ams2=ams2[,which(as.numeric(rownames(amsoutin))<=cutyr),] 
 
last30s=apply(amsunc[1,,],2,function(x) 
{nvalyrs=min(numys,sum(!is.na(x)));c(rep(NA,numys-
nvalyrs),as.numeric(tail(names(x)[!is.na(x)],nvalyrs)))}) 
#Remove 1959 from DBKey X6310 due to AMS value being accumulated over 7 days  
X6310_last30s=last30s[,"X6310"] 
X6310_last30s[which(X6310_last30s==1959)]=NA 
valyrs=sort(X6310_last30s) 
X6310_last30s=c(rep(NA,numys-length(valyrs)),valyrs) 
last30s[,"X6310"]=X6310_last30s 
#Remove 2017 (Hurricane Irma) from DBKeys X6040, X6041, G6149, G6152 
X6040_last30s=last30s[,"X6040"] 
X6040_last30s[which(X6040_last30s==2017)]=NA 
valyrs=sort(X6040_last30s) 
X6040_last30s=c(rep(NA,numys-length(valyrs)),valyrs) 
last30s[,"X6040"]=X6040_last30s 
 
X6041_last30s=last30s[,"X6041"] 
X6041_last30s[which(X6041_last30s==2017)]=NA 
valyrs=sort(X6041_last30s) 
X6041_last30s=c(rep(NA,numys-length(valyrs)),valyrs) 
last30s[,"X6041"]=X6041_last30s 
 
G6149_last30s=last30s[,"G6149"] 
G6149_last30s[which(G6149_last30s==2017)]=NA 
valyrs=sort(G6149_last30s) 
G6149_last30s=c(rep(NA,numys-length(valyrs)),valyrs) 
last30s[,"G6149"]=G6149_last30s 
 
G6152_last30s=last30s[,"G6152"] 
G6152_last30s[which(G6152_last30s==2017)]=NA 
valyrs=sort(G6152_last30s) 
G6152_last30s=c(rep(NA,numys-length(valyrs)),valyrs) 
last30s[,"G6152"]=G6152_last30s 
 
#Make levelplots of data availability 
startyr=min(uyrs) 
endyr=max(uyrs) 
rngst=1:nstas 
png(paste("SFWMD_AMS_data_avail_stas_",min(rngst),"_to_",max(rngst),".png",sep="")) 
plot.new() 
print(levelplot(amsoutin[,rngst],xlab="Year",ylab="station",cuts=1,at=c(0,0.5,1),color
key=list(at=c(0,0.5,1),tick.number=1), 
          scales=list(x=list(at=seq(startyr,endyr,10)-
startyr+1,labels=seq(startyr,endyr,10),rot=90),y=list(cex=1)), 
          main=(paste("SFWMD AMS data availability by year for daily 
durations",sep="")), 
          aspect="xy",panel = function(...){ 
            panel.levelplot(...) 
            panel.abline(h=seq(rngst)-0.5,col="grey") 
            panel.abline(v=seq(startyr,endyr,10)-startyr+1,col="grey") 
            #panel.abline(v=c(1950,2018)-startyr+1,col="black") 
         panel.points(as.vector((last30s[,rngst])-startyr+1),rep(rngst-
min(rngst)+1,each=numys),pch='*') 
          })) 
dev.off() 
 
#Extract last 20-30 years of VALID AMS data only 
sfwmd_amsunc30=array(dim=c(ndurs,numys,nstas)) 
dimnames(sfwmd_amsunc30)[[1]]=paste(sdursdays,"-day",sep="") 
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dimnames(sfwmd_amsunc30)[[2]]=1:numys 
dimnames(sfwmd_amsunc30)[[3]]=colnames(SFWMDrain[seq(4,ncol(SFWMDrain)-1,2)]) 
sfwmd_amscon30=array(dim=c(ndurs,numys,nstas)) 
dimnames(sfwmd_amscon30)[[1]]=paste(sdursdays,"-day",sep="") 
dimnames(sfwmd_amscon30)[[2]]=1:numys 
dimnames(sfwmd_amscon30)[[3]]=colnames(SFWMDrain[seq(4,ncol(SFWMDrain)-1,2)]) 
 
for (s in 1:nstas) { 
  inds=match(last30s[,s],colnames(amsunc)) 
  sfwmd_amsunc30[,(1:length(inds)),s]=amsunc[,inds,s] 
  sfwmd_amscon30[,(1:length(inds)),s]=ams2[,inds,s] 
} 
 
#Number of valid AMS values per station: 
(colSums(!is.na(last30s),na.rm=TRUE)) 
#Eliminate the first station (5815) when cutyr=2019 since it only has 1 valid AMS value 
#sfwmd_amscon30=sfwmd_amscon30[,,-1] 
#sfwmd_amsunc30=sfwmd_amsunc30[,,-1] 
#last30s=last30s[,-1] 
#When cutyr=2005, only keep stations with more than 20 years of data available 
#This is more generic 
stations_to_keep=which(colSums(!is.na(last30s))>=20) 
#Also remove station G6152 (NP-P33) 
stations_to_keep=stations_to_keep[- which(names(stations_to_keep)=="G6152")] 
sfwmd_amscon30=sfwmd_amscon30[,,stations_to_keep] 
sfwmd_amsunc30=sfwmd_amsunc30[,,stations_to_keep] 
last30s=last30s[,stations_to_keep] 
 
save(sfwmd_amscon30,sfwmd_amsunc30,last30s,file=paste("SFWMD_daily_AMS_before_",cutyr,
".RData",sep="")) 
 
#Note: grubbs.flag test was done manually for all stations and all durations 
#The following years came out as outliers at many stations and therefore, 
#the corresponding values were not considered outliers: 1997, 1999, 2017 
#Identified outliers in 1998 and 2000 were compared against values at  
#nearby stations from the SFWMD and NOAA and deemed reasonable 
#2005 outlier at station 19 (DBKey H2005) also observed at NOAA station 08-8780 
#and corroborated from SFWMD NEXRAD map. 
#1959 outlier at DBKey 6310 is a true outlier since it is accumulation of 
#7 days of data; therefore, it is removed earlier in the script 
 
 
 
############################################################################### 
#Compute AMS from SFWMD breakpoint rainfall data 
############################################################################### 
#setwd(paste(datadir,"/SFWMD/",sep="")) 
 
#a=read.table("breakptRF.txt",quote="",stringsAsFactors=FALSE) 
#stas=unique(a[,1]) 
#a$station=a$V1 
#a$datetime=as.POSIXct(paste(a[,2]," 
",str_pad(a[,3],4,side="left",pad="0"),sep=""),tryFormats=c("%Y%m%d %H%M"),tz="EST") 
#a$times=strftime(a$datetime,format="%H:%M",tz="EST") 
#a$dates=strftime(a$datetime,format="%m/%d/%Y",tz="EST") 
#a$value=as.numeric(gsub("[^0-9.-]","",a[,4])) 
#a$qual=gsub("[0-9.-]","",a[,4]) 
#a=a[,c("station","datetime","times","dates","value","qual")] 
 
#for (s in stas) { 
#  sdata=a[a$station==s,] 
#  sdata[which(sdata$qual %in% c("N","M","?","U")),"value"]=NA 
#  sdata=sdata[(2:dim(sdata)[1]),] 
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#  df=data.frame(datetime=sdata$datetime,value=sdata$value) 
#  z=read.zoo(df,tz="EST") 
#  hrs=trunc(time(z),"hours") 
#  dt=data.table(value=sdata$value,hrs=hrs) 
#  hrsum=dt[, sum(value), keyby=hrs] 
#  rng=range(hrs) 
#  tt=seq(trunc(rng[1],"days"),trunc(rng[2]+24*60*60,"days"),by="hours") 
#  tt=tt[!(format(tt) %in% format(hrs))] 
#  eee=zoo(hrsum$V1,hrsum$hrs) 
#  hrsum2=merge(eee,zoo(,tt),fill=0) 
   
  #sdata[which(is.na(sdata$value)),"value"]=-901 
  
#write.table(sdata,file=paste(s,"_breakpoint.csv",sep=""),sep=",",row.names=FALSE,quot
e=FALSE) 
#} 
 
 
############################################################################### 
#Compute AMS from SFWMD hourly rainfall data 
############################################################################### 
#Note: Don't do this part when cutyr=2005 since no station will have enough data left 
 
setwd(paste(datadir,"/SFWMD/",sep="")) 
fils=list.files(".","*hourly.dat$") 
 
snames=vector(length=length(fils),mosde="character") 
sfwmd_hrlysta_keep=vector(length=length(fils),mode="integer") 
 
#Overall range of years 
minyr=1991 
maxyr=2019 
rngyrs=seq(minyr,maxyr) 
 
#Create large dataframe to store data for all stations 
sfwmd_hrlydata=data.frame(datehrs=seq(from=as.POSIXct("1991-1-1 0:00", tz="EST"), 
     to=as.POSIXct("2019-12-31 23:00", tz="EST"), 
     by="hour") ) 
 
#Determine whether there's enough data for a "reasonable" AMS calculation for that year 
sfhamsoutin=array(dim=c(length(rngyrs),length(fils))) 
sfhamsoutin[,]=0 
   
s=0 
for (fil in fils) { 
  s=s+1 
  
hrlydata=read.fortran(fil,format=c("A10","13X","A3","2X","A12","1X","A12","4X","F6","1
X","A1","8X","F6"), 
                            
col.names=c("staid","stat","sdate","edate","rain","qual","perc")) 
  hrlydata[,1]=gsub(" ", "", hrlydata[1,1], fixed = TRUE) 
  hrlydata$sdate=as.POSIXct(hrlydata$sdate,tryFormats=c("%Y%m%d%H%M"),tz="EST") 
  hrlydata$edate=as.POSIXct(hrlydata$edate,tryFormats=c("%Y%m%d%H%M"),tz="EST") 
  #For any M if perc > 10%, change the value to NA 
  hrlydata[which(hrlydata[,"perc"]>10),"rain"]=NA 
   
  #Add year, month, day 
  hrlydata$Year=as.POSIXlt(hrlydata$sdate)$year+1900 
  hrlydata$Month=as.POSIXlt(hrlydata$sdate)$mo+1 
  hrlydata$Day=as.POSIXlt(hrlydata$sdate)$mday 
   
  #Save station name 
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  snames[s]=hrlydata[1,1]   
     
  #Save station data 
  sfwmd_hrlydata[,s+1]=NA 
  colnames(sfwmd_hrlydata)[s+1]=snames[s] 
  
sfwmd_hrlydata[which(sfwmd_hrlydata$datehrs%in%hrlydata$sdate),snames[s]]=hrlydata$rai
n 
 
   
  #Based on following flowchart in Fig. 4.3.1 of NOAA Atlas 14 vol. 9 (p.11) 
  #SFWMD hourly does not have accumulated data, so flowchart is simplified 
  #Percentage missing for entire year 
  uyrs=unique(hrlydata$Year) 
  ndays=365+1*leap_year(uyrs) 
  sfwmdhavail=tapply(hrlydata$rain,list('yrs'=hrlydata$Year),function(x) 
sum(!is.na(x))) 
  sfwmdhmiss=100*(ndays*24-sfwmdhavail)/(ndays*24) 
 
  #Percentage missing for wet season 
  #Wet season defined as May-Oct for sub-daily durations 
  hwetseas=seq(5,10,1) 
  hwetseasd=184 
  
sfwmd_whavail=tapply(hrlydata$Year,list('yrs'=hrlydata$Year,'mos'=hrlydata$Month),func
tion(x) sum(!is.na(x))) 
  sfwmd_whmiss=100*(hwetseasd*24-
rowSums(sfwmd_whavail[,hwetseas],na.rm=TRUE))/(hwetseasd*24) 
  #sum(sfwmd_whmiss<=20) 
 
  #Wet season defined as Mar-Oct for daily durations 
  dwetseas=seq(3,10,1) 
  dwetseasd=245 
  
sfwmd_wdavail=tapply(hrlydata$Year,list('yrs'=hrlydata$Year,'mos'=hrlydata$Month),func
tion(x) sum(!is.na(x))) 
  sfwmd_wdmiss=100*(dwetseasd*24-
rowSums(sfwmd_wdavail[,dwetseas],na.rm=TRUE))/(dwetseasd*24) 
  #sum(sfwmd_wdmiss<=20) 
   
  #nvalidyrs=sum((sfwmdhmiss<=20)*(sfwmd_whmiss<=20)*(sfwmd_wdmiss<=20)) 
  #Determine whether there's enough data for a "reasonable" AMS calculation for that 
year 
  for (iy in rngyrs) { 
    if (iy%in%names(sfwmdhmiss)) { 
   if(sfwmdhmiss[names(sfwmdhmiss)==iy]<=20 & 
sfwmd_whmiss[names(sfwmd_whmiss)==iy]<=20 & sfwmd_wdmiss[names(sfwmd_wdmiss)==iy] <=20) 
{ 
     sfhamsoutin[(iy-min(rngyrs)+1),s]=1 
   } 
    } 
  } 
   
  nvalidyrs=sum(sfhamsoutin[,s]) 
   
  if (nvalidyrs>=20) { 
   sfwmd_hrlysta_keep[s]=1 
   print(paste("Keep station: ",snames[s],", # valid years: ",nvalidyrs,sep="")) 
   } 
   else { 
      sfwmd_hrlysta_keep[s]=0 
   print(paste("Remove station: ",snames[s],", # valid years: ",nvalidyrs,sep="")) 
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  } 
 
} 
 
dimnames(sfhamsoutin)[[1]]=rngyrs 
dimnames(sfhamsoutin)[[2]]=snames 
 
#Get last 30 years of data for each station 
numys=30 
last30sh=apply(sfhamsoutin,2,function(x) {nvalyrs=min(numys,sum(x==1));c(rep(NA,numys-
nvalyrs),as.numeric(tail(names(x)[x==1],nvalyrs)))}) 
 
#Make levelplots of data availability 
startyr=minyr 
endyr=maxyr 
rngst=1:length(fils) 
png(paste("SFWMD_hourly_AMS_data_avail_stas_",min(rngst),"_to_",max(rngst),".png",sep=
"")) 
plot.new() 
print(levelplot(sfhamsoutin[,rngst],xlab="Year",ylab="station",cuts=1,at=c(0,0.5,1),co
lorkey=list(at=c(0,0.5,1),tick.number=1), 
          scales=list(x=list(at=seq(startyr,endyr,10)-
startyr+1,labels=seq(minyr,endyr,10),rot=90),y=list(cex=1)), 
          main=(paste("SFWMD hourly AMS data availability by year",sep="")), 
          aspect="xy",panel = function(...){ 
            panel.levelplot(...) 
            panel.abline(h=seq(rngst)-0.5,col="grey") 
            panel.abline(v=seq(startyr,endyr,10)-startyr+1,col="grey") 
            #panel.abline(v=c(1950,2018)-startyr+1,col="black") 
         panel.points(as.vector((last30sh[,rngst])-startyr+1),rep(rngst-
min(rngst)+1,each=numys),pch='*') 
          })) 
dev.off() 
 
#Only keep stations with more than 20 years of valid AMS data 
stations_to_keep=which(apply(sfhamsoutin,2,sum)>=20) 
#Exclude S18C-R and S20F-R since they're already in ATLAS14 
stations_to_keep=stations_to_keep[-which(names(stations_to_keep)%in%c("S18C-R","S20F-
R"))] 
nstas=length(stations_to_keep) 
sfwmd_hrlydata=sfwmd_hrlydata[,c(1,stations_to_keep+1)] #1 is offset since r3wasd has 
date, time, date.time in cols 1-3 
sfhamsoutin=sfhamsoutin[,stations_to_keep] 
last30sh=last30sh[,which(colnames(last30sh)%in%names(stations_to_keep))] 
 
#Get constrained AMS 
shdurs=c(1,2,3,6,12,24,48,72,96,168) #durations of interest in hours 
shdursnames=c("1-hr","2-hr","3-hr","6-hr","12-hr","1-day","2-day","3-day","4-day","7-
day") 
ndurs=length(shdurs) 
ams2h=array(dim=c(ndurs,length(rngyrs),nstas)) 
for (u in 1:ndurs) { 
  print(paste("u = ",u,sep="")) 
  k=shdurs[u] 
  for (s in 1:nstas) { 
    print(paste("s = ",s,sep="")) 
    
rs=tapply(sfwmd_hrlydata[,(s+1)],list('yrs'=(as.POSIXlt(sfwmd_hrlydata$datehrs)$year+1
900)),function(x,k) c(rollsum(x,k),rep(NA,k-1)),k=k)  
    ams2h[u,,s]=unlist(lapply(rs,function(x) max(as.numeric(x),na.rm=TRUE)))  
    rm(rs)  
  } 
} 
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#Exclude years with not enough values for accurate AMS 
exclind=which(sfhamsoutin==0,arr.ind=TRUE) 
ams2h[cbind(rep(1:ndurs,each=dim(exclind)[1]),rep(exclind[,1],ndurs),rep(exclind[,2],n
durs))]=NA 
 
#Check that for a certain year the AMS totals for n days are greater than the totals for 
(n-1) days 
#If not, set the total for n days to the total for (n-1) days 
for (s in 1:nstas) { 
  for (u in 1:(ndurs-1)) { 
    ams2h[(u+1),,s]=pmax(ams2h[u,,s],ams2h[(u+1),,s],na.rm=TRUE) 
  } 
} 
 
#Apply factors to go from constrained to constrained observations 
#no corrections applied beyond 12 hours 
corrfac=c(1.09,1.04,1.02,1.01,1.00,1.00,1.00,1.00,1.00,1.00)  
amsunch=array(dim=c(ndurs,length(rngyrs),nstas)) 
for (u in 1:ndurs) { 
  amsunch[u,,]=ams2h[u,,]*corrfac[u] 
} 
 
#Again, check that for a certain year the AMS totals for n days are greater than the 
totals for (n-1) days 
#If not, set the total for n days to the total for (n-1) days 
for (s in 1:nstas) { 
  for (u in 1:(ndurs-1)) { 
    amsunch[(u+1),,s]=pmax(amsunch[u,,s],amsunch[(u+1),,s],na.rm=TRUE) 
  } 
} 
 
dimnames(ams2h)[[1]]=dimnames(amsunch)[[1]]=shdursnames 
dimnames(ams2h)[[2]]=dimnames(amsunch)[[2]]=rngyrs 
dimnames(ams2h)[[3]]=dimnames(amsunch)[[3]]=names(stations_to_keep) 
 
#Extract last 20-30 years of VALID AMS data only 
sfwmdh_amsunc30=array(dim=c(ndurs,numys,length(stations_to_keep))) 
sfwmdh_amscon30=array(dim=c(ndurs,numys,length(stations_to_keep))) 
dimnames(sfwmdh_amsunc30)[[1]]=dimnames(sfwmdh_amscon30)[[1]]=shdursnames 
dimnames(sfwmdh_amsunc30)[[2]]=dimnames(sfwmdh_amscon30)[[2]]=1:numys 
dimnames(sfwmdh_amsunc30)[[3]]=dimnames(sfwmdh_amscon30)[[3]]=dimnames(amsunch)[[3]] 
 
 
for (s in 1:nstas) { 
  inds=match(last30sh[,s],colnames(amsunch)) 
  sfwmdh_amsunc30[,(1:length(inds)),s]=amsunch[,inds,s] 
  sfwmdh_amscon30[,(1:length(inds)),s]=ams2h[,inds,s] 
} 
 
#Number of valid AMS values per station: 
(colSums(!is.na(last30sh),na.rm=TRUE)) 
 
save(sfwmdh_amscon30,sfwmdh_amsunc30,last30sh,file=paste("SFWMD_hrly_AMS_before_",cuty
r,".RData",sep="")) 
 
 
#Note: grubbs.flag test was done manually for all stations and all durations 
#The following years came out as outliers at many stations and therefore, 
#the corresponding values were not considered outliers:  1999 (H. Irene),  
#2000 (TS Leslie), 2005 (H Katrina). 
#Identified outliers not associated to a named storm were compared against values at  
#nearby stations from SFWMD and NOAA and corroborated from SFWMD NEXRAD map. 
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##################################################################################### 
#Read in MDWASD data 
##################################################################################### 
# setwd(paste(datadir,"/MDC/",sep="")) 
 
# WASDrain=read.csv("MDCRainGaugeHourlyall.csv",stringsAsFactors=FALSE) 
# WASDrain$Reading.Date=as.Date(WASDrain$Reading.Date,"%m/%d/%Y") 
# 
r1wasd=reshape(WASDrain,idvar=c("Station.Id","Reading.Date"),varying=list(3:26),v.name
s="Rain",direction="long") 
# 
r2wasd=reshape(r1wasd,v.names="Rain",idvar=c("Reading.Date","time"),timevar="Station.I
d",direction="wide") 
# r2wasd=r2wasd[order(r2wasd$Reading.Date),] 
# r2wasd=cbind(r2wasd[,1:2],as.POSIXct(paste(r2wasd[,1]," ",(r2wasd[,2]-
1),":00",sep=""),tz="EST"),r2wasd[,3:ncol(r2wasd)]) 
# colnames(r2wasd)[3]="Date.time" 
 
# #Make negative values equal to NA (missing) 
# r2wasd[,c(4:ncol(r2wasd))][r2wasd[,(4:ncol(r2wasd))] < 0] = NA 
 
# #Initially make hourly values greater than 1-in-1000 hourly rainfall for NOAA 
# #ATLAS14 stations in MDC (8.5 in/hr) equal to NA 
# r2wasd[,c(4:ncol(r2wasd))][r2wasd[,(4:ncol(r2wasd))] > 8.5] = NA 
 
# #Fill-in missing dates 
# WASDdates=seq(as.POSIXct("1995-01-01 0:00",tz="EST"),as.POSIXct("2019-03-28 
23:00",tz="EST"),"hours") 
 
# r3wasd=as.data.frame(array(dim=c(length(WASDdates),ncol(r2wasd)))) 
# dimnames(r3wasd)[[2]]=dimnames(r2wasd)[[2]] 
# r3wasd[,1]=as.Date(WASDdates,tz="EST") 
# r3wasd[,2]=as.POSIXlt(WASDdates)$hour 
# r3wasd[,3]=WASDdates 
# inds=which(r3wasd$Date.time %in% r2wasd$Date.time) 
 
# r3wasd[inds,c(4:ncol(r2wasd))]=r2wasd[,(4:ncol(r2wasd))] 
 
# #Get daily values and if a daily total exceeds the 1-in-1000 daily rainfall 
# #for NOAA ATLAS14 stations in MDC (26 in/day), then set it to NA 
# wasd_daily=apply(r3wasd[,(4:ncol(r3wasd))],2,function(x) 
tapply(x,list('date'=r3wasd$Reading.Date), 
                 # function(x) if (sum(!is.na(x)) == 0) (NA) else (sum(x,na.rm=TRUE)) ) 
) 
# wasd_daily[wasd_daily > 26] = NA 
# WASDdays=unique(sort(as.Date(WASDdates,tz="EST"))) 
 
# #Now remove stations with all daily values equal to NA from both wasd_daily and r3wasd 
# stas_to_remove = -c(which(apply(wasd_daily,2,function(x) sum(!is.na(x))) == 0)) 
# wasd_daily=wasd_daily[,stas_to_remove] 
# r3wasd=r3wasd[,stas_to_remove-3] #-3 is offset since r3wasd has date, time, date.time 
in cols 1-3 
 
# #Remove all hourly values for days when daily is NA 
# for (i in 1:ncol(wasd_daily)) { 
  # #WASDdays[which(is.na(wasd_daily[,i]))] 
  # print(paste("station #",i,",station name:",colnames(wasd_daily)[i])) 
  # r3wasd[r3wasd[,1]%in%WASDdays[which(is.na(wasd_daily[,i]))],(i+3)]=NA 
# } 
 
 
# yrs=as.numeric(format(r3wasd$Reading.Date,"%Y")) 
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# mos=as.numeric(format(r3wasd$Reading.Date,"%m")) 
# uyrs=unique(yrs) 
# ndays=365+1*leap_year(unique(yrs)) 
 
# #Based on following flowchart in Fig. 4.3.1 of NOAA Atlas 14 vol. 9 (p.11) 
# #MDCWASD does not have accumulated data, so flowchart is simplified 
# #Percentage missing for entire year 
# wasdmiss=apply(r3wasd[,(4:ncol(r3wasd))],2,function(x) 
tapply(x,list('yrs'=yrs),function(x) sum(is.na(x)))) 
# wasdmiss=100*wasdmiss/(ndays*24) 
# #apply(wasdmiss,2,function(x) sum(x<=20)) 
 
# #Additional checks of zeros since it seems like a lot of missing values are set to 0 
in WASD dataset 
# wasdzero=apply(r3wasd[,(4:ncol(r3wasd))],2,function(x) 
tapply(x,list('yrs'=yrs),function(x) sum(x==0,na.rm=TRUE))) 
# wasdzero=100*wasdzero/(ndays*24) 
# wasdzeromiss=apply(r3wasd[,(4:ncol(r3wasd))],2,function(x) 
tapply(x,list('yrs'=yrs),function(x) sum(x==0,na.rm=TRUE)+sum(is.na(x)))) 
# wasdzeromiss=100*wasdzeromiss/(ndays*24) 
 
# #Percentage missing for wet season 
# #Wet season defined as May-Oct for sub-daily durations 
# hwetseas=seq(5,10,1) 
# hwetseasd=184 
# wasd_whmiss=lapply(r3wasd[,(4:ncol(r3wasd))],function(x) 
tapply(x,list('yrs'=yrs,'mos'=mos),function(x) sum(is.na(x)))) 
# wasd_whmiss=simplify2array(lapply(wasd_whmiss,function(x) 
100*rowSums(x[,hwetseas],na.rm=TRUE)/(hwetseasd*24))) 
# #apply(wasd_whmiss,2,function(x) sum(x<=20)) 
 
# #Wet season defined as Mar-Oct for daily durations 
# dwetseas=seq(3,10,1) 
# dwetseasd=245 
# wasd_wdmiss=lapply(r3wasd[,(4:ncol(r3wasd))],function(x) 
tapply(x,list('yrs'=yrs,'mos'=mos),function(x) sum(is.na(x)))) 
# wasd_wdmiss=simplify2array(lapply(wasd_wdmiss,function(x) 
100*rowSums(x[,dwetseas],na.rm=TRUE)/(dwetseasd*24))) 
# #apply(wasd_wdmiss,2,function(x) sum(x<=20)) 
 
# #Determine whether there's enough data for a "reasonable" AMS calculation for that 
year 
# wamsoutin=array(dim=dim(wasdmiss)) 
# wamsoutin[,]=0 
# dimnames(wamsoutin)=dimnames(wasdmiss) 
# for (iy in 1:nrow(wasdmiss)) { 
  # for (s in 1:ncol(wasdmiss)) { 
    # if (wasdmiss[iy,s]<=20 & wasd_whmiss[iy,s]<=20 & wasd_wdmiss[iy,s] <=20 & 
wasdzeromiss[iy,s]<100) { 
   # wamsoutin[iy,s]=1 
 # } 
  # } 
# } 
 
 
# #6 stations to keep so far 
# #stations_to_keep=which(apply(wasdmiss,2,function(x) sum(x<=20)) >= 20 & 
apply(wasd_whmiss,2,function(x) sum(x<=20)) >= 20 &  
# #      apply(wasd_wdmiss,2,function(x) sum(x<=20)) >= 20) 
# stations_to_keep=which(apply(wamsoutin,2,sum)>=20) 
# r3wasd=r3wasd[,c(1:3,stations_to_keep+3)] #3 is offset since r3wasd has date, time, 
date.time in cols 1-3 
# wasd_daily=wasd_daily[,stations_to_keep] 
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# wamsoutin=wamsoutin[,stations_to_keep] 
 
# #Get constrained AMS 
# wdurs=c(1,2,3,6,12,24,48,72,96,168) #durations of interest in hours 
# wdursnames=c("1-hr","2-hr","3-hr","6-hr","12-hr","1-day","2-day","3-day","4-day","7-
day") 
# wasd_amscon=array(dim=c(length(wdurs),length(uyrs),length(stations_to_keep))) 
# for (u in 1:length(wdurs)) { 
  # print(paste("u = ",u,sep="")) 
  # k=wdurs[u] 
  # for (s in 1:length(stations_to_keep)) { 
    # print(paste("s = ",s,sep="")) 
    # rs=tapply(r3wasd[,(s+3)],list('yrs'=yrs),function(x,k) c(rollsum(x,k),rep(NA,k-
1)),k=k)  
    # wasd_amscon[u,,s]=unlist(lapply(rs,function(x) max(as.numeric(x),na.rm=TRUE)))  
    # rm(rs)  
  # } 
# } 
 
# #Exclude years with not enough values for accurate AMS 
# exclind=which(wamsoutin==0,arr.ind=TRUE) 
# 
wasd_amscon[cbind(rep(1:length(wdurs),each=dim(exclind)[1]),rep(exclind[,1],length(wdu
rs)),rep(exclind[,2],length(wdurs)))]=NA 
 
# #Get percentage of daily totals equal to zero 
# dyrs=format(WASDdays,"%Y") 
# wasddzero=apply(wasd_daily,2,function(x) tapply(x,list('dyrs'=dyrs),function(x) 
sum(x==0,na.rm=TRUE))) 
# wasddzero=100*wasddzero/(ndays) 
 
# #Exclude years with more than 90% of days with zero rainfall 
# exclind=which(wasddzero>=90,arr.ind=TRUE) 
# 
wasd_amscon[cbind(rep(1:length(wdurs),each=dim(exclind)[1]),rep(exclind[,1],length(wdu
rs)),rep(exclind[,2],length(wdurs)))]=NA 
 
 
# #Check that for a certain year the AMS totals for n days are greater than the totals 
for (n-1) days 
# #If not, set the total for n days to the total for (n-1) days 
# for (s in 1:length(stations_to_keep)) { 
  # for (u in 1:(length(wdurs)-1)) { 
    # wasd_amscon[(u+1),,s]=pmax(wasd_amscon[u,,s],wasd_amscon[(u+1),,s],na.rm=TRUE) 
  # } 
# } 
 
# #Apply factors to go from constrained to constrained observations 
# #no corrections applied beyond 12 hours 
# corrfac=c(1.09,1.04,1.02,1.01,1.00,1.00,1.00,1.00,1.00,1.00)  
# wasd_amsunc=array(dim=c(length(wdurs),length(uyrs),length(stations_to_keep))) 
# for (u in 1:(length(wdurs))) { 
  # wasd_amsunc[u,,]=wasd_amscon[u,,]*corrfac[u] 
# } 
 
# #Again, check that for a certain year the AMS totals for n days are greater than the 
totals for (n-1) days 
# #If not, set the total for n days to the total for (n-1) days 
# for (s in 1:length(stations_to_keep)) { 
  # for (u in 1:(length(wdurs)-1)) { 
    # wasd_amsunc[(u+1),,s]=pmax(wasd_amsunc[u,,s],wasd_amsunc[(u+1),,s],na.rm=TRUE) 
  # } 
# } 
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# dimnames(wasd_amscon)[[1]]=dimnames(wasd_amsunc)[[1]]=wdursnames 
# dimnames(wasd_amscon)[[2]]=dimnames(wasd_amsunc)[[2]]=uyrs 
# dimnames(wasd_amscon)[[3]]=dimnames(wasd_amsunc)[[3]]=names(stations_to_keep) 
 
# #Calculated AMS data for the remaining 6 stations after QA/QC is highly suspect 
# #due to low totals for some years for large durations and repeated totals 
# #across many durations, so MDWASD data will be excluded from analysis 
# save(wasd_amscon,wasd_amsunc,file="WASD_AMS.RData") 
 
############################################################################ 
#Read in NOAA ATLAS 14 AMS data for stations in and around MDC 
############################################################################ 
durs=c("5-min","10-min","15-min","30-min","60-min","2-hr","3-hr","6-hr","12-hr", 
       "24-hr","2-day","3-day","4-day","7-day","10-day","20-day","30-day","45-
day","60-day"); 
durint=5:14 #durations of interest 
subdurs=durs[durint] 
startyr=1840 
endyr=2012 
nyrs=endyr-startyr+1 
allyrs=startyr:endyr 
ndurs=length(subdurs)  
setwd("Z:/miriza/Work/FIU/FL_Building_Code/Data/Rainfall/ATLAS14/AMS") 
 
load(file="FL_Atlas14_AMScorr.RData",verbose=TRUE) 
#AMS4 (already corrected to unconstrained), AMSDATE, staid2 
 
MDC_ATLAS14=read.table("MDC_ATLAS14.txt",stringsAsFactors = FALSE) 
#find index of AMS4 corresponding to each station listed in MDC_ATLAS14 
listids=match(MDC_ATLAS14[,1],staid2) 
 
# Plot AMS data availability at each station for each durations 
# for durations 60-min to 3-day (#5 to #12) 
av2=array(dim=c(nyrs,length(listids),length(durs[durint]))) 
dimnames(av2)[[1]]=allyrs 
dimnames(av2)[[2]]=staid2[listids] 
dimnames(av2)[[3]]=durs[durint] 
av2[,,]=0 
#Get last 30 years of data 
#Use the same last 30 years for all stations  
last30=array(dim=c(numys,length(listids))) 
#last30=array(dim=c(length(subdurs),numys,length(listids))) 
#dimnames(last30)[[1]]=durs[durint] 
#dimnames(last30)[[2]]=1:numys 
#dimnames(last30)[[3]]=staid2[listids] 
#id=0 
#for (d in subdurs) { 
#  id=id+1 
#  # av2 has 0 where no AMS data is available and 1 if AMS data is available 
#  for (i in 1:length(listids)){ 
#    sdata=AMS4[[listids[i]]] 
#    if (any(colnames(sdata)==d)) { 
#      av2[as.numeric(rownames(sdata))-startyr+1,i,id]=1*!is.na(sdata[,d]) 
#   nvalyrs=min(numys,sum(!is.na(sdata[,d]))) 
#   filly=numys-nvalyrs 
#   
last30[id,,i]=c(rep(NA,filly),tail(as.numeric(rownames(sdata)[!is.na(sdata[,d])]),nval
yrs)) 
# } 
#  } 
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#  m=1 
#  rngst=1:length(listids) 
#  
png(paste("Atlas14_AMS_data_avail_stas_",min(rngst),"_to_",max(rngst),"_",d,".png",sep
="")) 
#  plot.new() 
#  
print(levelplot(av2[,rngst,d],xlab="Year",ylab="station",cuts=1,at=c(0,0.5,1),colorkey
=list(at=c(0,0.5,1),tick.number=1), 
#            scales=list(x=list(at=seq(startyr,endyr,10)-
startyr+1,labels=seq(startyr,endyr,10),rot=90),y=list(cex=1)), 
#            main=(paste("Atlas 14 AMS data availability by year for duration ",d,sep="")), 
#            aspect="xy",panel = function(...){ 
#              panel.levelplot(...) 
#              panel.abline(h=seq(rngst)-0.5,col="grey") 
#              panel.abline(v=seq(startyr,endyr,10)-startyr+1,col="grey") 
#              panel.abline(v=c(1950,2012)-startyr+1,col="black") 
#     panel.points(as.vector((last30[d,,rngst])-startyr+1),rep(rngst-
min(rngst)+1,each=numys),pch='*') 
#            })) 
#  dev.off() 
#} 
 
for (i in 1:length(listids)) { 
  sdata=AMS4[[listids[i]]] 
  sdata=sdata[as.numeric(rownames(sdata))<=cutyr,] 
  sumd=rowSums(sdata[,which(colnames(sdata)%in%subdurs)]) 
  nvalyrs=min(numys,sum(!is.na(sumd))) 
  print(paste("station=",MDC_ATLAS14[i,1],", nvalyrs=",nvalyrs)) 
  filly=numys-nvalyrs 
  last30[,i]=c(rep(NA,filly),tail(as.numeric(names(sumd)[!is.na(sumd)]),nvalyrs)) 
} 
 
dimnames(last30)[[1]]=1:numys 
dimnames(last30)[[2]]=staid2[listids] 
 
id=0 
for (d in subdurs) { 
  id=id+1 
  # av2 has 0 where no AMS data is available and 1 if AMS data is available 
  for (i in 1:length(listids)){ 
    sdata=AMS4[[listids[i]]] 
    if (any(colnames(sdata)==d)) { 
      av2[as.numeric(rownames(sdata))-startyr+1,i,id]=1*!is.na(sdata[,d]) 
    } 
  } 
 
  last30d=last30 
  if (any(colSums(av2[,,dimnames(av2)[[3]]==d])==0)) { 
    last30d[,which(colSums(av2[,,dimnames(av2)[[3]]==d])==0)]=NA 
  } 
  m=1 
  rngst=1:length(listids) 
  
png(paste("Atlas14_AMS_data_avail_stas_",min(rngst),"_to_",max(rngst),"_",d,".png",sep
="")) 
  plot.new() 
  
print(levelplot(av2[,rngst,d],xlab="Year",ylab="station",cuts=1,at=c(0,0.5,1),colorkey
=list(at=c(0,0.5,1),tick.number=1), 
            scales=list(x=list(at=seq(startyr,endyr,10)-
startyr+1,labels=seq(startyr,endyr,10),rot=90),y=list(cex=1)), 
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            main=(paste("Atlas 14 AMS data availability by year for duration 
",d,sep="")), 
            aspect="xy",panel = function(...){ 
              panel.levelplot(...) 
              panel.abline(h=seq(rngst)-0.5,col="grey") 
              panel.abline(v=seq(startyr,endyr,10)-startyr+1,col="grey") 
              panel.abline(v=c(1950,2012)-startyr+1,col="black") 
     panel.points(as.vector((last30d[,rngst])-startyr+1),rep(rngst-
min(rngst)+1,each=numys),pch='*') 
            })) 
  dev.off() 
}   
   
 
 
#Extract last 20-30 years of VALID AMS data only at NOAA Atlas 14 stations 
atlas14_amsunc30=array(dim=c(length(subdurs),numys,length(listids))) 
#id=0 
#for (d in subdurs) { 
#  id=id+1 
#  # av2 has 0 where no AMS data is available and 1 if AMS data is available 
#  for (i in 1:length(listids)){ 
#    sdata=AMS4[[listids[i]]] 
#    cind=match(d,colnames(sdata)) 
#    if (!is.na(cind)) { 
#    rinds=match(last30[id,,i],as.numeric(rownames(sdata))) 
#    atlas14_amsunc30[id,((numys-length(rinds)+1):numys),i]=sdata[rinds,cind] 
# } 
#  } 
#} 
 
 
# av2 has 0 where no AMS data is available and 1 if AMS data is available 
id=0 
for (d in subdurs) { 
  id=id+1 
  for (i in 1:length(listids)){ 
    sdata=AMS4[[listids[i]]] 
    cind=match(d,colnames(sdata)) 
    if (!is.na(cind)) { 
      rinds=match(last30[,i],as.numeric(rownames(sdata))) 
      atlas14_amsunc30[id,((30-length(rinds)+1):numys),i]=sdata[rinds,cind] 
    } 
  } 
} 
 
#Check that for a certain year the AMS totals for a duration are greater than the totals  
#for the previous shorter duration 
#If not, set the total for the duration to the total for the previous shorter duration 
for (i in 1:length(listids)) { 
  for (u in 1:(ndurs-1)) { 
    
atlas14_amsunc30[(u+1),,i]=pmax(atlas14_amsunc30[u,,i],atlas14_amsunc30[(u+1),,i],na.r
m=TRUE) 
  } 
} 
 
stations_to_keep=which(colSums(!is.na(last30))>=20) 
atlas14_amsunc30=atlas14_amsunc30[,,stations_to_keep] 
last30=last30[,stations_to_keep] 
 
dimnames(atlas14_amsunc30)[[1]]=durs[durint] 
dimnames(atlas14_amsunc30)[[2]]=dimnames(last30)[[1]] 
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dimnames(atlas14_amsunc30)[[3]]=dimnames(last30)[[2]]   
 
 
  
############################################################################### 
#Compute AMS from hourly FAWN data at station 440 (Homestead) 
#To do: Check if this is the same as NOAA's 08-4091 (Homestead Exp. Stn.) 
############################################################################### 
#setwd(paste(datadir,"/FAWN",sep="")) 
#write("Data for FAWN station 440",file="data440.csv") 
#for (y in 1997:2018){ 
#  fils=list.files(paste("./",y,"_hourly/",sep="")) 
#  for (fil in fils) { 
#    eee=read.csv(paste("./",y,"_hourly/",fil,sep="")) 
#
 write.table(eee[eee[,1]=="440",c(1,2,19)],file="data440.csv",append=TRUE,col.na
mes=FALSE,row.names=FALSE,sep=",") 
#  } 
#} 
 
#data440=read.csv("data440.csv",skip=1,header=FALSE,stringsAsFactors=FALSE) 
#data440[,2]=as.POSIXct(data440[,2],format="%Y-%m-%d %H:%M:%OS",tz="EST") 
#colnames(data440)=c("station","date_time","rain") 
#datehrs=seq(from=as.POSIXct("1998-1-1 0:00", tz="EST"), 
#     to=as.POSIXct("2018-12-31 23:00", tz="EST"), 
#     by="hour" 
#   )  
  
#mydf=as.data.frame(data440 %>% complete(date_time=datehrs)) 
 
#yrs=as.numeric(format(mydf$date_time,"%Y")) 
#mos=as.numeric(format(mydf$date_time,"%m")) 
#uyrs=unique(yrs) 
#ndays=365+1*leap_year(unique(yrs)) 
 
#Based on following flowchart in Fig. 4.3.1 of NOAA Atlas 14 vol. 9 (p.11) 
#FAWN does not have accumulated data, so flowchart is simplified 
#Percentage missing for entire year 
#fmiss=tapply((mydf[,3]),list('yrs'=yrs),function(x) sum(is.na(x))) 
#fmiss=100*fmiss/(ndays*24) 
#All years with less than 20% of data missing 
 
#Percentage missing for wet season 
#Wet season defined as May-Oct for sub-daily durations 
#hwetseas=seq(5,10,1) 
#hwetseasd=184 
#fwhmiss=tapply(mydf[,3],list('yrs'=yrs,'mos'=mos),function(x) sum(is.na(x))) 
#fwhmiss=100*rowSums(fwhmiss[,hwetseas],na.rm=TRUE)/(hwetseasd*24) 
#All years with less than 20% of wet season data missing 
 
#Wet season defined as Mar-Oct for daily durations 
#dwetseas=seq(3,10,1) 
#dwetseasd=245 
#fwdmiss=tapply(mydf[,3],list('yrs'=yrs,'mos'=mos),function(x) sum(is.na(x))) 
#fwdmiss=100*rowSums(fwdmiss[,dwetseas],na.rm=TRUE)/(dwetseasd*24) 
##All years with less than 20% of wet season data missing 
 
#All years valid, then compute AMS   
#fdurs=c(1,2,3,6,12,24,48,72) #durations of interest in hours 
#fdursnames=c("1-hr","2-hr","3-hr","6-hr","12-hr","1-day","2-day","3-day") 
#factors to go from constrained to constrained observations 
#no corrections applied beyond 12 hours 
#corrfac=c(1.09,1.04,1.02,1.01,1.00,1.00,1.00,1.00)  
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#fawn_ams=array(dim=c(length(fdurs),length(uyrs),1)) 
#for (u in 1:length(fdurs)) { 
#  print(paste("u = ",u,sep="")) 
#  k=fdurs[u] 
#  rs=tapply(mydf[,3],list('yrs'=yrs),function(x,k) c(rollsum(x,k),rep(NA,k-1)),k=k)  
#  fawn_ams[u,,1]=unlist(lapply(rs,function(x) max(as.numeric(x),na.rm=TRUE)))  
#  rm(rs)  
#} 
#dimnames(fawn_ams)[[1]]=fdursnames 
#dimnames(fawn_ams)[[2]]=uyrs 
#dimnames(fawn_ams)[[3]]="440" 
 
#Get unconstrained AMS from constrained AMS and correction factors from NOAA Atlas 14 
Volume 9 
#fawn_amsunc=fawn_ams 
#Make sure every AMS for a duration is greater than AMS for the previous smaller duration 
#for (u in 1:length(fdurs)) { 
#  print(paste("u = ",u,sep="")) 
#  if (u==1) { 
#    fawn_amsunc[u,,1]=fawn_ams[u,,1]*corrfac[u] 
#  } else { 
#    fawn_amsunc[u,,1]=pmax(fawn_ams[u,,1]*corrfac[u],fawn_amsunc[(u-1),,1]) 
#  } 
#} 
 
#Same as NOAA station, so exclude 
 
####################################################################### 
# Merge SFWMD and NOAA ATLAS 14 datasets into a single dataset 
####################################################################### 
mdc_amsunc30=abind(atlas14_amsunc30,sfwmdh_amsunc30,along=3) 
temp=abind(array(dim=c(5,dim(sfwmd_amsunc30)[2],dim(sfwmd_amsunc30)[3])),sfwmd_amsunc3
0,along=1) 
mdc_amsunc30=abind(mdc_amsunc30,temp,along=3) 
 
dimnames(mdc_amsunc30)[[1]]=dimnames(atlas14_amsunc30)[[1]] 
dimnames(mdc_amsunc30)[[2]]=dimnames(atlas14_amsunc30)[[2]] 
dimnames(mdc_amsunc30)[[3]]=c(dimnames(atlas14_amsunc30)[[3]],dimnames(sfwmdh_amsunc30
)[[3]],dimnames(sfwmd_amsunc30)[[3]]) 
 
mdc_last30=abind(last30,last30sh,last30s,along=2) 
dimnames(mdc_last30)[[1]]=dimnames(last30)[[1]] 
dimnames(mdc_last30)[[2]]=c(dimnames(last30)[[2]],dimnames(last30sh)[[2]],dimnames(las
t30s)[[2]]) 
 
#When cutyr=2005 do this instead 
#temp=abind(array(dim=c(5,dim(sfwmd_amsunc30)[2],dim(sfwmd_amsunc30)[3])),sfwmd_amsunc
30,along=1) 
#mdc_amsunc30=abind(atlas14_amsunc30,temp,along=3) 
#dimnames(mdc_amsunc30)[[1]]=dimnames(atlas14_amsunc30)[[1]] 
#dimnames(mdc_amsunc30)[[2]]=dimnames(atlas14_amsunc30)[[2]] 
#dimnames(mdc_amsunc30)[[3]]=c(dimnames(atlas14_amsunc30)[[3]],dimnames(sfwmd_amsunc30
)[[3]]) 
#mdc_last30=abind(last30,last30s,along=2) 
#dimnames(mdc_last30)[[1]]=dimnames(last30)[[1]] 
#dimnames(mdc_last30)[[2]]=c(dimnames(last30)[[2]],dimnames(last30s)[[2]]) 
 
 
######################################################################## 
# Split up data into hourly stations and daily stations and create  
# AMS4-like list 
######################################################################## 
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mdc_hourly30=mdc_amsunc30[,,which(apply(mdc_amsunc30[1,,],2,function(x) 
sum(!is.na(x))) > 0)] 
mdc_daily30=mdc_amsunc30[,,which(apply(mdc_amsunc30[1,,],2,function(x) sum(!is.na(x))) 
== 0)] 
 
mdc_last30h=mdc_last30[,which(apply(mdc_amsunc30[1,,],2,function(x) sum(!is.na(x))) > 
0)] 
mdc_last30d=mdc_last30[,which(apply(mdc_amsunc30[1,,],2,function(x) sum(!is.na(x))) == 
0)] 
 
rm(AMS4) 
AMS4=list() 
for (i in 1:dim(mdc_amsunc30)[3]) { 
  AMS4[[i]] = t(mdc_amsunc30[,,i]) 
  rownames(AMS4[[i]])=mdc_last30[,i] 
} 
names(AMS4) = dimnames(mdc_amsunc30)[[3]] 
staid2=names(AMS4) 
 
AMS4h=list() 
for (i in 1:dim(mdc_hourly30)[3]) { 
  AMS4h[[i]] = t(mdc_hourly30[,,i]) 
  rownames(AMS4h[[i]])=mdc_last30h[,i] 
} 
 
names(AMS4h) = names(which(apply(mdc_amsunc30[1,,],2,function(x) sum(!is.na(x))) > 0)) 
staid2h=names(AMS4h) 
 
AMS4d=list() 
for (i in 1:dim(mdc_daily30)[3]) { 
  AMS4d[[i]] = t(mdc_daily30[,,i]) 
  rownames(AMS4d[[i]])=mdc_last30d[,i] 
} 
 
names(AMS4d)=names(which(apply(mdc_amsunc30[1,,],2,function(x) sum(!is.na(x))) == 0)) 
staid2d=names(AMS4d) 
 
if (!dir.exists(paste(datadir,"/Obs_datasets/before_",cutyr,sep=""))) { 
  dir.create(paste(datadir,"/Obs_datasets/before_",cutyr,sep="")) 
} 
setwd(paste(datadir,"/Obs_datasets/before_",cutyr,sep="")) 
save(mdc_amsunc30,mdc_last30,mdc_hourly30,mdc_daily30,mdc_last30h,mdc_last30d,AMS4,AMS
4h,AMS4d,staid2,staid2h,staid2d,file="MDC_amsunc30.RData") 
 
 
 
} 
 
grubbs.flag <- function(x) { 
  library(outliers) 
  outliers <- NULL 
  test <- x 
  grubbs.result <- grubbs.test(test) 
  pv <- grubbs.result$p.value 
  while(pv < 0.05) { 
    outliers <- c(outliers,as.numeric(strsplit(grubbs.result$alternative," ")[[1]][3])) 
    test <- x[!x %in% outliers] 
    grubbs.result <- grubbs.test(test) 
    pv <- grubbs.result$p.value 
  } 
  return(data.frame(X=x,Outlier=(x %in% outliers))) 
} 
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############################################################################ 
 
station2cellmap <- function() { 
# Function to map Atlas 14 weather stations to closest LOCA downscaled data grid point 
 
############################################################################ 
 
library(fields) 
library(maps) 
library(zoo) 
 
datadir="Z:/miriza/Work/FIU/FL_Building_Code/Data/Rainfall/" 
 
setwd(paste(datadir,"/Obs_datasets/before_2019",sep="")) 
 
# Read weather station file 
stas=read.csv(paste(datadir,"/ATLAS14/noaa_atlas14_included_stations.csv",sep=""),fill
=FALSE,stringsAsFactors=FALSE) 
stas2=read.csv(paste(datadir,"/SFWMD/sfwmd_hourly_included_stations.csv",sep=""),fill=
FALSE,stringsAsFactors=FALSE) 
stas3=read.csv(paste(datadir,"/SFWMD/sfwmd_included_stations.csv",sep=""),fill=FALSE,s
tringsAsFactors=FALSE) 
 
# Weather station lats and lons 
unordered_mystasNames=c(stas$STATION.ID,stas2$STATION,stas3$DBKEY) 
unordered_stasLat=c(stas$LAT..degrees,stas2$LAT..degrees,stas3$LAT..degrees) 
unordered_stasLon=c(stas$LONG..degrees,stas2$LONG..degrees,stas3$LONG..degrees) 
 
#Read in AMS file for station names 
load(file="MDC_amsunc30.RData") 
staid2=dimnames(mdc_amsunc30)[[3]] 
save(staid2,file="stationids.RData") 
 
#Get lat and lon for stations in the order they're listed in mds_amsunc30 
stasLat=unordered_stasLat[match(staid2,unordered_mystasNames)] 
stasLon=unordered_stasLon[match(staid2,unordered_mystasNames)] 
 
 
# LOCA CMIP5 grid cells lats and lons 
ulats=seq(from=25.03125,to=32.03125,by=1/16) 
ulons=seq(from=-89.96875,to=-78.96875,by=1/16) 
nlat=length(ulats) 
nlon=length(ulons) 
ulats2=rep(ulats,each=nlon) 
ulons2=rep(ulons,nlat) 
ulatslons2 = as.matrix(cbind(ulons2,ulats2)) 
ulats3=matrix(ulats2,ncol=nlat) 
ulons3=matrix(ulons2,ncol=nlat) 
 
# Get list of LOCA active cells 
load("Z:/miriza/Work/R/LOCA_dataset/Data/Active_LOCA_gridcells.RData") 
 
# Find the closest active LOCA CMIP5 grid cell to each weather station 
# id is the index of the station in ulatslons2 
id=vector(mode="numeric",length=length(staid2)) 
# ilonclosest and ilatclosest are the first and second dimension indices 
# to be used to access LOCA data 
ilonclosest=vector(mode="numeric",length=length(staid2)) 
ilatclosest=vector(mode="numeric",length=length(staid2)) 
for (i in 1:length(staid2)) { 
  lons = stasLon[i] 
  lats = stasLat[i] 
  p <- cbind(lons,lats) 
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  r = rdist.earth(ulatslons2,p) 
#  id[i] <- apply(r,2,which.min) 
#  lonlatclosest=ulatslons2[id[i],] 
#  ilonclosest[i]=match(lonlatclosest[i,1],ulons) 
#  ilatclosest[i]=match(lonlatclosest[i,2],ulats) 
  o = apply(r,2,function(x) order(x)) 
  # If the closest cell is inactive (NA) go through other closest cells until 
  # an active one is found 
  for (l in 1:length(o)) { 
    id[i] = o[l] 
    # lonlatclosest gives the longitude and latitude of the closest  
    # active LOCA CMIP5 gridcell to each weather station 
    lonlatclosest=ulatslons2[id[i],] 
    ilonclosest[i]=match(lonlatclosest[1],ulons) 
    ilatclosest[i]=match(lonlatclosest[2],ulats)     
    if (!is.na(actcells[ilonclosest[i],ilatclosest[i]])) break 
  } 
} 
 
lonclosest=ulons[ilonclosest] 
latclosest=ulats[ilatclosest] 
save(stasLat,stasLon,ilonclosest,ilatclosest,lonclosest,latclosest,file="station2cellm
ap.RData") 
 
 
png("Lat_mapping_check.png") 
plot(stasLat,latclosest,xlab="Weather station lat",ylab="LOCA grid cell lat", 
     main="Check that latitudes are close") 
lines(range(cbind(stasLat,latclosest)),range(cbind(stasLat,latclosest)),col="red",lty=
2) 
legend("bottomright",legend=c("Data","1:1"),lty=c(NA,2),pch=c(1,NA),col=c("black","red
")) 
grid() 
dev.off() 
 
png("Lon_mapping_check.png") 
plot(stasLon,lonclosest,xlab="Weather station lon",ylab="LOCA grid cell lon", 
     main="Check that longitudes are close") 
lines(range(cbind(stasLon,lonclosest)),range(cbind(stasLon,lonclosest)),col="red",lty=
2) 
legend("bottomright",legend=c("Data","1:1"),lty=c(NA,2),pch=c(1,NA),col=c("black","red
")) 
grid() 
dev.off() 
 
png("Mapping_check_FLmap.png",height=720,width=720,pointsize=15) 
map('county',"Florida",xlim=c(-81.2,-80),ylim=c(25,26.2)) 
map.axes() 
grid() 
points(stasLon,stasLat,cex=0.8) 
points(lonclosest,latclosest,cex=0.8,pch=19,col="red") 
title(main=c("NOAA Atlas 14 and SFWMD weather stations in MDC","and closest LOCA grid 
cell centers"),xlab="Lon",ylab="Lat") 
legend(x="bottomright",c("Atlas 14, SFWMD","LOCA"),col=c("black","red"),pch=c(1,19)) 
dev.off() 
 
png("LOCA_gridcells.png",height=720,width=720,pointsize=15) 
map('county',"Florida",xlim=c(-81.2,-80),ylim=c(25,26.2)) 
map.axes() 
grid() 
abline(h=seq(from=25.03125-1/32,to=32.03125+1/32,by=1/16),col="gray") 
abline(v=seq(from=-89.96875-1/32,to=-78.96875+1/32,by=1/16),col="gray") 
points(stasLon,stasLat,cex=0.8) 
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points(lonclosest,latclosest,cex=0.8,pch=19,col="red") 
axis(3,at=ulons[seq(1,180,1)],labels=seq(1,180,1),cex.axis=0.5,tck=0.02,mgp=c(3,0.3,0)
) 
axis(4,at=ulats[seq(1,120,1)],labels=seq(1,120,1),las=3,cex.axis=0.5) 
title(main=c("NOAA Atlas 14 and SFWMD weather stations in MDC","and LOCA grid 
cells"),xlab="Lon",ylab="Lat") 
legend(x="bottomright",c("Atlas 14, SFWMD","LOCA"),col=c("black","red"),pch=c(1,19)) 
dev.off() 
 
png("Active_LOCA_gridcells.png",height=720,width=720,pointsize=15) 
map('state',"Florida",xlim=c(-88,-80),ylim=c(25,32)) 
map.axes() 
grid() 
abline(h=seq(from=25.03125-1/32,to=32.03125+1/32,by=1/16),col="gray") 
abline(v=seq(from=-89.96875-1/32,to=-78.96875+1/32,by=1/16),col="gray") 
#points(stasLon,stasLat,cex=0.3,pch=19,col="red") 
points(ulons3*actcells,ulats3*actcells,cex=0.3,pch=19,col="red") 
LOK_Boundary=read.csv(paste(datadir,"LOK_Boundary.csv",sep="")) 
lines(LOK_Boundary$x,LOK_Boundary$y) 
axis(3,at=ulons[seq(10,180,10)],labels=seq(10,180,10),cex.axis=0.5,tck=0.02,mgp=c(3,0.
3,0)) 
axis(4,at=ulats[seq(10,120,10)],labels=seq(10,120,10),las=3,cex.axis=0.5) 
title(main=c("LOCA active grid cells in Florida"),xlab="Lon",ylab="Lat") 
legend(x="bottomleft",c("Active"),col=c("red"),pch=c(19)) 
dev.off() 
 
png("Active_LOCA_gridcells_MDC.png",height=720,width=720,pointsize=15) 
map('county',"Florida",xlim=c(-81.2,-80),ylim=c(25,26.2)) 
map.axes() 
grid() 
abline(h=seq(from=25.03125-1/32,to=32.03125+1/32,by=1/16),col="gray") 
abline(v=seq(from=-89.96875-1/32,to=-78.96875+1/32,by=1/16),col="gray") 
#points(stasLon,stasLat,cex=0.3,pch=19,col="red") 
points(ulons3*actcells,ulats3*actcells,cex=0.3,pch=19,col="red") 
LOK_Boundary=read.csv(paste(datadir,"LOK_Boundary.csv",sep="")) 
lines(LOK_Boundary$x,LOK_Boundary$y) 
axis(3,at=ulons[seq(1,180,1)],labels=seq(1,180,1),cex.axis=0.5,tck=0.02,mgp=c(3,0.3,0)
) 
axis(4,at=ulats[seq(1,120,1)],labels=seq(1,120,1),las=3,cex.axis=0.5) 
title(main=c("LOCA active grid cells in MDC"),xlab="Lon",ylab="Lat") 
legend(x="bottomleft",c("Active"),col=c("red"),pch=c(19)) 
dev.off() 
 
 
############################################################################ 
} 
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############################################################################## 
 
contourmap <- 
function(statis,ids,direc="./",main,res=1000,idp=2,posonly=TRUE,pval=N
ULL,labs="none",zlim=NULL){ 
# Uses IDW to interpolate the data over FL and then contour it 
# statis: data to contour 
# ids: IDs of the stations 
# direc: Directory where to save the png file 
# main: title for plot and file name 
# res: resolution of grid for interpolation prior to contouring 
# idp: exponent for IDW interpolation 
# posonly: whether variable only has positive values 
# pval: pval associated with the data (default is NULL, i.e. none) 
#       If given it must be the same length as statis and stations with a 
#       significant pval (<0.05) are labeled with an '*' 
# labs: "none" so only station locations are plotted (default) 
#       "names" so stations are plotted and labeled with their names 
#       "data" so stations are plotted and labeled with the data values 
#       "dn" so stations are plotted and labeled with their names and data values 
# zlim: Limits for colormap use NULL to have code compute them automatically from data 
ranges 
#       Enter a pair of values otherwise (e.g. c(-0.5,0.5)) 
 
############################################################################ 
 
library(maps) 
library(akima) 
library(sp) 
library(ggplot2) 
library(maptools) 
library(gstat) 
library(colorRamps) 
library(raster) 
 
# First eliminate stations with missing (NA) data. 
if (!is.null(pval)) { 
  tokeep=is.finite(statis)&is.finite(pval) 
  statis=statis[tokeep] 
  ids=ids[tokeep] 
  pval=pval[tokeep] 
} else { 
  tokeep=is.finite(statis) 
  statis=statis[tokeep] 
  ids=ids[tokeep] 
  pval=pval[tokeep]   
} 
# Number of stations left 
nstas=length(ids) 
print(names(statis)) 
print (length(statis)) 
 
datadir="Z:/miriza/Work/FIU/FL_Building_Code/Data/Rainfall/" 
 
# Load FL boundary 
FL_Boundary=read.csv(paste(datadir,"/Code/FL_Boundarydetailed.csv",sep="")) 
 
#Load canals 
cnls=shapefile("Z:/miriza/Work/FIU/FL_Building_Code/Data/USGS_MODFLOW/ancillary/ancill
ary/gis/umd_swr_hydrography.shp") 
cnlslatlon=spTransform(cnls,CRS="+proj=longlat +datum=WGS84 +ellps=WGS84 
+towgs84=0,0,0") 
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## Note: To draw contours first need to interpolate values to a grid using IDW from 
gstat package 
## Options for contours include contour, contourplot (lattice), filled.contour, 
contourLines 
## Get station locations 
# Read weather station file 
stas=read.csv(paste(datadir,"/ATLAS14/noaa_atlas14_included_stations.csv",sep=""),fill
=FALSE,stringsAsFactors=FALSE) 
stas2=read.csv(paste(datadir,"/SFWMD/sfwmd_hourly_included_stations.csv",sep=""),fill=
FALSE,stringsAsFactors=FALSE) 
stas3=read.csv(paste(datadir,"/SFWMD/sfwmd_included_stations.csv",sep=""),fill=FALSE,s
tringsAsFactors=FALSE) 
 
# Weather station lats and lons 
unordered_mystasNames=c(stas$STATION.ID,stas2$STATION,stas3$DBKEY) 
unordered_stasLat=c(stas$LAT..degrees,stas2$LAT..degrees,stas3$LAT..degrees) 
unordered_stasLon=c(stas$LONG..degrees,stas2$LONG..degrees,stas3$LONG..degrees) 
 
 
#Get lat and lon for stations in the order they're listed in mds_amsunc30 
stasLat=unordered_stasLat[match(names(statis),unordered_mystasNames)] 
stasLon=unordered_stasLon[match(names(statis),unordered_mystasNames)] 
 
print(paste(length(stasLat),length(stasLon))) 
mydata=data.frame(cbind(statis,stasLon,stasLat)) 
names(mydata)=c("statis","x","y") 
coordinates(mydata) = ~x + y 
 
#Define labels for plot 
a=character(nstas) 
pch=rep(16,nstas) 
if (!is.null(pval)) { 
  a[pval<0.05]="*" 
  pch[pval<0.05]=15 
} 
 
if (labs=="none") lab=rep(NULL,nstas) 
if (labs=="names") lab=paste(ids,sep="") 
if (labs=="data") lab=paste(round(statis,1),a,sep="") 
if (labs=="dn") lab=paste(ids,": ",round(statis,1),a,sep="") 
 
#Determine colormap and z-limits 
if (posonly) { 
  colorpal=matlab.like 
  if (is.null(zlim)) zlim=range(statis, finite=TRUE) 
} else { 
  zabmax=max(abs(statis)) 
  colorpal=blue2red 
  if (is.null(zlim)) zlim=c(-zabmax,zabmax) 
} 
#Interpolate data using IDW 
grd=expand.grid(x=seq(min(stasLon),max(stasLon),length=res), 
                y=seq(min(stasLat),max(stasLat),length=res)) 
coordinates(grd) = ~x + y 
gridded(grd) = TRUE 
IDW <- idw(formula=statis~1,locations=mydata,newdata=grd,idp=idp) 
IDW.output = as.data.frame(IDW)  # output is defined as a data table 
names(IDW.output)[1:3] <- c("lon", "lat", "var1.pred")  # give names to the modelled 
variables 
 
#Reformat the output for mapping 
xcoord=IDW.output$lon 
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ycoord=IDW.output$lat 
zcoord=matrix(IDW.output$var1.pred,nrow=res,ncol=res) 
mycoords=list(x=xcoord,y=ycoord) 
#Blank out areas outside of FL_Boundary 
zcoord[!point.in.polygon(xcoord,ycoord,FL_Boundary[,1],FL_Boundary[,2])]=NA 
 
png(paste(direc,"/contourmap_",main,".png",sep=""),height=720,width=720,pointsize=15) 
filled.contour(x=seq(min(stasLon),max(stasLon),length=res),y=seq(min(stasLat),max(stas
Lat),length=res), 
       z=zcoord,xlim=c(-81.2,-80),ylim=c(25,26.2), 
       zlim=zlim,asp=1,color.palette=colorpal, 
       plot.axes={map('county',"Florida",add=TRUE);axis(1);axis(2);grid(); 
         lines(cnlslatlon,col="white"); 
                  points(stasLon,stasLat,pch=pch,cex=0.6); 
                  text(stasLon,stasLat,labels=lab,cex=0.6,pos=2)} 
       ) 
title(main=main,xlab="Lon",ylab="Lat") 
mtext(paste("IDW interpolation with exponent of ",idp,sep=""),side=3,line=0,cex=0.6) 
if (!is.null(pval)) mtext("* Significant at the 0.05 level",side=1,adj=1,line=3,cex=0.6) 
dev.off() 
} 
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############################################################################ 
 
subset_loca <- function() { 
# R script to subset netCDF LOCA data for Florida  
# and then subset it for the Atlas 14 stations in FL 
 
############################################################################ 
 
#Main variables 
vn="pr" 
vnl="Precip" 
data_dir="Z:/miriza/Work/FIU/FL_Building_Code/Data/Rainfall/LOCA_dataset/Data" 
pdates=seq(as.Date("2006/1/1"), as.Date("2100/12/31"),"days") 
pyrs=as.numeric(format(pdates,'%Y')) 
hdates=seq(as.Date("1950/1/1"), as.Date("2005/12/31"),"days") 
hyrs=as.numeric(format(hdates,'%Y')) 
hyrss=seq(1950,2005,1) 
 
#Latitudes and longitudes of interest (in Florida) 
lats=c(25,32) 
lons=c(-90,-79) 
 
library(RNetCDF) 
library(ncdf4) 
#library(geoknife) 
library(fields) 
library(maps) 
library(pheno) 
library(akima) 
 
 
setwd(data_dir) 
 
print(paste("Working on",vn)) 
 
projs=read.table("loca_projections.txt",stringsAsFactors=FALSE)  
nprojs=nrow(projs) 
fns=paste(vn,"_",projs[,1],sep="") 
modelp=apply(projs,1,function(x) paste(c(strsplit(x,"_")[[1]][1:2]),collapse="_")) 
modelpbase=apply(projs,1,function(x) strsplit(x,"_")[[1]][1]) 
modelprip=apply(projs,1,function(x) strsplit(x,"_")[[1]][2]) 
modelprcp=apply(projs,1,function(x) strsplit(x,"_")[[1]][3]) 
modelpbases=unique(modelpbase) 
 
hist=read.table("loca_historical.txt",stringsAsFactors=FALSE)  
fnsh=paste(vn,"_",hist[,1],sep="") 
modelh=apply(hist,1,function(x) paste(c(strsplit(x,"_")[[1]][1:2]),collapse="_")) 
modelhbase=apply(hist,1,function(x) strsplit(x,"_")[[1]][1]) 
modelhrip=apply(hist,1,function(x) strsplit(x,"_")[[1]][2]) 
 
# Get staid2 (ids of weather stations) 
load("Z:/miriza/Work/FIU/FL_Building_Code/Data/Rainfall/Obs_datasets/before_2005/stati
onids.RData") 
nstas=length(staid2) 
 
# Load ids of closest LOCA grid cells to Atlas 14 stations 
load("Z:/miriza/Work/FIU/FL_Building_Code/Data/Rainfall/Obs_datasets/before_2005/stati
on2cellmap.RData") 
 
# Extract subset of data of interest for projections 
for (i in 1:nrow(projs)) { 
  print(paste("i=",i,sep="")) 
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  ncfile<-open.nc(paste("Z:/miriza/Work/R/LOCA_dataset/Data/",fns[i],"_2006-
2100.nc",sep=""))  
  #if (i == 1) { 
  #  lat=var.get.nc(ncfile,"lat") 
  #  lon=var.get.nc(ncfile,"lon") 
  #} 
  time=var.get.nc(ncfile,"time") 
  tss=length(time) 
  psub=matrix(nrow=tss,ncol=nstas) 
 
  units=att.get.nc(ncfile,fns[i],"units") 
  print(units) 
  if (units == "kg m-2 s-1") { 
    conv=141.7323*24  #mm/s to in/day 
  } else if (units == "mm") { 
    conv=1/25.4  #mm to in (per day of course) 
  } else {  
    stop("Different type of units") 
  } 
 
  scale=try(att.inq.nc(ncfile,fns[i],"scale_factor"),silent=TRUE) 
  if (class(scale) == "try-error") { 
    scale=1 
  } else { 
    scale=att.get.nc(ncfile,fns[i],"scale_factor") 
  } 
  print(scale) 
 
  for (j in 1:nstas) { 
    print(paste("proj j=",j,sep="")) 
 
    
psub[,j]=conv*scale*var.get.nc(ncfile,fns[i],start=c(ilonclosest[j],ilatclosest[j],1),
count=c(1,1,tss)) 
  } 
  psub=as.data.frame(psub) 
  colnames(psub)=staid2 
  psub$Date=pdates[1:tss] 
  psub$Year=pyrs[1:tss] 
  close.nc(ncfile) 
 
  # Merge with historical data if available 
  idh=which(modelhbase %in% modelpbase[i]) 
  if (length(idh) == 0) {  
    print(paste("No historical data found for model:",modelp[i]," (i=",i,")",sep="")) 
  } else if (length(idh) > 1) { 
    stop(paste("Multiple historical data found for model:",modelp[i]," 
(i=",i,")",sep="")) 
  } else { 
    ncfile2<-open.nc(paste("Z:/miriza/Work/R/LOCA_dataset/Data/",fnsh[idh],"_1950-
2005.nc",sep="")) 
    time2=var.get.nc(ncfile2,"time") 
    tss2=length(time2) 
    psub2=matrix(nrow=tss2,ncol=nstas) 
 
    units2=att.get.nc(ncfile2,fnsh[idh],"units") 
    print(units2) 
    if (units2 == "kg m-2 s-1") { 
      conv2=141.7323*24  #mm/s to in/day 
    } else if (units2 == "mm") { 
      conv2=1/25.4  #mm to in (per day of course) 
    } else {  
      stop("Different type of units") 
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    } 
 
    scale2=try(att.inq.nc(ncfile2,fnsh[idh],"scale_factor"),silent=TRUE) 
    if (class(scale2) == "try-error") { 
      scale2=1 
    } else { 
      scale2=att.get.nc(ncfile2,fnsh[idh],"scale_factor") 
    } 
    print(scale2) 
 
    for (j in 1:nstas) { 
      print(paste("hist j=",j,sep="")) 
      
psub2[,j]=conv2*scale2*var.get.nc(ncfile2,fnsh[idh],start=c(ilonclosest[j],ilatclosest
[j],1),count=c(1,1,tss2)) 
    } 
    psub2=as.data.frame(psub2) 
    colnames(psub2)=staid2 
    psub2$Date=hdates[1:tss2] 
    psub2$Year=hyrs[1:tss2] 
    close.nc(ncfile2) 
 
    psub=rbind(psub2,psub) 
  } 
 
  ibase=which(modelpbases %in% modelpbase[i]) 
  
save(psub,file=paste("./",toupper(modelprcp)[i],"/",vnl,"_",toupper(modelprcp)[i],"_",
min(psub$Year),"_",max(psub$Year),"_model_",ibase,"_subset.RData",sep="")) 
  
  
write.table(projs[i,],file=paste("./",toupper(modelprcp)[i],"/Projections5.txt",sep=""
), 
              append=TRUE,quote=FALSE,row.names=FALSE,col.names=FALSE) 
 
} 
 
} 
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############################################################################ 
 
getAMS <- function() { 
 
# Get AMS series for model data 
 
############################################################################ 
 
library(zoo) 
 
#Main variables 
vn="pr" 
vnl="Precip" 
data_dir="Z:/miriza/Work/FIU/FL_Building_Code/Data/Rainfall/LOCA_dataset/Data" 
 
setwd(data_dir) 
 
 
RCPs=c("RCP45","RCP85") 
udurs=c("24-hr","2-day","3-day","4-day","7-day","10-day","20-day","30-day","45-
day","60-day"); 
udurs2=c("1 day","2 days","3 days","4 days","7 days","10 days","20 days","30 days","45 
days","60 days"); 
udursmins=c(1440,2880,4320,5760,10080,14400,28800,43200,64800,86400) 
udursdays=c(1,2,3,4,7,10,20,30,45,60) 
ndurs=length(udursdays) 
 
# Define dates and years for subset dataset 
udates=seq(as.Date("1950/1/1"), as.Date("2099/12/31"),"days") 
uyrs=as.numeric(format(udates,'%Y')) 
nyrs=length(unique(uyrs)) 
 
# Get staid2 (ids of weather stations) 
load("Z:/miriza/Work/FIU/FL_Building_Code/Data/Rainfall/Obs_datasets/before_2005/stati
onids.RData") 
nstas=length(staid2) 
 
for (r in 1:length(RCPs)) { 
  print(paste("r = ",r,sep="")) 
  projs=readLines(paste("./",RCPs[r],"/Projections5.txt",sep="")) 
  
fils=paste("Precip_",RCPs[r],"_1950_2100_model_",c(1:length(projs)),"_subset.RData",se
p="") 
 
  for (f in 1:length(fils)) {  
    print(paste("f = ",f,sep="")) 
    load(paste("./",RCPs[r],"/",fils[f],sep="")) 
    # Exclude the year 2100 from all files 
    psub=psub[(psub$Year%in%uyrs),] 
    ams=array(dim=c(ndurs,nyrs,nstas)) 
  
    for (u in 1:ndurs) { 
      print(paste("u = ",u,sep="")) 
      k=udursdays[u] 
 
      rs=apply(psub[,1:nstas],2,function(x) ave(x,psub$Year,FUN=function(x) 
c(rollsum(x,k),rep(NA,k-1)),k=k))    
      ams[u,,]=apply(rs,2,function(x) tapply(as.numeric(x),psub$Year,max,na.rm=TRUE))   
      rm(rs)  
   
       
    } #end u 
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save(ams,file=paste("./",RCPs[r],"/AMS_",RCPs[r],"_1950_2099_model_",f,".RData",sep=""
)) 
    rm(ams) 
     
  } #end f 
} #end r 
 
} #end function 
# Get AMS series for model data 
 
library(zoo) 
 
#Main variables 
vn="pr" 
vnl="Precip" 
data_dir="Z:/miriza/Work/FIU/FL_Building_Code/Data/Rainfall/LOCA_dataset/Data" 
 
setwd(data_dir) 
 
 
RCPs=c("RCP45","RCP85") 
udurs=c("24-hr","2-day","3-day","4-day","7-day","10-day","20-day","30-day","45-
day","60-day"); 
udurs2=c("1 day","2 days","3 days","4 days","7 days","10 days","20 days","30 days","45 
days","60 days"); 
udursmins=c(1440,2880,4320,5760,10080,14400,28800,43200,64800,86400) 
udursdays=c(1,2,3,4,7,10,20,30,45,60) 
ndurs=length(udursdays) 
 
# Define dates and years for subset dataset 
udates=seq(as.Date("1950/1/1"), as.Date("2099/12/31"),"days") 
uyrs=as.numeric(format(udates,'%Y')) 
nyrs=length(unique(uyrs)) 
 
# Get staid2 (ids of weather stations) 
load("Z:/miriza/Work/FIU/FL_Building_Code/Data/Rainfall/Obs_datasets/before_2005/stati
onids.RData") 
nstas=length(staid2) 
 
for (r in 1:length(RCPs)) { 
  print(paste("r = ",r,sep="")) 
  projs=readLines(paste("./",RCPs[r],"/Projections5.txt",sep="")) 
  
fils=paste("Precip_",RCPs[r],"_1950_2100_model_",c(1:length(projs)),"_subset.RData",se
p="") 
 
  for (f in 1:length(fils)) {  
    print(paste("f = ",f,sep="")) 
    load(paste("./",RCPs[r],"/",fils[f],sep="")) 
    # Exclude the year 2100 from all files 
    psub=psub[(psub$Year%in%uyrs),] 
    ams=array(dim=c(ndurs,nyrs,nstas)) 
  
    for (u in 1:ndurs) { 
      print(paste("u = ",u,sep="")) 
      k=udursdays[u] 
 
      rs=apply(psub[,1:nstas],2,function(x) ave(x,psub$Year,FUN=function(x) 
c(rollsum(x,k),rep(NA,k-1)),k=k))    
      ams[u,,]=apply(rs,2,function(x) tapply(as.numeric(x),psub$Year,max,na.rm=TRUE))   
      rm(rs)  
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    } #end u 
     
    
save(ams,file=paste("./",RCPs[r],"/AMS_",RCPs[r],"_1950_2099_model_",f,".RData",sep=""
)) 
    rm(ams) 
     
  } #end f 
} #end r 
 
} #end function 
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############################################################################ 
 
fitGEVall <- function() { 
 
############################################################################ 
   
  source("Z:/miriza/Work/FIU/FL_Building_Code/Data/Rainfall/Code/fitGEV.R") 
 
  type="bysite" 
  method="RegLmom" 
  cutyr=2005 
   
  #Durations of interest for hourly data 
  subdurs=c("60-min","2-hr","3-hr","6-hr","12-hr","24-hr","2-day","3-day","4-day","7-
day") 
   
  #Run fitGEV for observed data (current period): Foc 
  #using last 30 years of data  
  
datadir=paste("Z:/miriza/Work/FIU/FL_Building_Code/Data/Rainfall/Obs_datasets/before_"
,cutyr,sep="") 
  setwd(datadir) 
  load("MDC_amsunc30.RData") 
  #Start with fitting GEV's to stations with hourly data 
   
  
fitGEV(AMS4,type=type,method=method,yrs=NULL,syr=1940,eyr=2005,frac=0.0,subdurs=subdur
s,nstas=length(AMS4), 
         dataset="MDC_obs",lab="Foc",smooth=FALSE,doplots=TRUE,contmaps=TRUE) 
  
  #Run fitGEV for modeled data 
  fitGEVwrap(type=type,method=method,yrs=t(mdc_last30),syr=1940,eyr=2005,lab="Fmc") 
  #30 years centered on 2060-2069 
  fitGEVwrap(type=type,method=method,syr=2050,eyr=2079,lab="Fmp1") 
 
  #Note: Then must run EQM for the stations 
} 
 
############################################################################ 
 
fitGEVwrap <- 
function(type="bysite",method="RegLmom",yrs=NULL,syr=1950,eyr=2012,lab
="Fmc") { 
# Function to fitGEV to model AMS data  
# (get Fmc and Fmp: CDF of model AMS data for the current period and future periods) 
# type and method of GEV fitting (see header of fitGEV.R) 
# yrs: If null, then get all data between years syr and eyr 
#      Otherwise, it is a matrix with nstas rows and nyears columns with every row 
listing 
#      the years of analysis for a station. 
# syr: Start year for analysis (cut off data before syr; make it very small to use POR) 
# eyr: End year for analysis (cut off data after; make it very large to use POR) 
# lab: How to label the plots 
 
############################################################################ 
 
source("Z:/miriza/Work/FIU/FL_Building_Code/Data/Rainfall/Code/fitGEV.R") 
 
data_dir="Z:/miriza/Work/FIU/FL_Building_Code/Data/Rainfall/LOCA_dataset/Data/" 
 
setwd(data_dir) 
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RCPs=c("RCP45","RCP85") 
 
# Durations 
durs=c("24-hr","2-day","3-day","4-day","7-day","10-day","20-day","30-day","45-
day","60-day"); 
durs2=c("1 day","2 days","3 days","4 days","7 days","10 days","20 days","30 days","45 
days","60 days"); 
dursmins=c(1440,2880,4320,5760,10080,14400,28800,43200,64800,86400) 
dursdays=c(1,2,3,4,7,10,20,30,45,60) 
ndurs=length(durs) 
#Durations of interest 
subdurs=c("24-hr","2-day","3-day","4-day","7-day") 
 
# Define dates and years for subset dataset 
udates=seq(as.Date("1950/1/1"), as.Date("2099/12/31"),"days") 
uyrs=as.numeric(format(udates,'%Y')) 
yrindx=1950:2099 
nyrs=length(unique(uyrs)) 
 
# Get staid2 (ids of weather stations) 
load("Z:/miriza/Work/FIU/FL_Building_Code/Data/Rainfall/Obs_datasets/before_2005/stati
onids.RData") 
nstas=length(staid2) 
 
for (r in 1:length(RCPs)) { # 
  print(paste("r = ",r,sep="")) 
  setwd(data_dir) 
  projs=readLines(paste("./",RCPs[r],"/Projections5.txt",sep="")) 
 
  for (f in 1:length(projs)) { #i=143, f=9 gives error in HW.tests; i=122, f=13 
    print(paste("f = ",f,sep="")) 
    setwd(data_dir) 
    load(paste("./",RCPs[r],"/AMS_",RCPs[r],"_1950_2099_model_",f,".RData",sep="")) 
 
    # Create AMS4-equivalent list 
    dimnames(ams)=list(durs,yrindx,staid2) 
    AMS4=lapply(seq_len(dim(ams)[3]), function(i) t(ams[,,i])) 
    names(AMS4)=staid2 
 
    # Call fitGEV 
    myDir=paste("./",RCPs[r],"/model_",f,"/",sep="") 
    dir.create(file.path(myDir), showWarnings = FALSE) 
    setwd(file.path(myDir)) 
 
    
fitGEV(AMS4,type=type,method=method,yrs=yrs,syr=syr,eyr=eyr,frac=0.0,subdurs=subdurs,n
stas=length(AMS4), 
           dataset="FL_LOCA",lab=lab,smooth=FALSE,doplots=TRUE,contmaps=TRUE)  
   
    rm(ams,AMS4) 
 
  } #end f 
} # end r 
 
} 
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############################################################################ 
 
fitGEV <- 
function(AMS4,type="bysite",method="RegLmom",yrs=NULL,syr=1800,eyr=210
0,frac=0.0,subdurs=c("24-hr","2-day","3-day","4-day","7-
day"),nstas=15,dataset="FL_Atlas14",lab="Foc",smooth=FALSE,doplots=FAL
SE,contmaps=FALSE) { 
# Function to fitGEV to observed corrected AMS data (get Foc: CDF of observations for 
the current period) 
# or modeled current or future (Fmc, Fmp) 
# AMS4 = list with AMS data, it has at least 242 elements and each element is a matrix 
with one row per  
#        year of data and one column per duration. It may have more than 242 elements 
for type="bydur" 
#        method="RegLmom" if stations outside the state are used as part of the ROI of 
a station, but 
#        the code is only run for the first 242 stations (those in FL).  
#        The names of the elements of the list are the names of the weather stations. 
# type = "bysite" fitting all durations at the same time (e.g. using Regional L-moments) 
#        "bysite" can be applied to all durations but since it is based on separability 
assumption 
#          it is better to apply to limited range of durations of interest for better 
fit 
#        "bysite" only solved by method="RegLmom" 
# method = "RegLmom" fitting by method of regional L-moments 
# yrs: If null, then get all data between years syr and eyr 
#      Otherwise, it is a matrix with nstas rows and nyears columns with every row 
listing 
#      the years of analysis for a station. 
# syr: Start year for analysis (cut off data before syr; make it very small to use POR) 
# eyr: End year for analysis (cut off data after; make it very large to use POR) 
# frac: Minimum fraction of years with AMS data to do GEV fitting 
#      (i.e. if station has at least frac*(syr-eyr+1) AMS values  
#            available-->do GEV fitting, otherwise skip it) 
#       Make frac equal to 0 to use whatever data is available between syr and eyr 
# subdurs: Subset of durations of interest over which to do the fitting 
# dataset: The name of the dataset, e.g. "FL_Atlas14", "FL_USBR" 
# lab: "Foc", "Fmc", "Fmp", "Fmp1", etc. How to label the plots 
# smooth: Whether to smooth out DDF curves using cubic splines (IDF curves output will 
be unsmoothed) 
# doplots: Whether to create any plots 
# contmaps: Whether to create contour maps of variables or not (can be very slow so set 
to FALSE by default) 
 
############################################################################ 
 
# Install R packages 
library(lmom) 
library(nsRFA) 
library(ismev) 
library(rootSolve) 
library(moments) 
library(extRemes) 
library(car) 
library(kSamples) 
 
source("Z:/miriza/Work/FIU/FL_Building_Code/Data/Rainfall/Code/contourmap.R") 
 
#setwd("F:/ATLAS14/AMS/") 
#load("F:/ATLAS14/stationids.RData") 
#load("F:/ATLAS14/AMS/FLALGAMS_Atlas14_AMScorr.RData") 
#AMS4,AMSDATE3,staid2 has 242 stations in FL  
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#and the remaining 40 are in AL, GA, MS and are used in  
#RegLmom with official Atlas 14 ROI 
staid2all=names(AMS4) 
staid2=staid2[1:nstas] 
print(paste("AMS4 has",length(AMS4),"elements")) 
print("Station ids:") 
print(staid2all) 
 
#Durations 
durs=c("5-min","10-min","15-min","30-min","60-min","2-hr","3-hr","6-hr","12-hr","24-
hr","2-day","3-day","4-day", 
"7-day","10-day","20-day","30-day","45-day","60-day"); 
dursmins=c(5,10,15,30,60,120,180,360,720,1440,2880,4320,5760,10080,14400,28800,43200,6
4800,86400) 
ndurs=length(durs) 
#dursint: Durations of interest for which to compute idf curves (1-7 days in minutes) 
#dursint=24*60*(1:7) 
#subdurs: Subset of durations to extract (that bound durations of interest) 
#subdurs=c("24-hr","2-day","3-day","4-day","7-day") 
#subdurs=durs[max(which(dursmins<=min(dursint))):min(which(dursmins>=max(dursint)))] 
nsubdurs=length(subdurs) 
 
#Years of interest 
#Get overall starting and ending year if matrix with years of interest is specified 
if (!is.null(yrs)) { 
  syr=min(yrs,na.rm=TRUE) 
  eyr=max(yrs,na.rm=TRUE) 
} 
 
#Return periods 
#Tr=c(2,5,10,25,50,100,200,500,1000) 
Tr=c(2,5,10,25,50,100) 
#Non exceedance probabilities 
pne=1-1/Tr 
nts=length(Tr) 
#Return periods of interest 
subTr=c(2,5,10,25,50,100) 
#Non exceedance probabilities of interest 
pnes=1-1/subTr 
ntss=length(subTr) 
 
# Initialize matrices (to NA) 
# Values will remain NA for stations without enough data according to frac rule 
k=alfa=xi=matrix(nrow=nstas,ncol=nsubdurs,dimnames=list(staid2,subdurs)) 
intTrmax=intTrmin=matrix(nrow=nstas,ncol=nsubdurs,dimnames=list(staid2,subdurs)) 
# Goodness-of-fit over durations of interest 
sBias=sRMSE=sMAE=sR2=sNS=matrix(nrow=nstas,ncol=1,dimnames=list(staid2)) 
 
if (type=="bysite") { 
 
  if (method=="RegLmom") { 
    crits=nps=t3R=adbpval=H1=matrix(nrow=nstas,ncol=1,dimnames=list(staid2)) 
    DISC=INDS=list() 
  } 
 
} 
 
GEVpars=list() 
IDF=list() 
DDF=list() 
 
for (i in 1:nstas) { 
  print(paste("i=",i,",staid2=",staid2[i],sep="")) 
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  # Cut off data based on yrs or (syr and eyr) 
  # If years of analysis specified, use those 
  if (!is.null(yrs)) { 
    # If no years to extract then go to the next station 
    if (all(is.na(yrs[i,]))) { 
      next 
    } else { 
    # Otherwise, extract the years 
      sdata=AMS4[[i]][na.omit(match(yrs[i,],rownames(AMS4[[i]]))),] 
      #print("here1") 
      #print(sdata) 
    } 
  # Otherwise, use starting and ending year 
  } else { 
    sdata=AMS4[[i]][rownames(AMS4[[i]])<=eyr & rownames(AMS4[[i]])>=syr,] 
  } 
 
  # Also eliminate durations with less than frac of data between syr and eyr 
  sdata=sdata[,apply(sdata,2,function(x) sum(!is.na(x))) >= frac*(eyr-syr+1)] 
 
  # Get data for durations of interest (and only durations with values) 
  sdata=sdata[,which(colnames(sdata)%in%subdurs)] 
  sdata=sdata[,apply(sdata,2,function(x) sum(!is.na(x))) >= 15] 
 
  # If no data left then go to the next station 
  if (length(sdata) == 0) next 
  #print("here2")   
 
  if (type=="bysite") { 
    if (method=="RegLmom") { 
        environment(regLmomAS)=environment() 
        rLmom=regLmomAS(variation="RFA") 
        GEVp2=rLmom$GEVp2 #Already comes with sign of k corrected to match gev.fit 
        H1[i]=rLmom$H1 
        t3R[i]=rLmom$t3R  
        nps[i]=rLmom$nps     
        adbpval[i]=rLmom$adbpval 
        DISC[[i]]=rLmom$disc 
        crits[i]=rLmom$crits 
    } 
 
    rownames(GEVp2)=c("xi","alfa","k") 
    colnames(GEVp2)=colnames(sdata) 
    xi[i,colnames(sdata)]=GEVp2["xi",] 
    alfa[i,colnames(sdata)]=GEVp2["alfa",] 
    k[i,colnames(sdata)]=GEVp2["k",] 
    GEVpars[[i]]=GEVp2 
    ddf=mapply(invF.GEV,as.list(data.frame(pne)),xi=GEVp2[1,],alfa=GEVp2[2,],k=-
GEVp2[3,]) 
    
idf=ddf/(matrix(rep(dursmins[match(colnames(sdata),durs)],length(pne)),ncol=ncol(sdata
),byrow=TRUE)/60) 
  } 
 
  colnames(ddf)=colnames(sdata) 
  rownames(ddf)=Tr 
  colnames(idf)=colnames(sdata) 
  rownames(idf)=Tr 
 
  DDF[[i]]=ddf 
  print(ddf) 
  IDF[[i]]=idf 
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  if (doplots) { 
  png(paste(dataset,"_",lab,"_DDF_",staid2[i],"_alldur_",type,method,"_",syr,"-
",eyr,".png",sep="")) 
  
matplot(t(matrix(rep(dursmins[match(colnames(sdata),durs)],length(pne)),ncol=ncol(sdat
a),byrow=TRUE)),t(ddf), 
          type="l",log="x",,xlab="log(D) (mins)",ylab="Precipitation (inches)", 
          main=c(paste(lab,": DDF fits at Station ",staid2[i],sep=""), 
          paste("Period: ",syr,"-",eyr,sep="")),axes=FALSE) 
  
#matlines(t(matrix(rep(dursmins[match(colnames(sdata),durs)],length(pne)),ncol=ncol(sd
ata),byrow=TRUE)) 
  #,t(ddfsmooth),lwd=2) 
  axis(side=1,at=dursmins,labels=durs,las=3,cex.axis=0.7) 
  axis(side=2) 
  axis(side=3,at=dursmins,cex.axis=0.7,tck=0.02,mgp=c(3,0,0)) 
  abline(v=dursmins,h=axTicks(side=2),col="lightgray",lty="dotted") 
  legend("topleft",legend=Tr,lty=1:5,col=1:6,cex=0.8) 
  box()    
  mtext("GEV fits based on Regional L-moments method",side=1,adj=1,line=4,cex=0.6) 
  dev.off()  
 
  png(paste(dataset,"_",lab,"_IDF_",staid2[i],"_alldur_",type,method,"_",syr,"-
",eyr,".png",sep=""),) 
  
matplot(t(matrix(rep(dursmins[match(colnames(sdata),durs)],length(pne)),ncol=ncol(sdat
a),byrow=TRUE)),t(idf), 
          type="l",log="x",,xlab="log(D) (mins)",ylab="Precipitation intensity 
(inches/hour)", 
          main=c(paste(lab,": IDF fits at Station ",staid2[i],sep=""), 
          paste("Period: ",syr,"-",eyr,sep="")),axes=FALSE) 
  axis(side=1,at=dursmins,labels=durs,las=3,cex.axis=0.7) 
  axis(side=2) 
  axis(side=3,at=dursmins,cex.axis=0.7,tck=0.02,mgp=c(3,0,0)) 
  abline(v=dursmins,h=axTicks(side=2),col="lightgray",lty="dotted") 
  legend("topright",legend=Tr,lty=1:5,col=1:6,cex=0.8) 
  box()    
  mtext("GEV fits based on Regional L-moments method",side=1,adj=1,line=4,cex=0.6) 
  dev.off()  
  } 
 
  sample_xs=mapply(function(x) sort(x), 
           
x=as.list(data.frame(sdata[,which(colnames(sdata)%in%subdurs)])),SIMPLIFY=FALSE)  
  sample_ffs=mapply(function(x) ppoints(sort(x),a=0), 
            
x=as.list(data.frame(sdata[,which(colnames(sdata)%in%subdurs)])),SIMPLIFY=FALSE)  
  fit_xs=mapply(invF.GEV,sample_ffs,xi=GEVp2[1,which(colnames(sdata)%in%subdurs)], 
         alfa=GEVp2[2,which(colnames(sdata)%in%subdurs)],k=-
GEVp2[3,which(colnames(sdata)%in%subdurs)], SIMPLIFY=FALSE) 
  sBias[i]=mean(unlist(fit_xs)-unlist(sample_xs)) 
  sRMSE[i]=RMSE(unlist(sample_xs),unlist(fit_xs)) 
  sMAE[i]=MAE(unlist(sample_xs),unlist(fit_xs)) 
  sR2[i]=cor(unlist(sample_xs),unlist(fit_xs))^2 
  sNS[i]=R2(unlist(sample_xs),unlist(fit_xs))#same as 
NSE(unlist(fit_xs),unlist(sample_xs)) 
 
  ffs=matrix(rep(seq(0.01,0.99,by=0.01),dim(sdata)[2]),ncol=dim(sdata)[2]) 
  xs=mapply(invF.GEV,as.list(data.frame(ffs)),xi=GEVp2[1,],alfa=GEVp2[2,],k=-
GEVp2[3,]) 
  ffs2=mapply(function(x) ecdf(x)(x),x=as.list(data.frame(sdata)))   
  
  if (doplots){ 
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  png(paste(dataset,"_",lab,"_",staid2[i],"_alldur_",type,method,"_",syr,"-
",eyr,".png",sep=""),) 
  matplot(xs,ffs,type="l",main=c(paste(lab,": GEV fits at Station ",staid2[i],sep=""), 
          paste("Period: ",syr,"-",eyr,sep="")),xlab="Precipitation (inches)", 
          ylab="F (P)",lwd=2) 
  matpoints(sdata,ffs2,cex=0.5) 
  legend("bottomright",legend=colnames(GEVp2),lty=1:5,lwd=2,col=1:6,cex=0.8) 
  grid() 
  abline(h=c(0,1,pne[1:6]),col="gray70",lty=2) 
  axis(side=4,at=pne[1:6],labels=Tr[1:6],cex.axis=0.5,las=1) 
  mtext("Tr (years)",side=4,cex=0.5) 
  mtext("GEV fits based on Regional L-moments method",side=1,adj=1,line=4,cex=0.6) 
  dev.off() 
  } 
 
  #Check whether curves intersect and at which return period Tr 
  # intTr: if GEV fits intersect between pne of 0.001 and 1-1/max(Tr)) 
  # then save the ***approximate*** Tr of intersection here 
  #This gives an idea of the number of intersections PRE-SMOOTHING 
  for (u in 1:nsubdurs) { 
    #only do it for durations pairs (30 mins vs. 15 mins) or more 
    if (match(subdurs[u],durs)>=4 & u>1) { 
      #print(paste("u=",u)) 
      if (!is.na(xi[i,u]) & !is.na(xi[i,u-1])) { 
        fun=function(fr) invF.GEV(fr,xi=xi[i,u],alfa=alfa[i,u],k=-k[i,u]) -  
                        invF.GEV(fr,xi=xi[i,u-1],alfa=alfa[i,u-1],k=-k[i,u-1]) 
        xroot=try(uniroot.all(fun, c(0.001,1-1/max(Tr)),n=10000)) 
        if (class(xroot)!="try-error" && length(xroot)>0) { 
          intTrmin[i,u]=1/(1-min(xroot)) 
          intTrmax[i,u]=1/(1-max(xroot)) 
        } 
      } 
    } 
  }#end u 
 
} #end i 
 
 
save(GEVpars,xi,alfa,k,IDF,DDF,sBias,sRMSE,sMAE,sNS,sR2,staid2, 
     file=paste(dataset,"_",lab,"_GEVpars_",type,"_",method,"_",syr,"-
",eyr,".RData",sep="")) 
 
save(intTrmax,intTrmin,staid2, 
     file=paste(dataset,"_",lab,"_intersections_",type,"_",method,"_",syr,"-
",eyr,".RData",sep="")) 
 
if (method=="RegLmom") save(H1,t3R,nps,crits,adbpval,DISC,INDS,staid2, 
                       
file=paste(dataset,"_",lab,"_regLmoms_",type,"_",method,"_",syr,"-
",eyr,".RData",sep="")) 
 
# Plot GEV curve intersections 
if (doplots) { 
png(paste(dataset,"_",lab,"_GEV_curve_intersections_",type,method,"_",syr,"-
",eyr,".png",sep=""),) 
plot(colSums(!is.na(intTrmax),na.rm=TRUE),axes=FALSE,xlab="Duration",ylab="# of 
intersections") 
axis(1,at=1:nsubdurs,labels=colnames(intTrmax),las=3) 
axis(2) 
grid() 
box() 
dev.off() 
#plot(rowSums(!is.na(intTrmax),na.rm=TRUE),xlab="station #",ylab="# of intersections") 
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} 
 
 
if (contmaps) { 
  # Make contour maps of DDF data 
  environment(DDFcontours)=environment() 
  DDFcontours() 
  # Make contour maps of each parameter for each duration  
  # (starting at 15 mins since no data for 5 and 10 mins) 
  for (u in 1:nsubdurs) { 
    #only do it for durations of 15 mins or more 
    if (match(subdurs[u],durs)>=3) { 
      contourmap(xi[,u],staid2,direc=getwd(), 
                 
main=paste(dataset,"_",lab,"_GEV_locpar_",subdurs[u],"_",type,method,"_",syr,"-
",eyr,sep=""), 
                 res=1000,idp=2,posonly=TRUE,pval=NULL,labs="none") 
      contourmap(alfa[,u],staid2,direc=getwd(), 
                 
main=paste(dataset,"_",lab,"_GEV_scalepar_",subdurs[u],"_",type,method,"_",syr,"-
",eyr,sep=""), 
                 res=1000,idp=2,posonly=TRUE,pval=NULL,labs="none") 
      contourmap(k[,u],staid2,direc=getwd(), 
                 
main=paste(dataset,"_",lab,"_GEV_shapepar_",subdurs[u],"_",type,method,"_",syr,"-
",eyr,sep=""), 
                 res=1000,idp=2,posonly=FALSE,pval=NULL,labs="none",zlim=c(-
max(abs(k),na.rm=TRUE),max(abs(k),na.rm=TRUE))) 
    } 
  }#end u 
} 
 
if (doplots) { 
 
png(paste(dataset,"_",lab,"_GEV_locpar_alldur_",type,method,"_",syr,"-
",eyr,".png",sep=""),) 
matplot(t(matrix(rep(dursmins[match(subdurs,durs)],nstas),nrow=nstas,ncol=nsubdurs,byr
ow=TRUE)), 
        t(xi),type="l",log="x",xlab="log(D) (mins)",ylab="Location parameter", 
        main=c(paste(lab,": GEV location parameter as function of duration",sep=""), 
        paste("at all MDC stations (",method,") for period: ",syr,"-
",eyr,sep="")),axes=FALSE) 
axis(side=1,at=dursmins,labels=durs,las=3,cex.axis=0.7) 
axis(side=2) 
axis(side=3,cex.axis=0.7,tck=0.02,mgp=c(3,0,0)) 
abline(v=dursmins,h=axTicks(side=2),col="lightgray",lty="dotted") 
lines(dursmins[match(subdurs,durs)],colMeans(xi,na.rm=TRUE),lwd=3,lty=2) 
lines(dursmins[match(subdurs,durs)],apply(xi,2,quantile,probs=0.05,na.rm=TRUE),lwd=3) 
lines(dursmins[match(subdurs,durs)],apply(xi,2,quantile,probs=0.5,na.rm=TRUE),lwd=3) 
lines(dursmins[match(subdurs,durs)],apply(xi,2,quantile,probs=0.95,na.rm=TRUE),lwd=3) 
legend("top",legend=c("mean","P5, P50, P95"),lty=c(2,1),lwd=3) 
box()    
dev.off()  
 
png(paste(dataset,"_",lab,"_GEV_locpar_alldur_loglog_",type,method,"_",syr,"-
",eyr,".png",sep=""),) 
matplot(t(matrix(rep(dursmins[match(subdurs,durs)],nstas),nrow=nstas,ncol=nsubdurs,byr
ow=TRUE)), 
        t(xi),type="l",log="xy",xlab="log(D) (mins)",ylab="log(Location parameter)", 
        main=c(paste(lab,": GEV location parameter as function of duration",sep=""), 
        paste("at all MDC stations (",method,") for period: ",syr,"-
",eyr,sep="")),axes=FALSE) 
axis(side=1,at=dursmins,labels=durs,las=3,cex.axis=0.7) 
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axis(side=2) 
axis(side=3,cex.axis=0.7,tck=0.02,mgp=c(3,0,0)) 
abline(v=dursmins,h=axTicks(side=2),col="lightgray",lty="dotted") 
lines(dursmins[match(subdurs,durs)],colMeans(xi,na.rm=TRUE),lwd=3,lty=2) 
lines(dursmins[match(subdurs,durs)],apply(xi,2,quantile,probs=0.05,na.rm=TRUE),lwd=3) 
lines(dursmins[match(subdurs,durs)],apply(xi,2,quantile,probs=0.5,na.rm=TRUE),lwd=3) 
lines(dursmins[match(subdurs,durs)],apply(xi,2,quantile,probs=0.95,na.rm=TRUE),lwd=3) 
legend("top",legend=c("mean","P5, P50, P95"),lty=c(2,1),lwd=3) 
box()    
dev.off()  
 
png(paste(dataset,"_",lab,"_GEV_scalepar_alldur_",type,method,"_",syr,"-
",eyr,".png",sep=""),) 
matplot(t(matrix(rep(dursmins[match(subdurs,durs)],nstas),nrow=nstas,ncol=nsubdurs,byr
ow=TRUE)), 
        t(alfa),type="l",log="x",xlab="log(D) (mins)",ylab="Scale parameter", 
        main=c(paste(lab,": GEV scale parameter as function of duration",sep=""), 
        paste("at all MDC stations (",method,") for period: ",syr,"-
",eyr,sep="")),axes=FALSE) 
axis(side=1,at=dursmins,labels=durs,las=3,cex.axis=0.7) 
axis(side=2) 
axis(side=3,cex.axis=0.7,tck=0.02,mgp=c(3,0,0)) 
abline(v=dursmins,h=axTicks(side=2),col="lightgray",lty="dotted") 
lines(dursmins[match(subdurs,durs)],colMeans(alfa,na.rm=TRUE),lwd=3,lty=2) 
lines(dursmins[match(subdurs,durs)],apply(alfa,2,quantile,probs=0.05,na.rm=TRUE),lwd=3
) 
lines(dursmins[match(subdurs,durs)],apply(alfa,2,quantile,probs=0.5,na.rm=TRUE),lwd=3) 
lines(dursmins[match(subdurs,durs)],apply(alfa,2,quantile,probs=0.95,na.rm=TRUE),lwd=3
) 
legend("top",legend=c("mean","P5, P50, P95"),lty=c(2,1),lwd=3) 
box()    
dev.off()  
 
png(paste(dataset,"_",lab,"_GEV_scalepartolocpar_ratio_alldur_",type,method,"_",syr,"-
",eyr,".png",sep=""),) 
matplot(t(matrix(rep(dursmins[match(subdurs,durs)],nstas),nrow=nstas,ncol=nsubdurs,byr
ow=TRUE)), 
        t(alfa)/t(xi),type="l",log="x",xlab="log(D) (mins)",ylab="Scale 
parameter/location parameter", 
        main=c("Ratio of scale/location as function of duration", 
        paste("at all MDC stations (",method,") for period: ",syr,"-
",eyr,sep="")),axes=FALSE) 
axis(side=1,at=dursmins,labels=durs,las=3,cex.axis=0.7) 
axis(side=2) 
axis(side=3,cex.axis=0.7,tck=0.02,mgp=c(3,0,0)) 
abline(v=dursmins,h=axTicks(side=2),col="lightgray",lty="dotted") 
lines(dursmins[match(subdurs,durs)],colMeans(alfa/xi,na.rm=TRUE),lwd=3,lty=2) 
lines(dursmins[match(subdurs,durs)],apply(alfa/xi,2,quantile,probs=0.05,na.rm=TRUE),lw
d=3) 
lines(dursmins[match(subdurs,durs)],apply(alfa/xi,2,quantile,probs=0.5,na.rm=TRUE),lwd
=3) 
lines(dursmins[match(subdurs,durs)],apply(alfa/xi,2,quantile,probs=0.95,na.rm=TRUE),lw
d=3) 
legend("top",legend=c("mean","P5, P50, P95"),lty=c(2,1),lwd=3) 
box()    
dev.off()  
 
png(paste(dataset,"_",lab,"_GEV_locpar_vs_scalepar_alldur_",type,method,"_",syr,"-
",eyr,".png",sep=""),) 
matplot(t(xi), 
        t(alfa),type="l",xlab="Location parameter",ylab="Scale parameter", 
        main=c("GEV location parameter vs. GEV scale parameter", 
        paste("at all MDC stations (",method,") for period: ",syr,"-",eyr,sep=""))) 
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abline(v=axTicks(side=1),h=axTicks(side=2),col="lightgray",lty="dotted") 
lines(colMeans(xi,na.rm=TRUE),colMeans(alfa,na.rm=TRUE),lwd=3,lty=2) 
lines(apply(xi,2,quantile,probs=0.05,na.rm=TRUE),apply(alfa,2,quantile,probs=0.05,na.r
m=TRUE),lwd=3) 
lines(apply(xi,2,quantile,probs=0.5,na.rm=TRUE),apply(alfa,2,quantile,probs=0.5,na.rm=
TRUE),lwd=3) 
lines(apply(xi,2,quantile,probs=0.95,na.rm=TRUE),apply(alfa,2,quantile,probs=0.95,na.r
m=TRUE),lwd=3) 
legend("top",legend=c("mean","P5, P50, P95"),lty=c(2,1),lwd=3) 
box()    
dev.off()  
 
#png(paste(dataset,"_",lab,"_GEV_locpar_vs_scalepar_durupto2hr_",type,method,"_",syr,"
-",eyr,".png",sep=""),) 
#matplot(t(xi[,1:6]), 
#        t(alfa[,1:6]),type="l",xlab="Location parameter",ylab="Scale parameter", 
#        main=c("GEV location parameter vs. GEV scale parameter", 
#        paste("at all MDC stations (",method,") for period: ",syr,"-",eyr,sep=""))) 
#abline(v=axTicks(side=1),h=axTicks(side=2),col="lightgray",lty="dotted") 
#lines(colMeans(xi[,1:6],na.rm=TRUE),colMeans(alfa[,1:6],na.rm=TRUE),lwd=3,lty=2) 
#lines(apply(xi[,1:6],2,quantile,probs=0.05,na.rm=TRUE),apply(alfa[,1:6],2,quantile,pr
obs=0.05,na.rm=TRUE),lwd=3) 
#lines(apply(xi[,1:6],2,quantile,probs=0.5,na.rm=TRUE),apply(alfa[,1:6],2,quantile,pro
bs=0.5,na.rm=TRUE),lwd=3) 
#lines(apply(xi[,1:6],2,quantile,probs=0.95,na.rm=TRUE),apply(alfa[,1:6],2,quantile,pr
obs=0.95,na.rm=TRUE),lwd=3) 
#legend("top",legend=c("mean","P5, P50, P95"),lty=c(2,1),lwd=3) 
#box()    
#dev.off()  
 
 
png(paste(dataset,"_",lab,"_GEV_locpar_vs_scalepar_alldur_loglog_",type,method,"_",syr
,"-",eyr,".png",sep=""),) 
matplot(t(xi), 
        t(alfa),type="l",log="xy",xlab="log(Location parameter)",ylab="log(Scale 
parameter)", 
        main=c("GEV location parameter vs. GEV scale parameter", 
        paste("at all MDC stations (",method,") for period: ",syr,"-",eyr,sep=""))) 
abline(v=axTicks(side=1),h=axTicks(side=2),col="lightgray",lty="dotted") 
lines(colMeans(xi,na.rm=TRUE),colMeans(alfa,na.rm=TRUE),lwd=3,lty=2) 
lines(apply(xi,2,quantile,probs=0.05,na.rm=TRUE),apply(alfa,2,quantile,probs=0.05,na.r
m=TRUE),lwd=3) 
lines(apply(xi,2,quantile,probs=0.5,na.rm=TRUE),apply(alfa,2,quantile,probs=0.5,na.rm=
TRUE),lwd=3) 
lines(apply(xi,2,quantile,probs=0.95,na.rm=TRUE),apply(alfa,2,quantile,probs=0.95,na.r
m=TRUE),lwd=3) 
legend("top",legend=c("mean","P5, P50, P95"),lty=c(2,1),lwd=3) 
box()    
dev.off()  
 
png(paste(dataset,"_",lab,"_GEV_shapepar_alldur_",type,method,"_",syr,"-
",eyr,".png",sep=""),) 
matplot(t(matrix(rep(dursmins[match(subdurs,durs)],nstas),nrow=nstas,ncol=nsubdurs,byr
ow=TRUE)), 
        t(k),type="l",log="x",xlab="log(D) (mins)",ylab="Shape parameter", 
        main=c(paste(lab,": GEV shape parameter as function of duration",sep=""), 
        paste("at all MDC stations (",method,") for period: ",syr,"-
",eyr,sep="")),axes=FALSE,ylim=c(-0.52,0.52)) 
axis(side=1,at=dursmins,labels=durs,las=3,cex.axis=0.7) 
axis(side=2) 
axis(side=3,cex.axis=0.7,tck=0.02,mgp=c(3,0,0)) 
abline(v=dursmins,h=axTicks(side=2),col="lightgray",lty="dotted") 
lines(dursmins[match(subdurs,durs)],colMeans(k,na.rm=TRUE),lwd=3,lty=2) 
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lines(dursmins[match(subdurs,durs)],apply(k,2,quantile,probs=0.05,na.rm=TRUE),lwd=3) 
lines(dursmins[match(subdurs,durs)],apply(k,2,quantile,probs=0.5,na.rm=TRUE),lwd=3) 
lines(dursmins[match(subdurs,durs)],apply(k,2,quantile,probs=0.95,na.rm=TRUE),lwd=3) 
abline(h=0) 
legend("bottom",legend=c("mean","P5, P50, P95"),lty=c(2,1),lwd=3) 
box()    
dev.off()  
 
} 
 
 
} 
 
####################################################################### 
 
regLmomAS <- function(variation="RFA"){ 
# At-site regional Lmoments (by duration) 
# The environment for this function is set to that of the parent environment so it 
# can see all the variables in the parent, but not modify them directly  
# variation: "RFA" to group normalized annual maxima across stations in the ROI  
#            (normalizing variable is MAM), compute Lmoments for the group as 
#            well as GEV parameters and then convert those back to at station 
#            estimates 
#            "A14" to compute regional Lmoments for each station in the ROI 
#            independently and then do weighted average to compute at station 
#            estimate  
 
############################################################################ 
 
library(nsRFA) 
 
mam=colMeans(sdata,na.rm=TRUE) 
 
GEVp2=matrix(nrow=3,ncol=ncol(sdata)) 
colnames(GEVp2)=colnames(sdata) 
 
dat=data.frame(V1=rep(colnames(sdata),each=nrow(sdata)),Dmax=as.vector(sdata)) 
y=as.data.frame(dat[rowSums(is.na(dat))==0,])  
mvals=tapply(y$Dmax,y$V1,mean,na.rm=TRUE) 
if (variation=="RFA") { 
  nps=length(unique(y$V1))  
  #Note: nps must be greater than or equal to 5 
  #Anderson-Darling test for homogeneity 
  adbpval=1-ADbootstrap.test(y$Dmax,y$V1,index=1)["P"] 
  y$Dmax=y$Dmax/unsplit(tapply(y$Dmax,y$V1,mean,na.rm=TRUE),y$V1) 
  #Discordancy measure of AMS normalized by index (MAM) 
  disc=discordancy(y$Dmax,y$V1) 
  #H values for AMS normalized by index (MAM) 
  Hws=HW.tests(y$Dmax,y$V1) 
  H1=Hws[1] 
  #print(Hws) 
  #estimate and plot regional growth curve 
  regLM=nsRFA::Lmoments(y$Dmax) 
  t3R=regLM[4] 
  pars=par.GEV(regLM[1],regLM[2],regLM[4])  
  #changing sign of shape par k for consistency with MLE estimated shape parameter (by 
gev.fit) 
  GEVp2[1,]=pars$xi*mam 
  GEVp2[2,]=pars$alfa*mam 
  GEVp2[3,]=-pars$k 
  #plot L-moment diagram 
  #Lmoment.ratio.diagram() 
  #points(regLM[4],regLM[5],pch=19,col="red") 
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  png(paste(dataset,"_",lab,"_DDF_",staid2[i],"_alldur_norm_",type,method,"_",syr,"-
",eyr,".png",sep="")) 
  FF=F.GEV(y$Dmax,pars$xi,pars$alfa,pars$k) 
  regionalplotpos(y$Dmax,y$V1,xlab="Dmax",main=c("DDF fitted to normalized AMS by 
duration", 
                                                 paste("for station 
",staid2[i],sep=""))) 
  w=as.data.frame(cbind(y$Dmax,FF)) 
  names(w)=c("Dmax","FF") 
  sDmax=sort(w$Dmax[!is.na(w$FF)]) 
  sFF=sort(w$FF[!is.na(w$FF)]) 
  lines(sDmax[!is.na(sFF)],sFF[!is.na(sFF)],lwd=2) 
  leg=unique(y$V1) 
  legend("bottomright",legend=leg,pch=c(1:length(unique(y$V1))),  
         col=c(1:length(unique(y$V1))), cex=0.7) 
  dev.off() 
} else if (variation=="A14") { 
  nps=length(unique(y$V1))  
  #Discordancy measure of AMS 
  #disc=discordancy(y$Dmax,y$V1) 
  #Anderson-Darling test for homogeneity 
  adbpval=1-ADbootstrap.test(y$Dmax,y$V1,index=1)["P"] 
  #H values for AMS 
  Hws=HW.tests(y$Dmax,y$V1) 
  H1=Hws[1] 
  regLM=regionalLmoments(y$Dmax,y$V1) 
  lambda1=mam 
  lambda2=regLM[3]*mam 
  t3R=rep(regLM[4],length(mam)) 
  GEVp2=mapply(function(lambda1,lambda2,tau3) 
as.numeric(par.GEV(lambda1,lambda2,tau3)), 
                    lambda1=lambda1,lambda2=lambda2,tau3=t3R) 
  t3R=regLM[4] 
  #changing sign of shape par k for consistency with MLE estimated shape parameter (by 
gev.fit) 
  GEVp2[3,]=-GEVp2[3,] 
} 
 
Z=qf(.1/nps,3,nps-4,lower.tail=FALSE) 
crits=(nps-1)*Z/(nps-4+3*Z) 
#crits matches value from function criticalD() 
 
#print(disc) 
#print(paste(crits,nps,Z)) 
return(list(GEVp2=GEVp2,H1=H1,t3R=t3R,disc=disc,crits=crits,nps=nps,adbpval=adbpval)) 
 
} 
 
 
################################################################################# 
GOFstatscompare <- function() { 
# Compare GOF statistics for the different methods 
# Every list has the following components: (sRMSE,sMAE,sR2,sNS) 
 
setwd("F:/ATLAS14/AMS/") 
load("F:/ATLAS14/AMS/GOF_statistics.RData") 
Stat_lists=c("bydur_Lmom","bydur_MLE","bydur_RegLmom","bydur_RegLmom_officialROI_A14", 
"bysite_RegLmom","CPM_Lmom","CPM_MLE","scaling_optim","unified_MLE")    
 
# Get staid2 (ids of weather stations) 
load("F:/ATLAS14/stationids.RData") 
nstas=length(staid2) 
sBias=sRMSE=sMAE=sR2=sNS=matrix(nrow=nstas,ncol=length(Stat_lists)) 
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#colnames(sRMSE)=Stat_lists 
#colnames(sMAE)=Stat_lists 
#colnames(sR2)=Stat_lists 
 
for (o in 1:length(Stat_lists)){ 
  sBias[,o]=get(paste("Stats_",Stat_lists[o],sep=""))$sBias 
  sRMSE[,o]=get(paste("Stats_",Stat_lists[o],sep=""))$sRMSE 
  sMAE[,o]=get(paste("Stats_",Stat_lists[o],sep=""))$sMAE 
  sR2[,o]=get(paste("Stats_",Stat_lists[o],sep=""))$sR2 
  sNS[,o]=get(paste("Stats_",Stat_lists[o],sep=""))$sNS 
} 
 
png("GOF_statistics_boxplot.png",height=1000,width=720,pointsize=20) 
nf=layout((c(1,2,3,4,5)),heights=c(2,2,2,2,2)) 
 
#pars=par(mar=c(5.1,4.1,4.1,10),xpd=TRUE) 
par(mar=c(0,4.1,2,2.1),mgp=c(2,1,0)) 
bxp=boxplot(sBias,xaxt="n",ylab="Bias (inches)",main="Comparison of Goodness-of-fit 
statistics across methods") 
abline(h=axTicks(side=2),col="lightgray",lty="dotted") 
text(x=rep(1:length(Stat_lists),1),y=as.vector(t(bxp$stats[3,])+0.02),labels=round(as.
vector(t(bxp$stats[3,])),2), 
    col="red",font=2) 
 
par(mar=c(1,4.1,1,2.1),mgp=c(2,1,0)) 
bxp=boxplot(sRMSE,xaxt="n",ylab="RMSE (inches)") 
abline(h=axTicks(side=2),col="lightgray",lty="dotted") 
text(x=rep(1:length(Stat_lists),1),y=as.vector(t(bxp$stats[3,])+0.10),labels=round(as.
vector(t(bxp$stats[3,])),2), 
    col="red",font=2) 
 
par(mar=c(1,4.1,0,2.1),mgp=c(2,1,0)) 
bxp=boxplot(sMAE,xaxt="n",ylab="MAE (inches)") 
abline(h=axTicks(side=2),col="lightgray",lty="dotted") 
text(x=rep(1:length(Stat_lists),1),y=as.vector(t(bxp$stats[3,])+0.03),labels=round(as.
vector(t(bxp$stats[3,])),2), 
    col="red",font=2) 
 
par(mar=c(1,4.1,0,2.1),mgp=c(2,1,0)) 
bxp=boxplot(sR2,xaxt="n",ylab=expression("R"^"2")) 
abline(h=axTicks(side=2),col="lightgray",lty="dotted") 
text(x=rep(1:length(Stat_lists),1),y=as.vector(t(bxp$stats[3,])-
0.005),labels=round(as.vector(t(bxp$stats[3,])),2), 
    col="red",font=2) 
 
par(mar=c(2,4.1,0,2.1),mgp=c(2,1,0)) 
bxp=boxplot(sNS,ylab="NSE") 
#axis(1,at=1:length(Stat_lists),labels=Stat_lists,cex.axis=1,las=3) 
abline(h=axTicks(side=2),col="lightgray",lty="dotted") 
text(x=rep(1:length(Stat_lists),1),y=as.vector(t(bxp$stats[3,])-
0.01),labels=round(as.vector(t(bxp$stats[3,])),2), 
     col="red",font=2) 
 
#par(fig=c(0,1,0,1),oma=c(0,0,0,0),mar=c(0,0,0,0),new=TRUE) 
#plot(0,0,type="n",bty="n",xaxt="n",yaxt="n",col="white") 
#legend.col=c(rep(0,3),rep(1,3),rep(2,3)) 
#legend("bottom",legend=paste(c(1:9),":",Stat_lists,sep=""),xpd=TRUE,inset=c(0,0),bty=
"n", 
#       cex=1,col=legend.col,ncol=3) 
dev.off() 
 
} 
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############################################################################ 
 
DDFcontours <- function() { 
#This function create contour maps for fitted DDF values 
#It can see the following variables from the main program: 
#DDF is a list with each element of the list being a matrix with one row per return 
period 
#and one column per duration 
#subdurs: durations of interest 
#subTr: return periods of interest 
 
############################################################################ 
 
source("Z:/miriza/Work/FIU/FL_Building_Code/Data/Rainfall/Code/contourmap.R") 
 
nsubdurs=length(subdurs) 
ntss=length(subTr) 
 
#Create matrix from DDF list 
ddfm=array(dim=c(nstas,nsubdurs,ntss),dimnames=list(staid2,subdurs,subTr)) 
#oo=lapply(seq_len(length(DDF)), function(i) 
ddfm[i,,]=t(DDF[[i]][as.character(subTr),subdurs])) 
for (i in 1:nstas){ 
  if (!is.null(DDF[[i]])) ddfm[i,match(colnames(DDF[[i]]),subdurs),]=t(DDF[[i]]) 
} 
 
 
for (u in 1:nsubdurs) { 
  for (t in 1:ntss) { 
    contourmap(ddfm[,u,t],staid2,direc=getwd(), 
               main=paste(dataset,"_",lab,"_DDF_",subdurs[u],"_",subTr[t],"-
year_",type,method,"_",syr,"-",eyr,sep=""), 
               res=1000,idp=2,posonly=TRUE,pval=NULL,labs="data")   
  } 
} 
 
} 
 
############################################################################ 
 
copytable <- function(x, ...) { 
 
############################################################################ 
 
  library(xtable) 
  f <- tempfile(fileext=".html") 
  print(xtable(x, ...), "html", file = f) 
  browseURL(f) 
} 
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############################################################################ 
 
doEQM <- function () { 
 
#This function does EQM for bias-correction and QM for temporal downscaling 
 
############################################################################ 
 
data_dir="Z:/miriza/Work/FIU/FL_Building_Code/Data/Rainfall/LOCA_dataset/Data/" 
setwd(data_dir) 
 
source("Z:/miriza/Work/FIU/FL_Building_Code/Data/Rainfall/Code/contourmap.R") 
 
## Open log file and write header 
logfile = paste("EQM_",format(Sys.time(),"%Y-%m-%d_%I_%M_%S_%p"),".log",sep="") 
write(paste("Log file for EQM:",sep=""),file=logfile) 
 
logfile2 = paste("EQM_2",format(Sys.time(),"%Y-%m-%d_%I_%M_%S_%p"),".log",sep="") 
write(paste("Log file for EQM:",sep=""),file=logfile2) 
 
RCPs=c("RCP45","RCP85") 
nmodels=60 
RCP45=1:30 
RCP85=31:60 
 
#Quantiles of interest 
probs=c(0.05,0.5,0.95) 
 
# Durations 
durs=c("24-hr","2-day","3-day","4-day","7-day","10-day","20-day","30-day","45-
day","60-day"); 
dursmins=c(1440,2880,4320,5760,10080,14400,28800,43200,64800,86400) 
ndurs=length(durs) 
#Durations of interest 
subdurs=c("24-hr","2-day","3-day","4-day","7-day") 
nsubdurs=length(subdurs) 
 
#Subdaily durations of interest for temporal downscaling 
hdurs=c("60-min","2-hr","3-hr","6-hr","12-hr") 
nhdur=length(hdurs) 
hdursmins=c(60,120,180,360,720) 
 
 
#Return periods 
Tr=c(2,5,10,25,50,100,200,500,1000) 
#Exceedance prob. 
pe=1/Tr 
#Non exceedance probabilities 
pne=1-1/Tr 
nts=length(Tr) 
#Return periods of interest 
subTr=c(2,5,10,25,50,100) 
ntss=length(subTr) 
pes=1/subTr 
pnes=1-1/subTr 
durshr=(matrix(rep(dursmins[match(subdurs,durs)],ntss),ncol=ntss,byrow=FALSE)/60) 
hdurshr=(matrix(rep(hdursmins,ntss),ncol=ntss,byrow=FALSE)/60) 
 
# Get staid2 (ids of weather stations) 
load("Z:/miriza/Work/FIU/FL_Building_Code/Data/Rainfall/Obs_datasets/before_2005/stati
onids.RData") 
nstas=length(staid2) 
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dataset1="MDC_obs" 
dataset2="FL_LOCA" 
 
curr=c(1940,2005) 
currm=c(1942,2005) 
proj1=c(2050,2079) 
 
type="bysite" 
method="RegLmom" 
 
#Observational datasets 
lab="Foc" 
load(paste("Z:/miriza/Work/FIU/FL_Building_Code/Data/Rainfall/Obs_datasets/before_2005
/", 
           dataset1,"_",lab,"_GEVpars_",type,"_",method, 
           "_",curr[1],"-",curr[2],".RData",sep="")) 
xioc=xi 
alfaoc=alfa 
koc=k 
ddfoc=array(dim=c(nstas,nsubdurs,ntss),dimnames=list(staid2,subdurs,subTr)) 
for (i in 1:nstas){ 
  if (!is.null(DDF[[i]])) ddfoc[i,,]=t(DDF[[i]][as.character(subTr),subdurs])  
} 
ddfoch=array(dim=c(nstas,nhdur,ntss),dimnames=list(staid2,hdurs,subTr)) 
for (i in 1:nstas){ 
  if (!is.null(DDF[[i]])) { 
    if (all(hdurs%in%colnames(DDF[[i]]))) { 
      ddfoch[i,,]=t(DDF[[i]][as.character(subTr),hdurs])  
 } 
  } 
} 
rm(GEVpars,xi,alfa,k) 
 
 
DDFmpadj1=array(dim=c(nmodels,nstas,nsubdurs,ntss)) 
m=0 
for (r in 1:length(RCPs)) { 
  print(paste("r = ",r,sep="")) 
  projs=readLines(paste("./",RCPs[r],"/Projections5.txt",sep="")) 
 
  for (f in 1:length(projs)) { 
    m=m+1 
    print(paste("f = ",f,", m = ",m,sep="")) 
 
    lab="Fmc" 
    load(paste("./",RCPs[r],"/model_",f,"/",dataset2,"_",lab,"_GEVpars_",type,"_", 
         method,"_",currm[1],"-",currm[2],".RData",sep="")) 
    #load(paste("./",RCPs[r],"/model_",f,"/",dataset2,"_",lab,"_GEVpars_",type,"_", 
    #     method,"_",curr[1],"-",curr[2],"_allyrs.RData",sep="")) 
    ximc=xi 
    alfamc=alfa 
    kmc=k 
    rm(GEVpars,xi,alfa,k) 
 
    lab="Fmp1" 
    load(paste("./",RCPs[r],"/model_",f,"/",dataset2,"_",lab,"_GEVpars_",type,"_", 
         method,"_",proj1[1],"-",proj1[2],".RData",sep="")) 
    ximp1=xi 
    alfamp1=alfa 
    kmp1=k 
    rm(GEVpars,xi,alfa,k)    
 
    for (i in 1:nstas) { 
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       print(paste("i = ",i,sep="")) 
       for (u in 1:nsubdurs) { 
         print(paste("u = ",u,sep="")) 
         if (!is.na(xioc[i,subdurs[u]])) { 
           
GEVparsoc=c(xi=xioc[i,subdurs[u]],alfa=alfaoc[i,subdurs[u]],k=koc[i,subdurs[u]]) 
           #GEVparsoc=NULL  
           
GEVparsmc=c(xi=ximc[i,subdurs[u]],alfa=alfamc[i,subdurs[u]],k=kmc[i,subdurs[u]]) 
           
GEVparsmp1=c(xi=ximp1[i,subdurs[u]],alfa=alfamp1[i,subdurs[u]],k=kmp1[i,subdurs[u]]) 
           #Comment out first GEVparsoc above (set GEVparsoc to NULL instead) 
           #and add #xoc=ddfoc[i,u,] in the calls to EQM below to use 
           #Official Atlas 14 DDF curves as xoc 
           
EQMmpadj1=EQM(GEVparsoc,GEVparsmc,GEVparsmp1,type="ratio",Tr=subTr,logfile=logfile) 
           DDFmpadj1[m,i,u,]=EQMmpadj1 
         } 
       } #end u 
     } # end i 
  } # end f 
}# end r 
 
#Flag inconsistent values 
incons1=NULL 
for (m in 1:nmodels) { 
  for (i in 1:nstas) { 
    if ( sum(!is.na(DDFmpadj1[m,i,,]))) { 
      if (any(apply(DDFmpadj1[m,i,,],1,is.unsorted))) { 
        print(paste("m=",m,",i=",i,",1",sep="")) 
        incons1=cbind(incons1,c(m,i,1)) 
      } 
      if (any(apply(DDFmpadj1[m,i,,],2,is.unsorted))) { 
        print(paste("m=",m,",i=",i,",2",sep="")) 
        incons1=cbind(incons1,c(m,i,2)) 
      } 
    } 
     
  } 
} 
 
 
#Use SPM to fix inconsistent values 
sepfun <- function(pars,durshr) { 
  aT=pars[1:ntss] 
  eta=pars[ntss+1] 
  #eta=0.75 
  bd=1/(durshr[,1]^eta) 
  ddf=(bd*durshr[,1])%*%t(aT) 
  return(ddf) 
} 
 
optfun <- function(pars,dat,durshr) { 
  ddffit=sepfun(pars,durshr) 
  res1=(ddffit-dat)^2 
  return(mean(c(res1))) 
} 
 
environment(sepfun)=environment() 
environment(optfun)=environment() 
 
DDFmpadj11=DDFmpadj1 
lab="Fmpadj1" 
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for (inc in 1:ncol(incons1)) { 
  par0=c(colMeans(DDFmpadj1[incons1[1,inc],incons1[2,inc],,]/(durshr^(1-0.8))),0.8) 
  SPMopt=optim(par=par0, 
              fn=optfun,dat=DDFmpadj1[incons1[1,inc],incons1[2,inc],,],durshr=durshr, 
              control=list(maxit=10000)) 
  prevval=SPMopt$value 
  par0=c(colMeans(DDFmpadj1[incons1[1,inc],incons1[2,inc],,]/(durshr^(1-
SPMopt$par[ntss+1]))),SPMopt$par[ntss+1]) 
  conv=FALSE 
  while (conv==FALSE) { 
    print(paste("conv=",conv)) 
    SPMopt=optim(par=par0, 
                
fn=optfun,dat=DDFmpadj1[incons1[1,inc],incons1[2,inc],,],durshr=durshr, 
                control=list(maxit=10000)) 
    newval=SPMopt$value 
    percchange=(newval-prevval)/prevval*100 
    if (abs(percchange) < 0.1) { 
      conv=TRUE 
    } else { 
      par0=c(colMeans(DDFmpadj1[incons1[1,inc],incons1[2,inc],,]/(durshr^(1-
SPMopt$par[ntss+1]))),SPMopt$par[ntss+1]) 
      prevval=newval 
    } 
  } 
  print(paste("incons1 = ",inc,",conv = 
",SPMopt$convergence,",eta=",round(SPMopt$par[ntss+1],2),sep="")) 
  DDFmpadj11[incons1[1,inc],incons1[2,inc],,]=sepfun(SPMopt$par,durshr) 
  
ylim=range(cbind(DDFmpadj1[incons1[1,inc],incons1[2,inc],,],DDFmpadj11[incons1[1,inc],
incons1[2,inc],,])) 
  
png(paste("SPM_adjust_",lab,"_m_",incons1[1,inc],"_sta_",incons1[2,inc],"_",staid2[inc
ons1[2,inc]],".png",sep="")) 
  matplot(durshr*60,DDFmpadj1[incons1[1,inc],incons1[2,inc],,],type="b",log="x", 
          xlab="log(D) (mins)",ylab="Precipitation (inches)", 
          main=c(paste(lab,": DDF fits with EQM/SPM at Station 
",staid2[incons1[2,inc]],sep=""), 
          paste("Period: ",proj1[1],"-",proj1[2],sep="")), 
          axes=FALSE,ylim=ylim,pch=1,lty=1,lwd=1) 
  matplot(durshr*60,DDFmpadj11[incons1[1,inc],incons1[2,inc],,],type="b",log="x", 
          ylim=ylim,pch=2,lty=2,lwd=2,add=TRUE) 
  axis(side=1,at=dursmins,labels=durs,las=3,cex.axis=0.7) 
  axis(side=2) 
  axis(side=3,at=dursmins,cex.axis=0.7,tck=0.02,mgp=c(3,0,0)) 
  abline(v=dursmins,h=axTicks(side=2),col="lightgray",lty="dotted") 
  lty=c(1:2) 
  pch=c(1:2) 
  lwd=c(1:2) 
  legend("topleft",legend=c(lab,paste(lab,"with 
SPM")),lty=lty,pch=pch,lwd=lwd,cex=0.8) 
  mtext( paste("Return periods:",toString(subTr),"years"),side=1,adj=1,line=4,cex=0.6) 
  box()    
  dev.off()  
} 
 
 
#Plot all adjusted DDFs 
m=0 
for (r in 1:length(RCPs)) { 
  print(paste("r = ",r,sep="")) 
  projs=readLines(paste("./",RCPs[r],"/Projections5.txt",sep="")) 
 



320 
 

  for (f in 1:length(projs)) { 
    m=m+1 
    print(paste("f = ",f,", m = ",m,sep="")) 
 
    for (i in 1:nstas) { 
      print(paste("i = ",i,sep="")) 
      lab="Fmpadj1" 
      if ( sum(!is.na(DDFmpadj1[m,i,,]))) { 
        ylim=range(cbind(DDFmpadj1[m,i,,],DDFmpadj11[m,i,,])) 
        png(paste("./",RCPs[r],"/model_",f,"/",dataset2,"_",lab,"_DDF_", 
                  staid2[i],"_alldur_EQM_",proj1[1],"-",proj1[2],".png",sep="")) 
        matplot(durshr*60,DDFmpadj1[m,i,,],type="b",log="x", 
                xlab="log(D) (mins)",ylab="Precipitation (inches)", 
                main=c(paste(lab,": DDF fits with EQM at Station ",staid2[i],sep=""), 
                paste("Period: ",proj1[1],"-",proj1[2],sep="")), 
                axes=FALSE,ylim=ylim,pch=1,lty=1,lwd=1) 
        matplot(durshr*60,DDFmpadj11[m,i,,],type="b",log="x", 
                ylim=ylim,pch=2,lty=2,lwd=2,add=TRUE) 
        axis(side=1,at=dursmins,labels=durs,las=3,cex.axis=0.7) 
        axis(side=2) 
        axis(side=3,at=dursmins,cex.axis=0.7,tck=0.02,mgp=c(3,0,0)) 
        abline(v=dursmins,h=axTicks(side=2),col="lightgray",lty="dotted") 
        lty=c(1:2) 
        pch=c(1:2) 
        lwd=c(1:2) 
        legend("topleft",legend=c(lab,paste(lab,"with 
SPM")),lty=lty,pch=pch,lwd=lwd,cex=0.8) 
        mtext( paste("Return 
periods:",toString(subTr),"years"),side=1,adj=1,line=4,cex=0.6) 
        box()    
        dev.off() 
      }  
 
     }#end i 
  }#end f 
}#end r 
  
 
#Get quantiles of interest 
quantsmp1=apply(DDFmpadj11,c(2,3,4),quantile,probs=probs,na.rm=TRUE) 
dimnames(quantsmp1)[[2]]=staid2 
dimnames(quantsmp1)[[3]]=subdurs 
dimnames(quantsmp1)[[4]]=subTr 
 
# 
#Contourmaps of quantiles of interest 
for (u in 1:nsubdurs) { 
  for (p in 1:length(probs)) {# 
    for (t in 1:ntss) { 
      lab="Fmpadj1" 
      contourmap(quantsmp1[p,,u,t],staid2,direc=getwd(), 
                 main=paste(dataset2,"_",lab,"_DDF_",subdurs[u],"_",subTr[t], 
                 "-year_",probs[p],"_",proj1[1],"-",proj1[2],sep=""), 
                 res=1000,idp=2,posonly=TRUE,pval=NULL,labs="none")   
 
      DDFdiff1=quantsmp1[p,,u,t]-ddfoc[,u,t] 
      contourmap(DDFdiff1,staid2,direc=getwd(), 
                  main=paste(dataset2,"_",lab,"-
",dataset1,"_Foc_DDF_",subdurs[u],"_",subTr[t], 
                 "-year_",probs[p],"_",proj1[1],"-",proj1[2],sep=""), 
                 res=1000,idp=2,posonly=TRUE,pval=NULL,labs="none")   
 
    }#end t 
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  }#end p 
}#end u 
 
lab="Fmpadj1" 
dimnames(DDFmpadj11)[[1]]=paste("model",seq(1:60),sep="") 
dimnames(DDFmpadj11)[[2]]=staid2 
dimnames(DDFmpadj11)[[3]]=subdurs 
dimnames(DDFmpadj11)[[4]]=subTr 
save(DDFmpadj11,quantsmp1,staid2,  
     file=paste("stats_quants_",lab,"_allduralltr.RData",sep="")) 
   
 
#Do the temporal downscaling 
DDFmpadj1_hrly=array(dim=c(nmodels,nstas,nhdur,ntss)) 
yrindx=1950:2099 
m=0 
for (r in 1:length(RCPs)) { 
  print(paste("r = ",r,sep="")) 
  projs=readLines(paste("./",RCPs[r],"/Projections5.txt",sep="")) 
 
  for (f in 1:length(projs)) { 
    m=m+1 
    print(paste("f = ",f,", m = ",m,sep="")) 
 
    lab="Fmc" 
    load(paste("./",RCPs[r],"/model_",f,"/",dataset2,"_",lab,"_GEVpars_",type,"_", 
         method,"_",currm[1],"-",currm[2],".RData",sep="")) 
    ximc=xi 
    alfamc=alfa 
    kmc=k 
    rm(GEVpars,xi,alfa,k) 
 
    lab="Fmp1" 
    load(paste("./",RCPs[r],"/model_",f,"/",dataset2,"_",lab,"_GEVpars_",type,"_", 
         method,"_",proj1[1],"-",proj1[2],".RData",sep="")) 
    ximp1=xi 
    alfamp1=alfa 
    kmp1=k 
    rm(GEVpars,xi,alfa,k)    
 
    load(paste("./",RCPs[r],"/AMS_",RCPs[r],"_1950_2099_model_",f,".RData",sep="")) 
    # Create AMS4-equivalent list 
    dimnames(ams)=list(durs,yrindx,staid2) 
    AMS4=lapply(seq_len(dim(ams)[3]), function(x) t(ams[,,x])) 
    names(AMS4)=staid2 
 
    for (i in 1:nstas) { 
       print(paste("i = ",i,sep="")) 
    #First, get Xmpadj_daily corresponding to Xmp for proj1 years 
    #xmp1=AMS4[[i]][rownames(AMS4[[i]])%in%(seq(proj1[1],proj1[2])),"24-hr"] 
    if (!is.na(xioc[i,"24-hr"])) { 
         GEVparsoc=c(xi=xioc[i,"24-hr"],alfa=alfaoc[i,"24-hr"],k=koc[i,"24-hr"]) 
         #GEVparsoc=NULL  
         GEVparsmc=c(xi=ximc[i,"24-hr"],alfa=alfamc[i,"24-hr"],k=kmc[i,"24-hr"]) 
         GEVparsmp1=c(xi=ximp1[i,"24-hr"],alfa=alfamp1[i,"24-hr"],k=kmp1[i,"24-hr"]) 
         
#xmpadj1=EQM(GEVparsoc,GEVparsmc,GEVparsmp1,type="ratio",xmp=xmp1,logfile=logfile2) 
    } 
       for (u in 1:nhdur) { 
         print(paste("u = ",u,sep="")) 
         if (!is.na(xioc[i,hdurs[u]])) { 
           
GEVparsocsd=c(xi=xioc[i,hdurs[u]],alfa=alfaoc[i,hdurs[u]],k=koc[i,hdurs[u]]) 
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     #Need to use GEVparsoc as GEVparsmc since GEVparsmc has not been 
adjusted! 
     #When GEVparsmc is adjusted, it basically becomes GEVparsoc 
           
#QMmpadj1=temp_QM(GEVparsoc,GEVparsocsd,GEVparsoc,GEVparsmp1,xmpadj=xmpadj1) 
     
QMmpadj1=temp_QM(GEVparsoc,GEVparsocsd,GEVparsmc,GEVparsmp1,Tr=subTr,logfile=logfile2) 
           DDFmpadj1_hrly[m,i,u,]=QMmpadj1 
         } 
       } #end u 
    #Plot the adjusted DDFs for all durations 
       lab="Fmpadj1" 
       if ( sum(!is.na(DDFmpadj1_hrly[m,i,,]))) { 
         ylim=range(rbind(DDFmpadj1_hrly[m,i,,],DDFmpadj11[m,i,,])) 
         png(paste("./",RCPs[r],"/model_",f,"/",dataset2,"_",lab,"_DDF_", 
                   staid2[i],"_alldur_fromhourly_EQM_",proj1[1],"-
",proj1[2],".png",sep="")) 
         
matplot(rbind(hdurshr,durshr)*60,rbind(DDFmpadj1_hrly[m,i,,],DDFmpadj11[m,i,,]),type="
b",log="x", 
           xlab="log(D) (mins)",ylab="Precipitation (inches)", 
                 main=c(paste(lab,": DDF fits with EQM at Station ",staid2[i],sep=""), 
                 paste("Period: ",proj1[1],"-",proj1[2],sep="")), 
                 ylim=ylim,pch=1,lty=1,lwd=1,axes=FALSE) 
         
axis(side=1,at=c(hdursmins,dursmins[1:nsubdurs]),labels=c(hdurs,durs[1:nsubdurs]),las=
3,cex.axis=0.7) 
         axis(side=2) 
         
axis(side=3,at=c(hdursmins,dursmins[1:nsubdurs]),cex.axis=0.7,tck=0.02,mgp=c(3,0,0)) 
         
abline(v=c(hdursmins,dursmins[1:nsubdurs]),h=axTicks(side=2),col="lightgray",lty="dott
ed") 
         lty=c(1) 
         pch=c(1) 
         lwd=c(1) 
         legend("topleft",legend=c(lab),lty=lty,pch=pch,lwd=lwd,cex=0.8) 
         mtext( paste("Return 
periods:",toString(subTr),"years"),side=1,adj=1,line=4,cex=0.6) 
         box()    
         dev.off() 
    } 
     } # end i 
  } # end f 
}# end r   
 
quantsmp1h=apply(DDFmpadj1_hrly,c(2,3,4),quantile,probs=probs,na.rm=TRUE) 
dimnames(quantsmp1h)[[2]]=staid2 
dimnames(quantsmp1h)[[3]]=hdurs 
dimnames(quantsmp1h)[[4]]=subTr 
 
#Contourmaps of quantiles of interest 
for (u in 1:nhdur) { 
  for (p in 1:length(probs)) {# 
    for (t in 1:ntss) { 
      lab="Fmpadj1" 
      contourmap(quantsmp1h[p,,hdurs[u],t],staid2,direc=getwd(), 
                 main=paste(dataset2,"_",lab,"_DDF_",hdurs[u],"_",subTr[t], 
                 "-year_",probs[p],"_",proj1[1],"-",proj1[2],sep=""), 
                 res=1000,idp=2,posonly=TRUE,pval=NULL,labs="none")   
 
      DDFdiff1=quantsmp1h[p,,hdurs[u],t]-ddfoch[,hdurs[u],t] 
      contourmap(DDFdiff1,staid2,direc=getwd(), 
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                  main=paste(dataset2,"_",lab,"-
",dataset1,"_Foc_DDF_",hdurs[u],"_",subTr[t], 
                 "-year_",probs[p],"_",proj1[1],"-",proj1[2],sep=""), 
                 res=1000,idp=2,posonly=TRUE,pval=NULL,labs="none")   
 
    }#end t 
  }#end p 
}#end u 
 
dimnames(DDFmpadj1_hrly)[[1]]=paste("model",seq(1:60),sep="") 
dimnames(DDFmpadj1_hrly)[[2]]=staid2 
dimnames(DDFmpadj1_hrly)[[3]]=hdurs 
dimnames(DDFmpadj1_hrly)[[4]]=subTr 
save(DDFmpadj1_hrly,hdurs,quantsmp1h,staid2,  
     file=paste("stats_quants_",lab,"_hrlyduralltr.RData",sep="")) 
   
} 
 
############################################################################ 
 
EQM <- 
function(GEVparsoc,GEVparsmc,GEVparsmp,type="diff",xmp=NULL,xoc=NULL,                
Tr=c(2,5,10,25,50,100,200,500,1000),logfile="logfile.txt"){ 
#Function to do Quantile Delta Mapping 
#GEVparsoc: GEV parameters for the observations in the current period 
#           Will not be used when xoc is given in which case GEVparsoc can be set to 
NULL 
#GEVparsmc: GEV paramters for the model in the current period 
#GEVparsmp: GEV parameters for the model in the future (projected) period 
#type: "diff" uses an additive model for EQM 
#      "ratio" uses a multiplicative model for EQM 
#xmp: Future extreme precipitation values to adjust 
#     Set to NULL to use return period instead 
#xoc: Observed current baseline values 
#     Used instead of GEVparsoc when 
#     observed current baseline values do not come from a GEV distribution 
#     (e.g. when using Official Atlas 14 DDF values) 
#     Set to NULL to use GEVparsoc 
#     Only used when xmp==NULL 
#Tr: return periods of interest 
#   Set to NULL to use xmp instead 
 
############################################################################ 
 
library(extRemes) 
 
if (!is.null(xmp)) { 
  if (type=="diff") { 
    
xmpadj=xmp+qevd(pevd(xmp,GEVparsmp["xi"],GEVparsmp["alfa"],GEVparsmp["k"],type="GEV"), 
                         GEVparsoc["xi"],GEVparsoc["alfa"],GEVparsoc["k"],type="GEV") 
- 
              
qevd(pevd(xmp,GEVparsmp["xi"],GEVparsmp["alfa"],GEVparsmp["k"],type="GEV"), 
                         GEVparsmc["xi"],GEVparsmc["alfa"],GEVparsmc["k"],type="GEV") 
  } else { 
    
xmpadj=xmp*qevd(pevd(xmp,GEVparsmp["xi"],GEVparsmp["alfa"],GEVparsmp["k"],type="GEV"), 
                         GEVparsoc["xi"],GEVparsoc["alfa"],GEVparsoc["k"],type="GEV") 
/ 
              
qevd(pevd(xmp,GEVparsmp["xi"],GEVparsmp["alfa"],GEVparsmp["k"],type="GEV"), 
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                         GEVparsmc["xi"],GEVparsmc["alfa"],GEVparsmc["k"],type="GEV") 
  }  
 
  return(xmpadj) 
 
} else { 
  p = 1-1/Tr 
  if (type=="diff") { 
    if (is.null(xoc)) { 
      qmpadj=qevd(p,GEVparsmp["xi"],GEVparsmp["alfa"],GEVparsmp["k"],type="GEV") + 
             qevd(p,GEVparsoc["xi"],GEVparsoc["alfa"],GEVparsoc["k"],type="GEV") - 
             qevd(p,GEVparsmc["xi"],GEVparsmc["alfa"],GEVparsmc["k"],type="GEV") 
    } else { 
      qmpadj=qevd(p,GEVparsmp["xi"],GEVparsmp["alfa"],GEVparsmp["k"],type="GEV") + 
             unlist(list(xoc)) - 
             qevd(p,GEVparsmc["xi"],GEVparsmc["alfa"],GEVparsmc["k"],type="GEV") 
    } 
    #Use QM when there are inconsistencies 
    if (is.unsorted(qmpadj)) { 
      
write(paste("unsorted:",GEVparsmp["k"],GEVparsoc["k"],GEVparsmc["k"]),file=logfile,app
end=TRUE) 
      if (is.null(xoc)) { 
        
qmpadj=qevd(pevd(qevd(p,GEVparsmp["xi"],GEVparsmp["alfa"],GEVparsmp["k"],type="GEV"), 
                    GEVparsmc["xi"],GEVparsmc["alfa"],GEVparsmc["k"],type="GEV"), 
                    GEVparsoc["xi"],GEVparsoc["alfa"],GEVparsoc["k"],type="GEV") 
      } else { 
        
qmpadj=approx(x=p,y=xoc,xout=pevd(qevd(p,GEVparsmp["xi"],GEVparsmp["alfa"],GEVparsmp["
k"],type="GEV"), 
                    
GEVparsmc["xi"],GEVparsmc["alfa"],GEVparsmc["k"],type="GEV"),method="linear",rule=2)$y 
      } 
      #for (o in 2:length(qmpadj)) { 
      #  if (qmpadj[o]<qmpadj[o-1]) qmpadj[o]=qmpadj[o-1]+0.01 
      #} 
    } 
 
 
  } else { 
    if (is.null(xoc)) { 
      qmpadj=qevd(p,GEVparsmp["xi"],GEVparsmp["alfa"],GEVparsmp["k"],type="GEV") * 
             qevd(p,GEVparsoc["xi"],GEVparsoc["alfa"],GEVparsoc["k"],type="GEV") / 
             qevd(p,GEVparsmc["xi"],GEVparsmc["alfa"],GEVparsmc["k"],type="GEV") 
    } else { 
      qmpadj=qevd(p,GEVparsmp["xi"],GEVparsmp["alfa"],GEVparsmp["k"],type="GEV") * 
             unlist(list(xoc)) / 
             qevd(p,GEVparsmc["xi"],GEVparsmc["alfa"],GEVparsmc["k"],type="GEV") 
    } 
 
    #Use QM when there are inconsistencies 
    if (is.unsorted(qmpadj)) { 
      
write(paste("unsorted:",GEVparsmp["k"],GEVparsoc["k"],GEVparsmc["k"]),file=logfile,app
end=TRUE) 
      if (is.null(xoc)) { 
        
qmpadj=qevd(pevd(qevd(p,GEVparsmp["xi"],GEVparsmp["alfa"],GEVparsmp["k"],type="GEV"), 
                    GEVparsmc["xi"],GEVparsmc["alfa"],GEVparsmc["k"],type="GEV"), 
                    GEVparsoc["xi"],GEVparsoc["alfa"],GEVparsoc["k"],type="GEV") 
      } else { 
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qmpadj=approx(x=p,y=xoc,xout=pevd(qevd(p,GEVparsmp["xi"],GEVparsmp["alfa"],GEVparsmp["
k"],type="GEV"), 
                    
GEVparsmc["xi"],GEVparsmc["alfa"],GEVparsmc["k"],type="GEV"),method="linear",rule=2)$y 
      } 
      #for (o in 2:length(qmpadj)) { 
      #  if (qmpadj[o]<qmpadj[o-1]) qmpadj[o]=qmpadj[o-1]+0.01 
      #} 
    } 
 
 
  } 
 
  return(qmpadj) 
}            
 
##png("EQM_issue2.png") 
#plot(qevd(p,GEVparsoc["xi"],GEVparsoc["alfa"],GEVparsoc["k"],type="GEV"),p,type="l", 
#     xlim=c(0,15),ylim=c(0,1),lty=1,lwd=2,col="red",main="Quantile Delta Method", 
#      xlab="Precipitation depth (inches)",ylab=expression(CDF: G==P(X<=x))) 
##,ylim=c(0.97,1.0) 
#lines(qevd(p,GEVparsmc["xi"],GEVparsmc["alfa"],GEVparsmc["k"],type="GEV"),p,col="blue
",lty=2,lwd=2) 
#lines(qevd(p,GEVparsmp["xi"],GEVparsmp["alfa"],GEVparsmp["k"],type="GEV"),p,col="blac
k",lty=3,lwd=2) 
#lines(qmpadj2,p,col="green",lty=4,lwd=2) 
#lines(qmpadj,p,col="orange",lty=4,lwd=2) 
#legend("bottomright",col=c("red","blue","black","green","orange"),lty=1:4,legend=c(ex
pression(F["o-c"]),expression(F["m-c"]), 
#       expression(F["m-p"]),expression(F["m-padj. mult"]),expression(F["m-padj. 
QM"])),lwd=2) 
##p2=pevd(xmp,GEVparsmp["xi"],GEVparsmp["alfa"],GEVparsmp["k"],type="GEV") 
##lines(xmp,p2,lty=2) 
##lines(xmpadj,p2,lty=2,col="green") 
#axis(side=4,at=1-1/Tr,labels=Tr,cex.axis=0.5,las=1) 
#abline(h=c(0,1,1-1/Tr),col="gray70",lty=2) 
#mtext("Tr (years)",side=4,cex=0.5) 
#grid() 
##dev.off() 
 
 
} 
 
 
############################################################################ 
 
temp_QM <- 
function(GEVparsoc,GEVparsocsd,GEVparsmc,GEVparsmp,xmpadj=NULL,              
Tr=c(2,5,10,25,50,100,200,500,1000),logfile="logfile2.txt"){ 
 
############################################################################ 
 
#Function to do quantile mapping for temporal downscaling 
#GEVparsoc: GEV parameters for the daily observations in the current period 
#           Not used when xmpadj is defined 
#GEVparsocsd: GEV parameters for the sub-daily observations in the current period 
#GEVparsmc: GEV paramters for the model in the current period (daily duration) 
#GEVparsmp: GEV parameters for the model in the future (projected) period (daily 
duration) 
#           Not used when xmpadj is defined 
#xmpadj: Future ADJUSTED extreme precipitation values 
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#     Set to NULL to use return period instead 
#Tr: return periods of interest 
#   Set to NULL to use xmpadj instead 
 
library(extRemes) 
 
if (!is.null(xmpadj)) { 
 
  qmpadjsd=qevd(pevd(xmpadj, 
              GEVparsmc["xi"],GEVparsmc["alfa"],GEVparsmc["k"],type="GEV"), 
              GEVparsocsd["xi"],GEVparsocsd["alfa"],GEVparsocsd["k"],type="GEV") 
  return(qmpadjsd) 
 
} else { 
  p = 1-1/Tr 
  qmpadj=qevd(p,GEVparsmp["xi"],GEVparsmp["alfa"],GEVparsmp["k"],type="GEV") * 
         qevd(p,GEVparsoc["xi"],GEVparsoc["alfa"],GEVparsoc["k"],type="GEV") / 
         qevd(p,GEVparsmc["xi"],GEVparsmc["alfa"],GEVparsmc["k"],type="GEV") 
 
  #Use QM when there are inconsistencies 
  if (is.unsorted(qmpadj)) { 
    
write(paste("unsorted:",GEVparsmp["k"],GEVparsoc["k"],GEVparsmc["k"]),file=logfile,app
end=TRUE) 
    
qmpadj=qevd(pevd(qevd(p,GEVparsmp["xi"],GEVparsmp["alfa"],GEVparsmp["k"],type="GEV"), 
                GEVparsmc["xi"],GEVparsmc["alfa"],GEVparsmc["k"],type="GEV"), 
                GEVparsoc["xi"],GEVparsoc["alfa"],GEVparsoc["k"],type="GEV") 
  }   
  #Here GEVparsoc takes the place of GEVparsmc since after bias correction 
  #GEVparsmc=GEVparsoc   
  qmpadjsd=qevd(pevd(qmpadj, 
              GEVparsoc["xi"],GEVparsoc["alfa"],GEVparsoc["k"],type="GEV"), 
              GEVparsocsd["xi"],GEVparsocsd["alfa"],GEVparsocsd["k"],type="GEV") 
 
 
  return(qmpadjsd) 
}            
 
 
} 
######################################################################### 
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########################################################################### 
 
computeGOFquants <- function(subdurs=c("24-hr","2-day","3-day","4-
day","7-day"), subTr=c(2,5,10,25,50,100),probs=c(0.05,0.50,0.95),                       
dataset1="FL_LOCA",lab1="Fmc",syr1=1950,eyr1=2008,dataset2="FL_LOCA",l
ab2="Fmp2",syr2=2040,eyr2=2079) { 
 
#Function to compute goodness-of-fit statistics and quantiles of DDF curves 
 
############################################################################ 
 
#     dataset1="FL_Atlas14",lab1="Foc",syr1=1950,eyr1=2008, 
#                       dataset2="FL_LOCA",lab2="Fmc",syr2=1950,eyr2=2008) { 
 
source("Z:/miriza/Work/FIU/FL_Building_Code/Data/Rainfall/Code/contourmap.R") 
 
library(plotrix) 
library(nsRFA) 
 
data_dir="Z:/miriza/Work/FIU/FL_Building_Code/Data/Rainfall/LOCA_dataset/Data/" 
 
setwd(data_dir) 
 
RCPs=c("RCP45","RCP85") 
 
#Durations of interest 
nsubdurs=length(subdurs) 
 
#Return periods of interest 
ntss=length(subTr) 
 
# Get staid2 (ids of weather stations) 
load("Z:/miriza/Work/FIU/FL_Building_Code/Data/Rainfall/Obs_datasets/before_2005/stati
onids.RData") 
nstas=length(staid2) 
 
nmodels=60 
nvals=1+nsubdurs*ntss 
 
#Initialize matrices of goodness-of-fit statistics 
mDiff=mRatio=mSD=mSDRatio=mRMSDCRatio=oSD=mRMSD=mRMSDC=mMAE=mR=mNS=matrix(nrow=nmodels
,ncol=nvals) 
 
#Initialize arrays of DDF and GEV parameters 
mxi1=malfa1=mk1=mxi2=malfa2=mk2=array(dim=c(nmodels,nstas,nsubdurs)) 
mddf1=mddf2=array(dim=c(nmodels,nstas,nsubdurs,ntss)) 
 
# Get Foc (reference) 
if (lab1=="Foc") { 
  
load("Z:/miriza/Work/FIU/FL_Building_Code/Data/Rainfall/Obs_datasets/before_2005/MDC_o
bs_Foc_GEVpars_bysite_RegLmom_1940-2005.RData") 
  #Create matrix from DDF list 
  ddf1=array(dim=c(nstas,nsubdurs,ntss),dimnames=list(staid2,subdurs,subTr)) 
  #oo=lapply(seq_len(length(DDF)), function(i) 
ddf2[i,,]=t(DDF[[i]][as.character(subTr),subdurs])) 
  for (i in 1:nstas){ 
    if (!is.null(DDF[[i]])) ddf1[i,,]=t(DDF[[i]][as.character(subTr),subdurs])  
  } 
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#load("C:/Users/miriza/Documents/Work/SFWMD_Contract_IDF/ATLAS14/IDF/FL_Atlas14_AMS_ID
F.RData") 
  #DDF_official_ATLAS14=IDF 
  #ddf1=DDF_official_ATLAS14[,10:14,1:6] 
 
  oSD=sd(na.omit(as.vector(ddf1))) 
  for (u in 1:nsubdurs) { 
    for (t in 1:ntss) {  
      oSD=c(oSD,sd(na.omit(as.vector(ddf1[,u,t])))) 
    } 
  } 
} 
 
if (lab2=="Fmpadj1" | lab2=="Fmpadj2") { 
  load(paste("stats_quants_",lab2,"_allduralltr.RData",sep="")) 
  mddf2=get(paste("DD",lab2,substr(lab2,nchar(lab2),nchar(lab2)),sep="")) 
} 
 
 
# Get all the models (Fmc or Fmp) 
im=0 #counter for the models 
allprojs=NULL 
for (r in 1:length(RCPs)) { # 
  print(paste("r = ",r,sep="")) 
  projs=readLines(paste("./",RCPs[r],"/Projections5.txt",sep="")) 
  allprojs=c(allprojs,projs) 
 
 
  for (f in 1:length(projs)) { 
    print(paste("f = ",f,sep="")) 
    im=im+1 
 
    if (lab1!="Foc") { 
      load(paste("./",RCPs[r],"/model_",f, 
                 "/",dataset1,"_",lab1,"_GEVpars_bysite_RegLmom_",syr1,"-
",eyr1,".RData",sep="")) 
      #load(paste("./",RCPs[r],"/model_",f, 
      #           "/",dataset1,"_",lab1,"_GEVpars_bysite_RegLmom_",syr1,"-
",eyr1,"_allyrs.RData",sep="")) 
 
 
      #Populate the overall arrays 
      mxi1[im,,]=xi 
      malfa1[im,,]=alfa 
      mk1[im,,]=k 
  
      #Create matrix from DDF list 
      ddf1=array(dim=c(nstas,nsubdurs,ntss),dimnames=list(staid2,subdurs,subTr)) 
      #oo=lapply(seq_len(length(DDF)), function(i) 
ddf1[i,,]=t(DDF[[i]][as.character(subTr),subdurs])) 
      for (i in 1:nstas){ 
        if (!is.null(DDF[[i]])) ddf1[i,,]=t(DDF[[i]][as.character(subTr),subdurs]) 
      } #end i 
 
      mddf1[im,,,]=ddf1 
 
    } 
 
    if (!(lab2=="Fmpadj1" | lab2=="Fmpadj2")) { 
      #load(paste("./",RCPs[r],"/model_",f, 
      #             "/",dataset2,"_",lab2,"_GEVpars_bysite_RegLmom_",syr2,"-
",eyr2,"_allyrs.RData",sep="")) 
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      load(paste("./",RCPs[r],"/model_",f, 
                   "/",dataset2,"_",lab2,"_GEVpars_bysite_RegLmom_",syr2,"-
",eyr2,".RData",sep="")) 
 
      #Populate the overall arrays 
      mxi2[im,,]=xi 
      malfa2[im,,]=alfa 
      mk2[im,,]=k 
  
      #Create matrix from DDF list 
      ddf2=array(dim=c(nstas,nsubdurs,ntss),dimnames=list(staid2,subdurs,subTr)) 
      #oo=lapply(seq_len(length(DDF)), function(i) 
ddf2[i,,]=t(DDF[[i]][as.character(subTr),subdurs])) 
      for (i in 1:nstas){ 
        if (!is.null(DDF[[i]])) ddf2[i,,]=t(DDF[[i]][as.character(subTr),subdurs]) 
      } #end i 
 
      mddf2[im,,,]=ddf2 
 
    } else { 
      ddf2=mddf2[im,,,] 
    } 
   
 
    if (r==1) colr="red" 
    if (r==2) colr="blue" 
    if (r==3) colr="green" 
 
    if (r==1 & f==1) { 
      
taylor.diagram(ddf1,ddf2,col=colr,sd.arcs=3,grad.corr.lines=c(0.2,0.4,0.6,0.7,0.8,0.9)
, 
                    ngamma=5,normalize=TRUE) 
    } else { 
      taylor.diagram(ddf1,ddf2,add=TRUE,col=colr,normalize=TRUE) 
    } 
 
    #valid stations 
    vs=(!is.na(ddf1[,1,1])&!is.na(ddf2[,1,1])) 
 
    mDiff[im,1]=mean(na.omit(as.vector(ddf2[vs,,]))-na.omit(as.vector(ddf1[vs,,]))) 
    mRatio[im,1]=mean(na.omit(as.vector(ddf2[vs,,]))/na.omit(as.vector(ddf1[vs,,]))) 
    mSD[im,1]=sd(na.omit(as.vector(ddf2[vs,,]))) 
    mRMSD[im,1]=RMSE(na.omit(as.vector(ddf1[vs,,])),na.omit(as.vector(ddf2[vs,,]))) 
    mRMSDC[im,1]=RMSE(na.omit(as.vector(ddf1[vs,,]))-mean(ddf1[vs,,],na.rm=TRUE), 
                      na.omit(as.vector(ddf2[vs,,]))-mean(ddf2[vs,,],na.rm=TRUE)) 
    mMAE[im,1]=MAE(na.omit(as.vector(ddf1[vs,,])),na.omit(as.vector(ddf2[vs,,]))) 
    mR[im,1]=cor(ddf1[vs,,],ddf2[vs,,],use="pairwise") 
    mNS[im,1]=R2(na.omit(as.vector(ddf1[vs,,])),na.omit(as.vector(ddf2[vs,,]))) 
    if (lab1!="Foc") { 
      oSD[im,1]=sd(na.omit(as.vector(ddf1[vs,,]))) 
      mSDRatio[im,1]=mSD[im,1]/oSD[im,1] 
      mRMSDCRatio[im,1]=mRMSDC[im,1]/oSD[im,1] 
    } 
 
    icol=1 
    for (u in 1:nsubdurs) { 
      for (t in 1:ntss) {  
        icol=icol+1 
        mDiff[im,icol]=mean(na.omit(as.vector(ddf2[vs,u,t]))-
na.omit(as.vector(ddf1[vs,u,t]))) 
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mRatio[im,icol]=mean(na.omit(as.vector(ddf2[vs,u,t]))/na.omit(as.vector(ddf1[vs,u,t]))
) 
        mSD[im,icol]=sd(na.omit(as.vector(ddf2[vs,u,t]))) 
        
mRMSD[im,icol]=RMSE(na.omit(as.vector(ddf1[vs,u,t])),na.omit(as.vector(ddf2[vs,u,t]))) 
        mRMSDC[im,icol]=RMSE(na.omit(as.vector(ddf1[vs,u,t]))-
mean(ddf1[vs,u,t],na.rm=TRUE), 
                            na.omit(as.vector(ddf2[vs,u,t]))-
mean(ddf2[vs,u,t],na.rm=TRUE)) 
        
mMAE[im,icol]=MAE(na.omit(as.vector(ddf1[vs,u,t])),na.omit(as.vector(ddf2[vs,u,t]))) 
        mR[im,icol]=cor(ddf1[vs,u,t],ddf2[vs,u,t],use="pairwise") 
        
mNS[im,icol]=R2(na.omit(as.vector(ddf1[vs,u,t])),na.omit(as.vector(ddf2[vs,u,t])))       
        if (lab1!="Foc") { 
          oSD[im,icol]=sd(na.omit(as.vector(ddf1[vs,u,t]))) 
          mSDRatio[im,icol]=mSD[im,icol]/oSD[im,icol] 
          mRMSDCRatio[im,icol]=mRMSDC[im,icol]/oSD[im,icol] 
        } 
 
      }#end t 
    } #end u 
 
  } #end f 
} # end r 
 
mR2=mR^2 
if (lab1=="Foc") { 
  mSDRatio=mSD/matrix(rep(oSD,im),nrow=im,ncol=nvals,byrow=TRUE) 
  mRMSDCRatio=mRMSDC/matrix(rep(oSD,im),nrow=im,ncol=nvals,byrow=TRUE) 
} 
 
rownames(mDiff)=rownames(mRatio)=rownames(mSD)=rownames(mRMSD)=rownames(mRMSDC)=rownam
es(mMAE)= 
                
rownames(mR)=rownames(mR2)=rownames(mNS)=rownames(mSDRatio)=rownames(mRMSDCRatio)= 
                allprojs 
colnames(mDiff)=colnames(mRatio)=colnames(mSD)=colnames(mRMSD)=colnames(mRMSDC)=colnam
es(mMAE)= 
                
colnames(mR)=colnames(mR2)=colnames(mNS)=colnames(mSDRatio)=colnames(mRMSDCRatio)= 
                c("all",paste(rep(subdurs,each=ntss),"_",rep(subTr,nsubdurs),"-
year",sep="")) 
 
#substr(allprojs,1,nchar(allprojs)-6) 
#unique(substr(allprojs,1,nchar(allprojs)-6)) 
 
#Taylor diagrams for all durations and return periods of interest 
icol=1 
png(paste("Taylor_diagram_",lab1,"_vs_",lab2,"_",colnames(mR)[icol],"_normalized.png",
sep="")) 
taylor.diagram(ddf1,ddf1,sd.arcs=3,grad.corr.lines=seq(0.1,0.9,by=0.1), 
               ngamma=5,normalize=TRUE,pch=1,col="black",main=c("Taylor 
Diagram",colnames(mR)[icol])) 
points(na.omit(mSDRatio[,icol])*na.omit((mR[,icol])),na.omit(mSDRatio[,icol])*sin(acos
(na.omit((mR[,icol])))), 
       col=1:6,pch=2:21) 
#lpos<-1.5 
#legend(lpos,lpos,legend=allprojs,cex=0.5,ncol=2,col=1:6,pch=2:21) 
dev.off() 
 
png(paste("Taylor_diagram_",lab1,"_vs_",lab2,"_",colnames(mR)[icol],".png",sep="")) 
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taylor.diagram(ddf1,ddf1,sd.arcs=3,grad.corr.lines=seq(0.1,0.9,by=0.1), 
               ngamma=5,pch=1,col="black",main=c("Taylor Diagram",colnames(mR)[icol])) 
points(na.omit(mSD[,icol])*na.omit((mR[,icol])),na.omit(mSD[,icol])*sin(acos(na.omit((
mR[,icol])))), 
       col=1:6,pch=2:21) 
#lpos<-1.5 
#legend(lpos,lpos,legend=allprojs,cex=0.5,ncol=2,col=1:6,pch=2:21) 
dev.off() 
 
for (u in 1:nsubdurs) { 
  for (t in 1:ntss) {  
    icol=icol+1 
    
png(paste("Taylor_diagram_",lab1,"_vs_",lab2,"_",colnames(mR)[icol],"_normalized.png",
sep="")) 
    
taylor.diagram(ddf1[,u,t],ddf1[,u,t],sd.arcs=3,grad.corr.lines=seq(0.1,0.9,by=0.1), 
                   ngamma=5,normalize=TRUE,pch=1,col="black",main=c("Taylor 
Diagram",colnames(mR)[icol]),pos.cor=FALSE) 
    
points(na.omit(mSDRatio[,icol])*na.omit((mR[,icol])),na.omit(mSDRatio[,icol])*sin(acos
(na.omit((mR[,icol])))), 
           col=1:6,pch=2:21) 
    dev.off() 
 
    
png(paste("Taylor_diagram_",lab1,"_vs_",lab2,"_",colnames(mR)[icol],".png",sep="")) 
    
taylor.diagram(ddf1[,u,t],ddf1[,u,t],sd.arcs=3,grad.corr.lines=seq(0.1,0.9,by=0.1), 
                   ngamma=5,pch=1,col="black",main=c("Taylor 
Diagram",colnames(mR)[icol]),pos.cor=FALSE) 
    
points(na.omit(mSD[,icol])*na.omit((mR[,icol])),na.omit(mSD[,icol])*sin(acos(na.omit((
mR[,icol])))), 
           col=1:6,pch=2:21) 
    dev.off() 
 
  } 
} 
 
 
#Boxplots of statistics 
stats=c("Diff","Ratio","SD","RMSD","RMSDC","MAE","R","R2","NS","SDRatio","RMSDCRatio")  
substats=c("Diff","RMSD","MAE","Ratio","SDRatio","R2","NS") 
 
 
png(paste("allstats_",lab1,"_vs_",lab2,"_allduralltr.png",sep="")) 
nf=layout(t(seq(1:length(substats))),width=rep(1,length(substats))) 
for (s in 1:length(substats)) { 
  par(mar=c(5,0,5,0),mgp=c(1,0,0)) 
  
bxp=boxplot(get(paste("m",substats[s],sep=""))[,1],xlab=substats[s],axes=FALSE,cex.lab
=1.5) 
  text(y=as.vector((bxp$stats)),x=(rep(c(1),each=5))+0.35,labels=round(bxp$stats,2),) 
} 
dev.off() 
 
 
for (s in 1:length(stats)) { 
  
png(paste(stats[s],"_",lab1,"_vs_",lab2,"_boxplot.png",sep=""),height=1000,width=720,p
ointsize=20) 
  nf=layout((c(1,2,3,4,5,6)),heights=c(2,2,2,2,2,2)) 
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  #pars=par(mar=c(5.1,4.1,4.1,10),xpd=TRUE) 
  par(mar=c(0,4.1,2,2.1),mgp=c(2,1,0)) 
  
bxp=boxplot(get(paste("m",stats[s],sep=""))[,seq(7,31,by=6)],xaxt="n",ylab=paste("Tr="
,subTr[6],"-yr",sep=""), 
      main=paste("Comparison of",stats[s],"across models")) 
  abline(h=axTicks(side=2),col="lightgray",lty="dotted") 
  
text(x=rep(1:nsubdurs,1),y=as.vector(t(bxp$stats[3,])),labels=round(as.vector(t(bxp$st
ats[3,])),2), 
      col="red",font=2) 
 
  par(mar=c(1,4.1,1,2.1),mgp=c(2,1,0)) 
  
bxp=boxplot(get(paste("m",stats[s],sep=""))[,seq(6,31,by=6)],xaxt="n",ylab=paste("Tr="
,subTr[5],"-yr",sep="")) 
  abline(h=axTicks(side=2),col="lightgray",lty="dotted") 
  
text(x=rep(1:nsubdurs,1),y=as.vector(t(bxp$stats[3,])),labels=round(as.vector(t(bxp$st
ats[3,])),2), 
      col="red",font=2) 
 
  par(mar=c(1,4.1,0,2.1),mgp=c(2,1,0)) 
  
bxp=boxplot(get(paste("m",stats[s],sep=""))[,seq(5,31,by=6)],xaxt="n",ylab=paste("Tr="
,subTr[4],"-yr",sep="")) 
  abline(h=axTicks(side=2),col="lightgray",lty="dotted") 
  
text(x=rep(1:nsubdurs,1),y=as.vector(t(bxp$stats[3,])),labels=round(as.vector(t(bxp$st
ats[3,])),2), 
      col="red",font=2) 
 
  par(mar=c(1,4.1,0,2.1),mgp=c(2,1,0)) 
  
bxp=boxplot(get(paste("m",stats[s],sep=""))[,seq(4,31,by=6)],xaxt="n",ylab=paste("Tr="
,subTr[3],"-yr",sep="")) 
  abline(h=axTicks(side=2),col="lightgray",lty="dotted") 
  
text(x=rep(1:nsubdurs,1),y=as.vector(t(bxp$stats[3,])),labels=round(as.vector(t(bxp$st
ats[3,])),2), 
      col="red",font=2) 
 
  par(mar=c(1,4.1,0,2.1),mgp=c(2,1,0)) 
  
bxp=boxplot(get(paste("m",stats[s],sep=""))[,seq(3,31,by=6)],xaxt="n",ylab=paste("Tr="
,subTr[2],"-yr",sep="")) 
  abline(h=axTicks(side=2),col="lightgray",lty="dotted") 
  
text(x=rep(1:nsubdurs,1),y=as.vector(t(bxp$stats[3,])),labels=round(as.vector(t(bxp$st
ats[3,])),2), 
      col="red",font=2) 
 
  par(mar=c(2,4.1,0,2.1),mgp=c(2,1,0)) 
  
bxp=boxplot(get(paste("m",stats[s],sep=""))[,seq(2,31,by=6)],xaxt="n",ylab=paste("Tr="
,subTr[1],"-yr",sep="")) 
  axis(1,at=1:nsubdurs,labels=subdurs,cex.axis=1) 
  abline(h=axTicks(side=2),col="lightgray",lty="dotted") 
  
text(x=rep(1:ntss,1),y=as.vector(t(bxp$stats[3,])),labels=round(as.vector(t(bxp$stats[
3,])),2), 
       col="red",font=2) 
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  dev.off() 
} 
 
#Quantiles of GEV parameters and DDF 
if (lab1!="Foc") quantsddf1=apply(mddf1,c(2,3,4),function(x) 
quantile(x,probs=probs,na.rm=TRUE)) 
if (!(lab2=="Fmpadj1" | lab2=="Fmpadj2")) { 
  dimnames(mk2)=dimnames(malfa2)=dimnames(mxi2)=list(allprojs,staid2,subdurs) 
  quantsxi2=apply(mxi2,c(2,3),function(x) quantile(x,probs=probs,na.rm=TRUE)) 
  quantsalfa2=apply(malfa2,c(2,3),function(x) quantile(x,probs=probs,na.rm=TRUE)) 
  quantsk2=apply(mk2,c(2,3),function(x) quantile(x,probs=probs,na.rm=TRUE)) 
} 
quantsddf2=apply(mddf2,c(2,3,4),function(x) quantile(x,probs=probs,na.rm=TRUE)) 
dimnames(quantsddf2)[[2]]=staid2 
dimnames(quantsddf2)[[3]]=subdurs 
dimnames(quantsddf2)[[4]]=subTr 
 
if (lab1!="Foc") { 
  diffddf=mddf2-mddf1 
} else { 
  diffddf=array(dim=c(nmodels,nstas,nsubdurs,ntss)) 
  for (im in 1:nmodels) { 
    diffddf[im,,,]=mddf2[im,,,]-ddf1 
  } 
} 
 
quantsdiffddf=apply(diffddf,c(2,3,4),function(x) quantile(x,probs=probs,na.rm=TRUE)) 
dimnames(quantsdiffddf)[[2]]=staid2 
dimnames(quantsdiffddf)[[3]]=subdurs 
dimnames(quantsdiffddf)[[4]]=subTr 
 
#Contour maps of quantiles of GEV parameters and DDF 
for (u in 1:nsubdurs) { 
  for (p in 1:length(probs)) {# 
    if (!(lab2=="Fmpadj1" | lab2=="Fmpadj2")) { 
      contourmap(quantsxi2[p,,u],staid2,direc=getwd(), 
                 
main=paste(dataset2,"_",lab2,"_GEV_locpar_",subdurs[u],"_",probs[p],"_",syr2,"-
",eyr2,"",sep=""), 
                 res=1000,idp=2,posonly=TRUE,pval=NULL,labs="none") 
      contourmap(quantsalfa2[p,,u],staid2,direc=getwd(), 
                 
main=paste(dataset2,"_",lab2,"_GEV_scalepar_",subdurs[u],"_",probs[p],"_",syr2,"-
",eyr2,"",sep=""), 
                 res=1000,idp=2,posonly=TRUE,pval=NULL,labs="none") 
      contourmap(quantsk2[p,,u],staid2,direc=getwd(), 
                 
main=paste(dataset2,"_",lab2,"_GEV_shapepar_",subdurs[u],"_",probs[p],"_",syr2,"-
",eyr2,"",sep=""), 
                 res=1000,idp=2,posonly=FALSE,pval=NULL,labs="none", 
                 zlim=c(-
max(abs(quantsk2[p,,u]),na.rm=TRUE),max(abs(quantsk2[p,,u]),na.rm=TRUE))) 
    } 
    for (t in 1:ntss) { 
      contourmap(quantsddf2[p,,u,t],staid2,direc=getwd(), 
                 main=paste(dataset2,"_",lab2,"_DDF_",subdurs[u],"_",subTr[t], 
                 "-year_",probs[p],"_",syr2,"-",eyr2,"",sep=""), 
                 res=1000,idp=2,posonly=TRUE,pval=NULL,labs="none")   
 
      #if (lab1!="Foc") ddfdiff=quantsddf2[p,,u,t]-quantsddf1[p,,u,t] 
      #if (lab1=="Foc") ddfdiff=quantsddf2[p,,u,t]-ddf1[,u,t] 
      contourmap(quantsdiffddf[p,,u,t],staid2,direc=getwd(), 
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                 main=paste(dataset2,"_",lab2,"-
",dataset1,"_",lab1,"_DDF_",subdurs[u],"_",subTr[t], 
                 "-year_",probs[p],"_",syr2,"-",eyr2,"",sep=""), 
                 res=1000,idp=2,posonly=TRUE,pval=NULL,labs="none")   
 
 
    }#end t          
  }#end p 
}#end u 
 
mdifnegall=apply(mDiff,2,function(x) sum(x<0)) 
mdifnegrcp45=apply(mDiff[1:30,],2,function(x) sum(x<0)) 
mdifnegrcp85=apply(mDiff[31:60,],2,function(x) sum(x<0)) 
 
png(paste("Perc_negchanges_",lab1,"_vs_",lab2,".png",sep="")) 
plot(mdifnegrcp45/30*100,col="blue",type="b",pch=2,ylim=c(0,100),axes=FALSE, 
     main=c("Percentage of models showing negative overall changes", 
     paste("in extremes by RCP category for ",lab2," (",syr2,"-",eyr2,")",sep="")), 
     xlab="",ylab="%",cex.main=0.9) 
points(mdifnegrcp85/30*100,col="green",type="b",pch=3) 
axis(1,at=1:31,labels=colnames(mDiff),las=3,cex.axis=0.5) 
abline(v=c(1,seq(2,31,by=6))) 
axis(2) 
legend("topright",legend=c("RCP45(30)","RCP85(30)"),pch=2:3,col=c("blue","green")) 
box() 
dev.off() 
 
png(paste("Number_negchanges_",lab1,"_vs_",lab2,".png",sep="")) 
plot(mdifnegrcp45,col="blue",type="b",pch=2,ylim=c(0,65),axes=FALSE, 
     main=c("Number of models showing negative overall changes", 
     paste("in extremes by RCP category for ",lab2," (",syr2,"-",eyr2,")",sep="")), 
     xlab="",ylab="#",cex.main=1.1) 
points(mdifnegrcp85,col="green",type="b",pch=3) 
axis(1,at=1:31,labels=colnames(mDiff),las=3,cex.axis=0.5) 
abline(v=c(1,seq(2,31,by=6))) 
axis(2) 
legend("bottomright",legend=c("RCP45(30)","RCP85(30)"),pch=2:3,col=c("blue","green")) 
box() 
dev.off() 
 
 
if (lab2=="Fmpadj1" | lab2=="Fmpadj2") { 
     save(mDiff,mRatio,mSD,mRMSD,mRMSDC,mMAE,mR,mNS,mxi2,malfa2,mk2,mddf2, 
     quantsxi2,quantsalfa2,quantsk2,quantsddf2,quantsdiffddf,staid2,  
     file=paste("stats_quants_",lab1,"_vs_",lab2,"_allduralltr.RData",sep="")) 
} else { 
     save(mDiff,mRatio,mSD,mRMSD,mRMSDC,mMAE,mR,mNS,mddf2, 
     quantsddf2,quantsdiffddf,staid2,  
     file=paste("stats_quants_",lab1,"_vs_",lab2,"_allduralltr.RData",sep="")) 
 
} 
 
quantsmdiff=apply(mDiff,2,quantile,probs=c(0.05,.1,.5,.9,.95)) 
quantsmratio=100*(apply(mRatio,2,quantile, probs=c(0.05,.1,.5,.9,.95))-1) 
 
library(rtf) 
output=paste(lab1,"_vs_",lab2,"_diff_ratio_tables.doc",sep="") 
rtf=RTF(output,width=8.5,height=11,font.size=10,omi=c(1,1,1,1)) 
 
for (u in 1:nsubdurs) { 
  mat1=matrix(paste(round(quantsmdiff[,(2+(u-1)*ntss):(1+(u*ntss))],2)," 
(",round(quantsmratio,1)[,(2+(u-1)*ntss):(1+(u*ntss))],"%)",sep=""),ncol=ntss) 
  colnames(mat1)=colnames(quantsmdiff[,(2+(u-1)*ntss):(1+(u*ntss))]) 



335 
 

  rownames(mat1)=rownames(quantsmdiff[,(2+(u-1)*ntss):(1+(u*ntss))]) 
  #copytable(mat1,align=rep("r",ntss+1)) 
  addParagraph(rtf,paste("Table ",u,". Differences in ",subdurs[u]," DDF precipitation 
depths in inches (%) for various return periods for ", 
                         lab2, " - ", lab1, ". 5-95th percentiles across models 
shown.\n",sep="")) 
  
addTable(rtf,mat1,font.size=9,col.justify=rep("R",ntss+1),header.col.justify=rep("C",n
tss+1), 
           col.widths=c(0.42,rep(1.0,ntss)),row.names=TRUE) 
  addNewLine(rtf) 
  addNewLine(rtf) 
} 
 
done(rtf) 
 
} 
 
copytable <- function(x, cap=NULL,align...) { 
  library(xtable) 
  f <- tempfile(fileext=".html") 
  print(xtable(x, caption=cap, align=align...), "html", file = f) 
  browseURL(f) 
} 
 
 
########################################################################### 
contourmap_Tps <- 
function(statis,ids,direc="./",main,res=1000,posonly=TRUE,pval=NULL,la
bs="none",zlim=NULL){ 
# Uses Tps to smooth the data over FL and then contour it 
# statis: data to contour 
# ids: IDs of the stations 
# direc: Directory where to save the png file 
# main: title for plot and file name 
# res: resolution of grid for interpolation prior to contouring 
# posonly: whether variable only has positive values 
# pval: pval associated with the data (default is NULL, i.e. none) 
#       If given it must be the same length as statis and stations with a 
#       significant pval (<0.05) are labeled with an '*' 
# labs: "none" so only station locations are plotted (default) 
#       "names" so stations are plotted and labeled with their names 
#       "data" so stations are plotted and labeled with the data values 
#       "dn" so stations are plotted and labeled with their names and data values 
# zlim: Limits for colormap use NULL to have code compute them automatically from data 
ranges 
#       Enter a pair of values otherwise (e.g. c(-0.5,0.5)) 
########################################################################### 
 
library(maps) 
library(akima) 
library(sp) 
library(ggplot2) 
library(maptools) 
library(gstat) 
library(colorRamps) 
library(raster) 
library(geospt) 
library(fields) 
 
# First eliminate stations with missing (NA) data. 
if (!is.null(pval)) { 
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  tokeep=is.finite(statis)&is.finite(pval) 
  statis=statis[tokeep] 
  ids=ids[tokeep] 
  pval=pval[tokeep] 
} else { 
  tokeep=is.finite(statis) 
  statis=statis[tokeep] 
  ids=ids[tokeep] 
  pval=pval[tokeep]   
} 
# Number of stations left 
nstas=length(ids) 
print(names(statis)) 
print (length(statis)) 
 
datadir="Z:/miriza/Work/FIU/FL_Building_Code/Data/Rainfall/" 
 
# Load FL boundary 
FL_Boundary=read.csv(paste(datadir,"/Code/FL_Boundarydetailed.csv",sep="")) 
 
#Load canals 
cnls=shapefile("Z:/miriza/Work/FIU/FL_Building_Code/Data/USGS_MODFLOW/ancillary/ancill
ary/gis/umd_swr_hydrography.shp") 
cnlslatlon=spTransform(cnls,CRS="+proj=longlat +datum=WGS84 +ellps=WGS84 
+towgs84=0,0,0") 
 
## Get station locations 
# Read weather station file 
stas=read.csv(paste(datadir,"/ATLAS14/noaa_atlas14_included_stations.csv",sep=""),fill
=FALSE,stringsAsFactors=FALSE) 
stas2=read.csv(paste(datadir,"/SFWMD/sfwmd_hourly_included_stations.csv",sep=""),fill=
FALSE,stringsAsFactors=FALSE) 
stas3=read.csv(paste(datadir,"/SFWMD/sfwmd_included_stations.csv",sep=""),fill=FALSE,s
tringsAsFactors=FALSE) 
 
# Weather station lats and lons 
unordered_mystasNames=c(stas$STATION.ID,stas2$STATION,stas3$DBKEY) 
unordered_stasLat=c(stas$LAT..degrees,stas2$LAT..degrees,stas3$LAT..degrees) 
unordered_stasLon=c(stas$LONG..degrees,stas2$LONG..degrees,stas3$LONG..degrees) 
 
 
#Get lat and lon for stations in the order they're listed in mds_amsunc30 
stasLat=unordered_stasLat[match(names(statis),unordered_mystasNames)] 
stasLon=unordered_stasLon[match(names(statis),unordered_mystasNames)] 
 
print(paste(length(stasLat),length(stasLon))) 
mydata=data.frame(cbind(statis,stasLon,stasLat)) 
names(mydata)=c("statis","x","y") 
coordinates(mydata) = ~x + y 
 
#Define labels for plot 
a=character(nstas) 
pch=rep(16,nstas) 
if (!is.null(pval)) { 
  a[pval<0.05]="*" 
  pch[pval<0.05]=15 
} 
 
if (labs=="none") lab=rep(NULL,nstas) 
if (labs=="names") lab=paste(ids,sep="") 
if (labs=="data") lab=paste(round(statis,1),a,sep="") 
if (labs=="dn") lab=paste(ids,": ",round(statis,1),a,sep="") 
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#Determine colormap and z-limits 
if (posonly) { 
  colorpal=matlab.like 
  if (is.null(zlim)) zlim=range(statis, finite=TRUE) 
} else { 
  zabmax=max(abs(statis)) 
  colorpal=blue2red 
  if (is.null(zlim)) zlim=c(-zabmax,zabmax) 
} 
#Make a grid unto which to interpolate data 
grd=expand.grid(x=seq(min(stasLon),max(stasLon),length=res), 
                y=seq(min(stasLat),max(stasLat),length=res)) 
coordinates(grd) = ~x + y 
gridded(grd) = TRUE 
 
histogram(statis) 
histogram(log(statis)) 
 
#Try Tps with lambda=0.02 for smoothing (lambda=0.0 gives exact interpolation) 
grid.list=list(x=seq(min(stasLon),max(stasLon),length=res), 
                y=seq(min(stasLat),max(stasLat),length=res)) 
t<-Tps(cbind(stasLon,stasLat),statis,lambda=0.02) 
u<-predictSurface(t,grid.list,extrap=TRUE) 
 
#Reformat the output for mapping 
xcoord=grd$x 
ycoord=grd$y 
zcoord=u$z 
mycoords=list(x=xcoord,y=ycoord) 
ind=point.in.polygon(xcoord,ycoord,FL_Boundary[,1],FL_Boundary[,2]) 
zcoord[!ind]=NA 
u$z[!ind]=NA 
 
png(paste(direc,"/contourmap_lines",main,"_TPS.png",sep=""),height=720,width=720,point
size=15) 
surface(u,axes=FALSE,xlim=c(-81.2,-80),ylim=c(25,26.2), 
        xlab="",ylab="",asp=1,labcex=1,ps=18,legend.shrink=0.6)#zlim=c(zmin,zmax) 
map('county',"Florida",type="l",xlim=c(-81.2,-
80),ylim=c(25,26.2),asp=1,col="black",add=TRUE) 
axis(1) 
axis(2) 
box() 
grid() 
lines(cnlslatlon,col="light blue") 
points(stasLon,stasLat,pch=pch,cex=0.6) 
text(stasLon,stasLat,labels=lab,cex=0.6,pos=4) 
title(main=main,xlab="Lon",ylab="Lat") 
mtext(paste("TPS interpolation with lambda of 0.02 ",sep=""),side=3,line=0,cex=0.6) 
if (!is.null(pval)) mtext("* Significant at the 0.05 level",side=1,adj=1,line=3,cex=0.6) 
dev.off() 
} 
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Appendix III.  Evaluation of FBC Related Requirements 
 

Task 3. An assessment of the potential changes to the code for incorporating sea level rise and update 
extreme rainfall using Miami-Dade area as a case study 

 

 

Rain Loads 
 

Objective 3.1: Evaluate the current Florida Building Code requirements to recommend what additional 
steps will be necessary to incorporate results of the study into relevant sections of the Codes.  Specifically, 
the changes to the rain loads and their implications for Rain Loads as applied to Figure 1611.1 and figure 
1106.1 of the FBC, Plumbing shall be recommended. 

 

Context for evaluation: Rain loads contribute to the design specifications of a structure through weight 
of water and drainage of water from the structure’s roof. Rain loads applied to building and plumbing are 
interconnected, as the size of the drainage system determines how fast water can drain from a roof, 
reducing the potential for structural failures. But also, structural considerations for rain loads extend to 
the combination of loads that must be computed by adding rain load to other loads of the structure.  

 

FBC – Plumbing 

Chapter 11, Storm Drainage 

Figure 1106.1 

 

Current code: Roofs shall be designed for the maximum possible depth of water that will pond. The 
published roof drain flow rate, based on the head of water above the roof drain, shall be used to size the 
storm drainage system in accordance with Section 1106. The  maximum possible depth of water includes 
the height of the water required above the inlet of the secondary roof drainage to achieve the required 
flow rate of the secondary drainage to accommodate the design rainfall rate, and assuming all primary 
roof drainage is blocked (FBC 2017). Fundamentally, the code implies use of a flow rate for sizing the storm 
drainage piping that is based on the maximum anticipated ponding at the roof drain (Section 1105.2, FBC 
2017).  

 

The size of the vertical conductors and leaders, building storm drains, building storm sewers and any 
horizontal branches of such drains or sewers shall be based on the 100-year hourly rainfall rate indicated 

https://up.codes/viewer/florida/fl-plumbing-code-2017/chapter/2/definitions#water
https://up.codes/viewer/florida/fl-plumbing-code-2017/chapter/2/definitions#roof_drain
https://up.codes/viewer/florida/fl-plumbing-code-2017/chapter/2/definitions#water
https://up.codes/viewer/florida/fl-plumbing-code-2017/chapter/2/definitions#roof_drain
https://up.codes/viewer/florida/fl-plumbing-code-2017/chapter/2/definitions#storm
https://up.codes/viewer/florida/fl-plumbing-code-2017/chapter/2/definitions#drainage_system
https://up.codes/viewer/florida/fl-plumbing-code-2017/chapter/2/definitions#water
https://up.codes/viewer/florida/fl-plumbing-code-2017/chapter/2/definitions#water
https://up.codes/viewer/florida/fl-plumbing-code-2017/chapter/2/definitions#drainage
https://up.codes/viewer/florida/fl-plumbing-code-2017/chapter/2/definitions#drainage
https://up.codes/viewer/florida/fl-plumbing-code-2017/chapter/2/definitions#drainage
https://up.codes/viewer/florida/fl-plumbing-code-2017/chapter/2/definitions#storm
https://up.codes/viewer/florida/fl-plumbing-code-2017/chapter/2/definitions#drainage
https://up.codes/viewer/florida/fl-plumbing-code-2017/chapter/2/definitions#roof_drain
https://up.codes/viewer/florida/fl-plumbing-code-2017/chapter/2/definitions#conductor
https://up.codes/viewer/florida/fl-plumbing-code-2017/chapter/2/definitions#leader
https://up.codes/viewer/florida/fl-plumbing-code-2017/chapter/2/definitions#storm_drain
https://up.codes/viewer/florida/fl-plumbing-code-2017/chapter/2/definitions#storm_sewer
https://up.codes/viewer/florida/fl-plumbing-code-2017/chapter/2/definitions#branch
https://up.codes/viewer/florida/fl-plumbing-code-2017/chapter/2/definitions#drain
https://up.codes/viewer/florida/fl-plumbing-code-2017/chapter/2/definitions#sewer
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in Figure 1106.1 or on other rainfall rates determined from approved local weather data (FBC 2017). 

 

The 100-yr, hourly rainfall (i) and the roof area serviced by a single drainage system is used to determine 
flow rate for a single drainage system by Q = 0.0104Ai (ASCE 7-05). Static head (ds) is the depth of water 
on the undeflected roof up the inlet of the secondary drainage system when the primary drainage is 
blocked, provided Q and Table 1106.2. Hydraulic head (dh) is the additional depth of water on the 
undeflected roof above the inlet of the secondary drainage system at is design flow, and can be 
determined from the minimum required flow for the secondary drain, referencing ASCE/SEI 7-16 (in 
Patterson and Mehta (2018)). Computing the total depth of water on the roof when the primary system 
is blocked (ds + dh) * 5.2 gives the design rain load in psf. 

 

Results of data analyses: The updated 100-yr, hourly rainfall rate determined for the Miami-Dade County 
region was both higher and more spatially-variable than indicated in Figure 1106.1/1611.1 (see Figure 98 
or Figure 7 in the main report) Further, a recent paper used historical data to found increased rainfall in 
most wet season months (Abiy et al., 2019), however, they did not analyze 100-yr return intervals for 15-
minute events.   

 

Additional literature research: In a paper presented to the 33rd RCI International Convention and Trade 
Show in 2018, Patterson and Mehta noted some limitations of using 100-yr, hourly rainfall. One, that 100-
yr, hourly rainfall is often not a constant rainfall rate over the 60-minute period. Two, the secondary or 
overflow drainage system is intended as a safety provision against failures (e.g., roof collapse, pipe-fitting 
separation, pulled hanger from pre-stressed concrete floor/ceiling, flood of upper-balcony decks, fitting 
component failure, flooding in upper building floors due to pipe failure, Ballanco 2012) in the case that 
the primary drainage system is compromised. Patterson and Mehta (2018) noted that past codes had used 
higher rainfall rates for the secondary drainage system. In 1991, the SPC required overflow drainage to be 
designed to 100-yr, 15-minute rainfall rate. The first International Plumbing Code (IPC) published in 1995 
divided in half the drainage capacity of the secondary system, effectively doubling the design rainfall rate 
for overflow drainage. Among Ballanco (2012) recommendations for code changes were new sizing 
requirements to be based on two rainfall rates: 100-yr, hourly rainfall and 10-yr, 5-minute rainfall rates, 
and applying the rate that accommodates the greatest amount of ponding expected. The National 
Standard Plumbing Code of the Plumbing- Heating-Cooling Contractors National Association continues to 
use 100-yr, 15-minute rainfall rate for the secondary drainage system. In fact, ASCE 7-16 apparently also 
recommends using 100-yr, 15-minute rainfall rates to accommodate those heavy, short duration storms.  

 

FBC - Building 

Chapter 16, Structural Design 

Figure 1611.1 
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Current Code: Similarly, design rain loads (R) are determined for each portion of a roof to sustain the load 
of rainwater that will accumulate on it if the primary drainage system for that portion is blocked (static 
head = ds) plus the uniform load caused by water that rises above the inlet of the secondary drainage 
system (hydraulic head = dh) at its design flow (R = 5.2 (ds + dh). The design rainfall is based on the 100-
year hourly rainfall rate indicated in Figure 1611.1 or on other rainfall rates determined from approved 
local weather data (FBC 2017). 

 

Results of data analyses: As described above, the updated 100-yr, hourly rainfall rate determined for the 
Miami-Dade County region was both higher and more spatially-variable than indicated in Figure 
1106.1/1611.1. See Figure 98. Further, a recent paper used historical data to found increased rainfall in 
most wet season months (Abiy et al 2019), however, they did not analyze 100-yr return intervals for 15-
minute events. 

 

Key Recommendation: Two recommendations are proposed related to Rain Loads for Storm Drainage 
in the Plumbing volume and Structural Design in the Building volume of the FBC.  

1. Currently, the FBC allows Figure 1106.1/1611.1 to be used to determine 100-yr, hourly rainfall to 
determine flows and rain loads for structural and plumbing design. Updated data (provided in the 
main report) and guidance in relevant international and national codes suggest that the 100-yr, hourly 
rainfall maps for the State should be based on updated data. Further, 100-yr, 15-minute rainfall rate 
data should also be reviewed, and updated as needed, to facilitate consideration of new code 
language that the higher of the 100-yr, hourly rainfall rate or 100-yr, 15-minute rainfall rate be applied 
for the secondary drainage system.  

2. Large roof areas may result in the exceedance of the flow capacities provided in Tables 1106.2 and 
1106.3.  

 

 

Flood Loads 
 

Objective 3.2: Evaluate how the groundwater table maps and the revised rainfall maps should be used to 
update the Flood Loads as applied to Structural Design (Chapter 16, including Table 1612.1), Flood 
Resistant Construction (Chapter 3, Section R322, Residential) and the structures seaward of the coastal 
construction line (Chapter 31, Section 3109, Building) of the FBC. In the list of codes identified, this 
objective also included review of Chapter 18, Soils and Foundations, of the Building volume and Chapter 
11, Storm Drainage, of the Plumbing volume. 
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Context of Evaluation: Loads are “forces or other actions that result from the weight of building materials, 
occupants and their possessions, environmental effects, differential movement and restrained 
dimensional changes. Permanent loads are those loads in which variations over time are rare or of small 
magnitude, such as dead loads. All other loads are variable loads” (FBC 2017). Buildings are other 
structures and portions thereof shall be designed to resist Load Combinations (dead, earthquake, fluid, 
flood, lateral earth pressure, roof and floor live, rain, snow, self-straining, wind speed and pressure loads, 
Section 1605). Foundation walls and retaining walls shall be designed to resist lateral soil loads (Section 
1610). Flood loads apply to buildings and other structures located in areas prone to flooding, as defined 
on a flood hazard map (Section 1612; ASCE 7-05, Chapter 5). Flood loads for structural systems of buildings 
or other structures are designed, constructed, connected, and anchored to resist floatation, collapse, and 
permanent lateral displacement due to action of loads due to flooding associated with design flood and 
other loads in accordance with load combinations (ASCE 7-05, Chapter 5). Design and construction of 
structures seaward of a coastal construction control line (CCCL) or seaward of the 50-foot setback line, 
Flood resistant construction and Storm Drainage for plumbing are also covered. The FBC residential, 
adopts with amendments, the International Residential Code (2015), with provisions for flood-resistant 
construction. 

 

FBC - Building 

Chapter 16, Structural Design 

Section 1605 - Load Combinations 

Section 1610 - Soil Lateral Loads 

Section 1612 - Flood Loads of Building 

 

Current Code: The flood hazard area is the area subject to flooding during the design flood. The design 
flood is the greater of the following 2 events: 1) the Base Flood, affecting those areas on the community’s 
Flood Insurance Rate Map, or 2) the flood corresponding to the area designated as a Flood Hazard Area 
on a community’s Flood Hazard Map or otherwise legally designated. The Coastal High Hazard Area (V-
Zone) and Coastal A-Zone are areas within a Special Flood Hazard Area (SFHA, land in a floodplain subject 
to a 1% or greater chance of flooding in a given year). The V-Zone, extends from offshore to the inland 
limit of a primary frontal due along an open coast, and any other area subject to high-velocity wave action 
from storms or seismic action. The coastal A-zone is landward of a V-Zone or landward of an open coast 
without mapped V-Zones. The principal source of flooding must be astronomical tides, storm surges, not 
riverine flooding, and potential for breaking waves greater than or equal to 1.5ft during the base flood 
(Chapter 5, ASCE 7-05).  

 

Design and construction of structures located in flood hazard areas shall consider all flood-related loads 
and conditions, including the following: hydrostatic loads, hydrodynamic loads, wave action; debris 

https://up.codes/viewer/florida/fl-building-code-2017/chapter/2/definitions#loads
https://up.codes/viewer/florida/fl-building-code-2017/chapter/2/definitions#loads
https://up.codes/viewer/florida/fl-building-code-2017/chapter/2/definitions#dead_load
https://up.codes/viewer/florida/fl-building-code-2017/chapter/2/definitions#loads
https://up.codes/viewer/florida/fl-building-code-2017/chapter/2/definitions#loads
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impact; rapid rise and rapid drawdown of floodwaters; prolonged inundation; alluvial fan flooding; wave-
induced and flood-related erosion and local scour; deposition of sediments; ice flows and ice jams; and 
mudslides in accordance with requirements of this standard if specified, or if not specified in this standard 
then in accordance with requirements approved by the authority having jurisdiction. Design 
considerations shall be documented and shall take into account the applicable flood-related loads and 
conditions, and load combinations that will act on the foundation and the structure (Chapter 1, ASCE 24). 

 

Where flood loads, Fa, are to be considered in the design, the load combinations of Section 2.3.3 of ASCE 
7 shall be used (FBC 2017). When a structure is located in a flood zone (e.g., Flood Hazard Area, Section 
5.3.1, Chapter 5, ASCE 7-05), the following load combinations shall be used, applying load combinations 4 
and 6 for strength design (Section 2.3.3, Chapter 2, ASCE 7), below. For allowable stress design, see Section 
2.4.2., Chapter 2, ASCE 7-05: 

 

4) 1.2D + 1.6W + L + 0.5 (Lr or S or R) 

 

6) 0.9D + 1.6W + 1.6H 

 

1. In V-Zones or Coastal A-Zones, 1.6W in combinations (4) and (6) shall be replaced by 1.6W + 2.0Fa. 
2. In noncoastal A-Zones, 1.6W in combinations (4) and (6) shall be replaced by 0.8W + 1.0Fa. 

 

The nominal flood load, Fa, is based on the 100-year flood (Chapter 5, ASCE 7-05), although design flood 
elevation should be used if flooding in the area designated as a flood hazard area on a community’s flood 
hazard map or otherwise legally designated area is greater (Chapter 1, ASCE 24). The recommended flood 
load factor of 2.0 in V Zones and Coastal A-Zones is based on a statistical analysis of flood loads associated 
with hydrostatic pressures, pressures due to steady overland flow, and hydrodynamic pressures due to 
waves, as specified in Section 5.3.3 (Chapter 5, ASCE 7-05). The flood load criteria were derived from an 
analysis of hurricane-generated storm tides produced along the United States East and Gulf coasts, where 
storm tide is defined as the water level above mean sea level resulting from wind-generated storm surge 
added to randomly phased astronomical tides (Mehta et al. 1998 in C2.3.3, ASCE 7). Also, D = dead load, 
or the actual weights of materials of construction and fixed service equipment; L = live loads are roof (>20 
psf) and floor live loads uniformly distributed (psf), or concentrated (lbs.) based on occupancy or use; R = 
rain load and W = load due to wind pressure. 

 

In the design of structures below grade, provision shall be made for the lateral pressure of adjacent soil. 
This is determined by geotechnical investigation, or if not given, soil loads specified in Table 1610.1 
(Chapter 16, FBC). In ASCE 24 (Section 1.5.3.), it is stated that foundations of structures shall be designed 

https://up.codes/viewer/florida/fl-building-code-2017/chapter/2/definitions#loads


343 
 

and constructed to provide the required support to prevent flotation, collapse, or permanent lateral 
movement under the load combinations specified in Section 1.6.2 during design flood conditions in flood 
hazard areas. Any part of the foundation that is below the minimum elevations specified by Table 2-1 
(SFHA, non-coastal) or Table 4-1 (SFHA, coastal), as applicable, and that provides structural support shall 
meet applicable foundation requirements in this standard. (Section 1.5.3, Chapter 1, ASCE 24). FBC cites 
“below grade” whereas ASCE 24 references “below minimum elevations”. In doing so, ASCE 24 implicitly 
includes reference to free surface water, which kicks in an additional provision put forth in ASCE 7-05 
when computing loads during flood “for surfaces exposed to free water, the design depth shall be 
increased by 1 ft (0.30 m)”.  

 

FEMA provides significant technical guidance on determining hydrostatic and hydrodynamic loads for 
residential and non-residential buildings in flood hazard areas that are not currently referenced in the FBC 
with reference to Section 1610, Soil Lateral Loads, but are referenced in ASCE 24. For new construction 
(U.S. Army Corps of Engineers publication, Flood Proofing Regulations (USACE 1995) and two publications, 
FEMA P-936, Floodproofing Non- Residential Buildings (FEMA 2013a) and FEMA P-259, Engineering 
Principles and Practices for Retrofitting Flood Prone Residential Buildings (FEMA 2012a) are referenced. 
For existing, residential structures FEMA P-312, Homeowner’s Guide to Retrofitting: Six Ways to Protect 
Your House from Flooding (FEMA 2009a) are referenced. Documents FEMA P-936, P-259 and P-312 
provide standard calculations for hydrostatic and hydrodynamic loads not provided in ASCE 7-05. Further, 
these documents provide technical guidance with reference to Section 1612, Flood Loads. While 
documentation therein with reference to Section 1605, Load Combinations, are provided, Section 1612 is 
the most direct guidance provided in FBC, Chapter 16 of the Building volume. This section directs the code 
provisions to Chapter 5 of ASCE 7 and ASCE 24, as indicated above. The cross-references to flood-resistant 
provisions of the Florida Building Code as provided in Table 1612.1 are useful, but those sections only 
sometimes reference back to ASCE 7 and ASCE 24.   

 

With regard to impacts of sea-level rise, ASCE 24 cautions the designer that the minimum elevation 
requirements provided by FEMA as the BFE do not provide for uncertainties in flood frequency nor take 
into account changes in flooding because of watershed development, sea-level rise, or changes in 
precipitation patterns. ASCE 24 provides for minimum elevation requirements with a factor of safety 
above the BFE, dependent on the critical or essential nature of the structure occupancy and use. 

 

Results of data analyses: Updated data associated with this objective included wet season groundwater 
table maps and depth to water maps under low and high scenarios of sea-level rise. In the proposed work, 
we were not tasked with reviewing code with respect to storm surge per se. However, changes in sea level 
will also have an influence on the design flood elevation in the SFHA, particularly in the V-zone and Coastal 
A-Zone. In the 2009 M-D county FIS, it was reported that flood elevations for multiple canal basins and 
areas were determined using XP-SWMM (Miami-Dade County DERM, August 2003-March 2007) and that 
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a hypothetical tidal wide of 2-ft height was used as the downstream boundary condition (FEMA 2009). 
We do not know to what extent groundwater elevation was considered in these runs to determine BFE.  

 

New groundwater table maps and rainfall data will be useful in updated determinations of BFE and DFE 
(see sections I and II of the main report). Depth to groundwater table maps provide the building code 
officer with a quick reference to evaluate whether a geotechnical investigation should accompany the 
building permit.  See Main modeling results section and Section I of the main report for further 
recommendations referencing updated data on depth to groundwater.  

 

Additional literature research: In ASCE 24, it is noted the Design Flood Elevation (DFE), the higher of the 
BFE on FIRMs or flood elevation shown on a community’s map, DFE often = BFE. However, communities 
may elect to adopt flood elevations that are higher than those determined by FEMA, for example, to 
incorporate recent change or show future conditions (assuming predicted upland development, 
subsidence, or sea-level rise), to reflect the flood or record or other flood events that exceeded the 1% 
annual chance flood, or to incorporate freeboard as an additional safety factor to reflect local conditions. 
The DFE also depends on the Flood Design Class, a classification of buildings and other structures for 
determination of flood loads and conditions, and determination of minimum elevation requirements on 
the basis of risk associated with unacceptable performance (ASCE 24). The FBC recently adopted DFE = 
BFE + 1ft, as recommended in ASCE 24 that applies to residential structures (R322.3.2).  

 

Key Recommendations: Six areas of recommendations are proposed related to Flood Loads for 
Structural Design in the Building volume of the FBC. 

1. Currently, the code does not take into consideration changing sea level as part of the flood load 
calculations. This is recommended for 3 primary reasons: 1) sea level has increased 4-5 inches since 
1992 in south Florida (see Future ocean boundary condition section), Southeast Florida has 
experienced an uptick in the rate of rise in the 2006-2016 period of record (Wdowinski et al. 2017), 
and a recent paper suggests we are on a high scenario projection for future changes in sea level (PNAS 
paper 2019); 2) changes in sea level influence the surface exposed to free water, increasing both the 
hydrostatic and hydrodynamic load in flood hazard areas; ASCE 7-05 provides that BFE + 1ft should be 
mandated where water level exceeds the ground surface as “free water”. This is the common result 
of regular, extreme flooding due to astronomical tides.; 3) the lifetime for residential and non-
residential structures can exceed 50 years, by which time an approximate 2 ft increase in sea level 
may occur; and 4) the cumulative influence of astronomical tides, uncertainties in flood frequency 
analyses and hydraulic modeling, changes between wet season and dry season groundwater tables, 
and changes in flooding from watershed development, sea-level rise and changing precipitation 
patterns are not accounted in BFE.  
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Thus, at a minimum, Flood Design Classes should be applied for structures that meet criteria 3 and 4 
(Chapters 2 – 4, ASCE 24), and BFE = 1ft be designated for non-residential structures. However, a more 
robust, scientifically-backed methodology for computing elevation requirements that take into 
account these cumulative uncertainties and sources of flooding is warranted. Further, to ensure the 
most up-to-date sea-level rise projections are being taken into consideration for the design of flood 
elevations, it is recommended that there be a harmonized procedure for developing a unified 
projection for each region of the State, that is updated every 5 years and mandated for use in the FBC. 
Finally, coastal A-zones can be considered for use to determine and accommodate the increasing 
influence of astronomical tides (inland extent of tide) and additional area of flood inundation extent 
with surge + tide. In absence of other data, the limit of moderate wave action (LiMWA) could be used 
to determine the limit of influence of astronomical tide, and evaluated for what conditions it is 
appropriate to apply (applying, for instance, a table like 1610.1).  

2. Currently, load combinations apply Fa use hydrostatic and hydrodynamic calculations provided in 
Chapter 5, ASCE 7-05, and load combinations including flood load referencing analyses and 
publications from the 90s and earlier. Advancements in experimental facilities and modeling warrant 
review, and possible update, of load combinations that include flood and the recommended flood 
load factor applied in V- and coastal-A zones (see p.256, C2.3.3. for a discussion of determination of 
flood load criteria). In particular, recurring tidal flooding meets the conditions set forth for higher 
flood load factors (e.g., Mehta et al. 1998). Because in these situations, flood load is generally small, 
a flood load factor of 2.0 is deemed sufficient based on the fact that the most important structural 
design conditions are for floods of greater stillwater depths (flood level above ground) than 4ft. 

3. ASCE 24 provides a more in depth discussion of flood resistant standards in most areas of the FBC, 
including with regard to soil lateral loads and building to flood elevations (DFE). It is recommended 
that: 1) Section 1605 and 1610.1 reference ASCE 24, including Chapter C6, when building in flood 
hazard areas, including reference to Flood Design Class in Section 1604.5. 2) A footnote be added to 
Table 1610.1 referencing ASCE 24 and substantial improvement/damage provisions, so that 
foundation walls are designed to support “the weight of the full hydrostatic pressure of undrained 
backfill, unless a drainage system is installed in accordance with Sections 1805.4.2 and 1805.4.3” in a 
flood hazard area (Section 1610.1). It is recommended that the FBC provide the standardized 
approaches or make reference to the standard approaches it recommends for groundwater control.  

4. With reference to Section 1612 and Table 1612.1, it is recommended that language be modified in 
the code in Section 1612.4 with text in red font as “The design and construction of buildings and 
structures located in flood hazard areas, including coastal high hazard areas and Coastal A Zones, and 
those flood-resistant provisions of the FBC cross-referenced in Table 1612.1, shall be in accordance 
with Chapter 5 of ASCE 7 and with ASCE 24. 

5. Currently, many structures within the flood hazard area are not up to flood code provisions because 
they are pre-FIRM buildings and/or have been grandfathered. It is recommended that the FBC 
consider a study on the number, type, location and flood risk of pre-FIRM buildings to determine 
specific, standardized guidance to inform the basis for any potential code changes consistent with the 
intent of the FBC and helps transition both residential and non-residential pre-FIRM structures to 
“minimum requirements for reasonable safety, public health and general welfare” as provided in 
Section 101.3.  

https://up.codes/viewer/florida/fl-building-code-2017/chapter/2/definitions#flood_hazard_area
https://up.codes/viewer/florida/fl-building-code-2017/chapter/2/definitions#coastal_high_hazard_area
https://up.codes/viewer/florida/fl-building-code-2017/chapter/2/definitions#coastal_a_zone
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6. Table 1612.1 cross-references flood-resistant provisions in the Florida Building Code. Section 107.2.5 
and 107.3.5 (Submitted documents for site plan and minimum plan review criteria for buildings) 
should reference ASCE 24, section 1.5 for flood hazard areas. Section 117.1 provides that the variance 
procedures adopted in the local floodplain management ordinance shall apply to requests to the 
building official for variances. A clause could be added, such as: including but not limited to the 
floodplain manager on staff, to ensure that someone certified in floodplain management provides 
input on the variance requested. Chapter 2, Section 202, should include definitions for “return period” 
and “combined total storm tide elevation”. Chapter 4 provides for the Flood Design Class Criteria 
specific in Table 2-1 and 4-1 of ASCE 24. It is recommended that a study be conducted on the cost-
benefit of reducing the substantial improvement/damage percentage for Flood Design Class 4 
buildings and structures.  

7. As referenced in Section 453.2, public schools and Florida colleges are exempt from local 
requirements, as provided in Section 1013.371(1)(a), Florida Statutes, with specific provisions for how 
construction documents are reviewed and inspected. Two recommendations are provided with regard 
to Section 453.2 given their Flood Design Class of 3: 1) Add: Exception: Educational facilities in flood 
hazard areas must comply with must comply with this code or the floodplain management ordinance 
of the municipality having jurisdiction in accordance with 44 CFR Parts 59, 60, 65, and 70. 2) Add after 
“Section 1013.38, Florida Statutes.”: Consistent with 105.14, permit issued on basis of a sworn 
affidavit shall not extend to flood load and flood resistance requirements of the Florida Building Code, 
as per 44 CFR Parts 59, 60, 65, and 70. 

 

 

  

FBC - Building 

Chapter 18, Soil & Foundations 

Section 1803 Geotechnical Investigations 

section 1804 Excavation, Grading & Filling 

Section 1805 Damp proofing & Waterproofing 

Section 1806 Presumptive Load-Bearing Values of soils 

Section 1807 Foundation Walls, Retaining Walls & embedded Posts & Poles 

Section 1808 Foundations 

Section 1809 Shallow Foundations 

Section 1810 Deep Foundations 
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Current Code: The basis for soil and foundation code requirements is to design for allowable bearing 
pressures, and allowable stresses, and to determine the allowable stress design load combinations 
specified in Section 1605.3 and the quality and design of materials used structurally in excavations and 
foundations. Currently, the FBC Section 1804.5 allows fill in coastal high hazard areas and coastal A zones 
(contrary to ASCE 24, Section 4.5.4) “unless the fill is conducted and/or placed to avoid diversion of water 
and waves toward any building or structure”. The following statement proceeds: “that cumulative effect 
of encroachment into a floodway, when combined with all other existing and anticipated flood hazard 
area encroachment, will not increase the design flood elevation more than 1 ft at any point”.  

 

Results of data analyses: Depth to groundwater table maps (see Main modeling results section and 
Section I in the main report) provide an estimation of variation (minimum dry season and maximum wet 
season) depth to groundwater. As noted, the maps provide the building code officer with a quick 
reference to evaluate whether a geotechnical investigation should accompany the building permit. In 
areas of shallow water table, like those near the coast, our analyses illustrate that the water table varies 
significantly depending on the time of year (e.g., dry season or wet season) and is projected to change 
from increasing sea level. Currently, the code provides no regulatory guidance on design and construction 
under these conditions, except with recommendations in ASCE 24 to provide additional safety with 
freeboard. In FBC Residential, FBC requires BFE + 1ft. Further, saltwater intrusion maps illustrate the 1996 
saltwater-freshwater interface and the potential rate at which saltwater will intrude with changing sea-
level rise. There are currently no provisions in the code for using salt-corrosion resistant materials for the 
design and construction of foundations, nor guidance on where these materials should be used.  

 

Additional literature research: N/A 

 

Key Recommendations: Five areas of recommendations are proposed related to Flood Loads for Soil 
and Foundations in the Building volume of the FBC. 

1. Geotechnical investigations are the report of record for structures. The report elements need not be 
limited to those listed in 1803.6. It is recommended the following elements be listed among the report 
elements: 1) date of last geotechnical investigation, 2) if water table is not encountered, location of 
nearest well and water table depth at time of geotechnical investigation, to a cross-referenced 
benchmark, 3) whether the fill materials may be exposed to shrinking/swelling, and included in special 
design and construction provisions, 4) in foundation recommendations, type and design 
considerations for shrinking/swelling and salinity, and 5) document municipal regulations on setback 
and clearance and alternate design criteria recommendations. 

2. 1804.5 is contradictory to ASCE 24, as written. Fill is prohibited in coastal high hazard areas and coastal 
A-zones. 

3. Ground-water control (Section 1805.1.3) should be designed and constructed in accordance with 
shallow-water table conditions and where saltwater corrosion may occur. A standardized system 
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design for groundwater control outlined in the FBC is recommended, including for the purpose of 
subsoil drainage (1805.4). 

4. Drainage discharge (Section 1805.4) Add to Exception: “, unless in a flood hazard zone – refers to 
“approved drainage system that complies with plumbing” – check that first 

5. Shallow and Deep Foundations (Sections 1809 & 1810) – steel footings and soil conditions/changing 
water levels. Add; in flood hazard areas, comply with ASCE 24. 

 

 

FBC - Building 

Chapter 31, Special Construction 
Section 3109 Structures seaward of a coastal construction control line 

 

Current Code: The provisions of this section shall apply to the design and construction of habitable 
structures, and substantial improvement or repair of substantial damage of such structures, that are 
entirely seaward of, and portions of such structures that extend seaward of, the coastal construction 
control line (CCCL) or seaward of the 50-foot setback line, whichever is applicable. This section does not 
apply to structures that are not habitable structures, as defined in this section. Section 1612 shall apply 
to habitable structures and structures that are not habitable structures if located in whole or in part in 
special flood hazard areas established in Section 1612.3. It is specifically noted, If the modification or 
repair is determined to be substantial improvement or substantial damage, and if the building is located 
in a special flood hazard area (Zone A and Zone V) established in Section 1612.3, the requirements of 
Florida Building Code, Existing Building applicable to flood hazard areas shall apply.  

 

Results of data analyses: New groundwater table maps with low and high scenarios for sea-level rise will 
be useful in updated determinations of BFE and DFE. <<summary of results here>> Depth to groundwater 
table maps will be useful to determine whether an existing foundation may need modification to comply 
with substantial improvement/damage provisions of 1612. 

 

Additional literature research: All of Miami-Dade County seaward of CCCL is in SFHA, generally, but map 
revisions may have removed some structures  

(https://ca.dep.state.fl.us/mapdirect/?webmap=a8c9e92fbad5446d987a8dd4ee5dc5cc).  

 

Key Recommendations: Given the projected influence of sea-level rise on combined storm tide 
elevations, the following recommendations are proposed related to Flood Loads for Special 
Construction in the Building volume of the FBC. 1) The combined total storm tide elevation (value) for 
the 100-yr return period identified by the FDEP should be evaluated against those using other, approved 

https://up.codes/viewer/florida/fl-building-code-2017/chapter/2/definitions#substantial_improvement
https://up.codes/viewer/florida/fl-building-code-2017/chapter/2/definitions#repair
https://up.codes/viewer/florida/fl-building-code-2017/chapter/2/definitions#substantial_damage
https://up.codes/viewer/florida/fl-building-code-2017/chapter/16/structural-design#1612
https://up.codes/viewer/florida/fl-building-code-2017/chapter/2/definitions#flood_hazard_areas_special
https://up.codes/viewer/florida/fl-building-code-2017/chapter/16/structural-design#1612.3
https://up.codes/viewer/florida/fl-building-code-2017/chapter/2/definitions#repair
https://up.codes/viewer/florida/fl-building-code-2017/chapter/2/definitions#substantial_improvement
https://up.codes/viewer/florida/fl-building-code-2017/chapter/2/definitions#substantial_damage
https://up.codes/viewer/florida/fl-building-code-2017/chapter/2/definitions#special_flood_hazard_area
https://up.codes/viewer/florida/fl-building-code-2017/chapter/2/definitions#zone
https://up.codes/viewer/florida/fl-building-code-2017/chapter/2/definitions#zone
https://up.codes/viewer/florida/fl-building-code-2017/chapter/16/structural-design#1612.3
https://up.codes/viewer/florida/fl-building-code-2017/chapter/2/definitions#flood_hazard_area
https://ca.dep.state.fl.us/mapdirect/?webmap=a8c9e92fbad5446d987a8dd4ee5dc5cc)
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methods of determining that value. 2) The 500-yr combined total storm tide elevation should be evaluated 
for consideration and use for Flood Design Class 2 - 4 structures, or the DFE, whichever is greater. 3) Given 
the extensive and valuable development along the Florida coastline, we recommend a study that 
evaluates how increasing the inland extent of the CCCL, and extending the CCCL to V-zones not currently 
within the CCCL, would reduce building damage, with further consideration given to those proposals after 
the study is complete. 4) There may be some inconsistencies, for example, when the CCCL is also in a 
coastal high hazard area (e.g., 3109.3.5) – need to remind myself if structural slabs are permitted here. 

 

 

FBC – Residential 

Chapter 3 

Section R322 - Flood Resistant Construction 

 

Current Code: Buildings and structures constructed in whole or in part in flood hazard areas, including A 
or V Zones and Coastal A Zones, as established in Table R301.2(1), and substantial improvement and 
restoration of substantial damage of buildings and structures in flood hazard areas, shall be designed and 
constructed in accordance with the provisions contained in this section, and those located within flood 
hazard areas, be designed and constructed in accordance with ASCE 24. Table R301.2 provides climatic 
and geographic design criteria for floods as “The applicable governing body shall, by local floodplain 
management ordinance, specify (a) the date of the jurisdiction’s entry into the National Flood Insurance 
Program (date of adoption of the first code or ordinance for management of flood hazard areas), (b) the 
date(s) of the Flood Insurance Study and (c) the panel numbers and dates of the currently effective FIRMs 
and FBFMs or other flood hazard map adopted by the authority having jurisdiction, as amended.” In FBC 
Residential, FBC requires BFE + 1ft. While the safety factor provided helps to address the critical nature of 
residential structures, it does not take into account other sources of flooding nor uncertainty.  

 

Results of data analyses: New groundwater table maps and rainfall data will be useful in updated 
determinations of BFE and DFE (See Main modeling results section and  Section I of the main report) 

 

Additional literature research: N/A 

 

Key Recommendations: The new, relevant FEMA publications should be referenced throughout. The 
following specific code language updates are also recommended related to Flood Loads for Flood 
Resistant Construction in the Residential volume of the FBC.  

https://up.codes/viewer/florida/fl-residential-code-2017/chapter/3/building-planning#R301.2
https://up.codes/viewer/florida/fl-residential-code-2017/chapter/2/definitions#applicable_governing_body
https://up.codes/viewer/florida/fl-residential-code-2017/chapter/2/definitions#local_floodplain_management_ordinance
https://up.codes/viewer/florida/fl-residential-code-2017/chapter/2/definitions#local_floodplain_management_ordinance
https://up.codes/viewer/florida/fl-residential-code-2017/chapter/2/definitions#jurisdiction
https://up.codes/viewer/florida/fl-residential-code-2017/chapter/2/definitions#jurisdiction
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1. R322.1.4.1 #2 – Add: as provided by the local floodplain management ordinance e.g., documentation 
of flood-resistant design and construction (Table R301.2)  

2. R322.1.4.2 – Add: Exception: when the proposed buildings and structures are in a coastal high hazard 
area, then Chapter 4, ASCE 24 should be followed. NOTE: R322.1.4.2 as written contradicts Chapter 4, 
ASCE 24, which states that use of fill for structural support should be prohibited in coastal high hazard 
areas and coastal A-zones. Importantly, riverine flood hazard areas can occur in coastal high hazard areas 
and coastal A-zones. NOTE: It is presented correctly in R322.3.2 Elevation requirements (for coastal high 
hazard areas and Coastal A-zones). 

3. R322.1.6 Protection of mechanical, plumbing and electrical systems – requires systems to be elevated 
to BFE + 1ft or DFE, whichever is higher, for substantial improvements.  

4. R322.1.7 – new and replacement water supply and sanitary sewage systems must be designed to 
“minimize or eliminate infiltration of floodwaters into systems and discharges from systems into 
floodwaters accordance with Chapter 64E-6 onsite sewage and treatment and disposal systems”. 
Although the FBC refers to FDEP jurisdiction with Chapter 64E-6, FBC should mandate use of depth to 
groundwater maps to specify where installation of septic tanks should be prohibited, to comply with 
Section 101.3. where FBC provides for “minimum requirements for reasonable safety, public health and 
general welfare”. This should be coordinated with FDEP and/or Bureau of Health. 

5. R322.1.8 – A FEMA technical publication (TB-2) on flood-resistant materials is specifically referenced. 
The new, relevant FEMA publications should be referenced throughout.  

6. R322.2.1 Pull out Coastal A zone from bullet since it is directing to R322.3 The existing bullet 3 is not 
clear.  

7. R322.3.2 – Add to bullet 1: To account for SLR and recurring influence of astronomical tide (free water 
on surfaces), …  is elevated to or above the base flood elevation plus 2 feet (610 mm), or the design flood 
elevation, whichever is higher. 

8. R322.3.1/R322.3.2 – There are precedents for: 1) using “landward of the reach of mean high tide” to 
locate new buildings and buildings that are substantially improved and 2) using the Flood Design Class (2) 
to set the DFE in coastal high hazard areas and coastal A zones following Table 4.1 of ASCE 24. It is 
recommended that precedent 1 be used to develop code with regard to SLR. It is recommended that 
precedent 2 be used to extend setting DFE using Table 4.1 for higher risk Flood Design Class 3, and to 
other facilities in Class 4. 

9. R322.3.3 Foundations – There is an exception that allows stem wall foundations be backfilled to the 
underside of the flood system provided the foundations are designed to account for wave action, etc. 
Under SLR and storm surge in V zone, coastal A zones seem like the worst place to allow fill because the 
flood heights can be high on both sides of the coastal A zone. Recommend that the exception to the 
exception also include that it only be allowed under conditions where it is demonstrated that combined 
inland flooding and tidal flooding will not increase flood levels above the DFE in the coastal A zone.  
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FBC – Plumbing 

Chapter 11, Storm Drainage 

Section 1101 General 

Section 1102 Materials 

Section 1103 Traps 

Section 1105 Roof Drains 

Section 1106 Size of Conductors, Leaders and Storm Drains 

Section 1107 Siphonic Roof Drainage Systems 

Section 1108 Secondary (Emergency) Roof Drains 

Section 1109 Combined Sanitary and Storm Public Sewer 

Section 1110 Controlled Flow Roof Drain Systems 

Section 1111 Subsoil Drains 

Section 1112 Building Subdrains 

Section 1113 Sumps and Pumping Systems 

Appendix B 

 

Current Code: These provisions shall govern the materials, design, construction and installation of storm 
drainage. Subsoil drainage in Chapter 18 refers to Chapter 11, but limited guidance provided. There is no 
guidance on building in coastal flood hazard areas where saltwater corrosion and changing water levels 
can affect subsoil drain pipe, materials used for building storm sewer pipe, and fittings. Section 1106 
provides that the size of conductors, leaders and storm drains shall be based on the 100-yr hourly rainfall 
or other rates determine from approved local weather data. Section 1111 provides also for subsoil drains 
with no reference to saltwater corrosion or changing water levels. Building subdrains below the public 
sewer shall discharge into a sump then automatically lifted as required for sumps and comply with Section 
1113. 

 

Results of data analyses: Primary aspects that were considered were related to sea-level rise. Similarly, 
with Chapter 18, Soil and Foundations in the Building Volume, Chapter 11, Plumbing Volume, 
considerations were primarily with corrosion due to exposure to saltwater and changing water levels. 

 

Additional literature research: N/A 
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Key Recommendations: Use saltwater-freshwater interface or LimWA to determine the inland extent of 
saltwater corrosion, in the absence of other data. Recommend that the size of conductors, leaders and 
storm drains shall be based on the 100-yr hourly rainfall, 100-yr 15-min rainfall or other rates determine 
from approved local weather data applying whichever is highest.   

 

Summary of Key Recommendations 
 

Objective 3.3: Provide specific recommendations for Code modifications to incorporate the updated 
information on groundwater elevation due to sea level rise and rainfall. 

 

Rain Loads 

1. Recompute the flow capacities provided in Tables 1106.2 and 1106.3 with large roof areas using the 
new rain load data.  

2. Add language pertaining to design of secondary drainage system e.g., higher of the 100-yr, hourly 
rainfall rate, 100-yr, 15-minute rainfall rate or local approved weather data, be applied for the 
secondary drainage system. 

 

Flood Loads 

1. It is recommended that the V-zone and coastal A-zones be used to delimit the areas where code 
should regulate the use of saltwater corrosion-resistant materials, following ASCE 24.  

2. It is recommended that the LiMWA of coastal A-zones be used to delimit the inland extent of the 
influence of astronomical tide on free surface, tidal flooding by adding 1ft to the AE BFE as a safety 
factor, in the absence of other approved data, if it has been over 30 years since the last FIRM was 
updated and approved. This is to accommodate the analytical uncertainties and multiple sources of 
flooding not accounted for in the FEMA FIRM, notably in the coastal A-zone.  

3. Currently, the FBC Section 1804.5 allows fill in coastal high hazard areas and coastal A zones “unless 
the fill is conducted and/or placed to avoid diversion of water and waves toward any building or 
structure”. R322.3.3 allows stem wall foundations be backfilled to the underside of the flood system 
provided the foundations are designed to account for wave action, etc. However, the following 
statement proceeds: “that cumulative effect of encroachment into a floodway, when combined with 
all other existing and anticipated flood hazard area encroachment, will not increase the design flood 
elevation more than 1 ft at any point”. The FBC should recommend tools for computing the cumulative 
flood hazard area encroachment using different storm tide elevations as the coastal boundary 
condition. New research may be needed.  

4. It is recommended that the FBC provide the standardized approaches or make reference to the 
standard approaches it recommends for use for groundwater control (Section 1804.5). 
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5. At a minimum, Flood Design Classes should be applied for structures that meet criteria 3 and 4 
(Chapters 2 – 4, ASCE 24), following, among other rationale provided, precedents set in 
R322.3.1/R322.3.2. Flood Design Class 2 should also be applied to non-residential structures given the 
significant economic hardship that could be caused by flood damage.  

6. To ensure the most up-to-date sea-level rise projections are being taken into consideration for the 
design of flood elevations, it is recommended that there be a harmonized procedure for developing a 
unified projection for each region of the State, that is updated every 5 years and mandated for use in 
the FBC. 

7. Mandate use of depth to groundwater maps, updated every 5 years, to specify where installation of 
septic tanks should be prohibited (cf. R322.1.7), to comply with Section 101.3. where FBC provides for 
“minimum requirements for reasonable safety, public health and general welfare”. Coordinate with 
FDEP. 

8. Additional recommendations for specific text edits are provided in the table below: 
 

 

FBC Section Specific text edit (in red font) Report Section 
1612.4 “The design and construction of buildings and structures located in 

flood hazard areas, including coastal high hazard areas and Coastal A 
Zones, and those flood-resistant provisions of the FBC cross-
referenced in Table 1612.1, shall be in accordance with Chapter 5 of 
ASCE 7 and with ASCE 24”. 

FBC – Building, 
Chapter 16, 
Structural Design 

1605 reference “ASCE 24, including Chapter C6, when building in flood 
hazard areas,” 

FBC – Building, 
Chapter 16, 
Structural Design 

1610.1 reference “ASCE 24, including Chapter C6, when building in flood 
hazard areas,” 

FBC – Building, 
Chapter 16, 
Structural Design 

1604.5. 2 reference to “Flood Design Class” FBC – Building, 
Chapter 16, 
Structural Design 

1610.1 Add a footnote to Table 1610.1 referencing ASCE 24 and substantial 
improvement/damage provisions in flood hazard areas, so that 
foundation walls are designed to support “the weight of the full 
hydrostatic pressure of undrained backfill, unless a drainage system is 
installed in accordance with Sections 1805.4.2 and 1805.4.3”  

FBC – Building, 
Chapter 16, 
Structural Design 

107.2.5 in 
Table 1612.1  

reference “ASCE 24, section 1.5 for flood hazard areas”  

107.3.5 in 
Table 1612.1 

reference “ASCE 24, section 1.5 for flood hazard areas” FBC – Building, 
Chapter 16, 
Structural Design 

202 in Table 
1612.1 

Include definitions for “return period” and “combined total storm 
tide elevation” 

FBC – Building, 
Chapter 16, 
Structural Design 

453.2 in Table 
1612.1 

Add: Exception: Educational facilities in flood hazard areas must 
comply with must comply with this code or the floodplain 

FBC – Building, 
Chapter 16, 
Structural Design 

https://up.codes/viewer/florida/fl-building-code-2017/chapter/2/definitions#flood_hazard_area
https://up.codes/viewer/florida/fl-building-code-2017/chapter/2/definitions#coastal_high_hazard_area
https://up.codes/viewer/florida/fl-building-code-2017/chapter/2/definitions#coastal_a_zone
https://up.codes/viewer/florida/fl-building-code-2017/chapter/2/definitions#coastal_a_zone
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management ordinance of the municipality having jurisdiction in 
accordance with 44 CFR Parts 59, 60, 65, and 70. 

453.2 in Table 
1612.1 

Add after “Section 1013.38, Florida Statutes.”: Consistent with 
105.14, permit issued on basis of a sworn affidavit shall not extend to 
flood load and flood resistance requirements of the Florida Building 
Code, as per 44 CFR Parts 59, 60, 65, and 70. 

FBC – Building, 
Chapter 16, 
Structural Design 

1803.6 Add to list of elements: 1) date of last geotechnical investigation, 2) if 
water table is not encountered, location of nearest well and water 
table depth at time of geotechnical investigation, to a cross-
referenced benchmark, 3) whether the fill materials may be exposed 
to shrinking/swelling, and included in special design and construction 
provisions, 4) in foundation recommendations, type and design 
considerations for shrinking/swelling and salinity, and 5) document 
municipal regulations on setback and clearance and alternate design 
criteria recommendations. 

FBC - Building 
Chapter 18, Soil & 
Foundations 
 

1805.4  Add to Exception: , unless in a flood hazard zone, then comply with 
ASCE 24 

FBC - Building 
Chapter 18, Soil & 
Foundations 

1809 & 1810 Add: in flood hazard areas, comply with ASCE 24 FBC - Building 
Chapter 18, Soil & 
Foundations 

R322.1.4.1 Add: as provided by the local floodplain management ordinance e.g., 
documentation of flood-resistant design and construction (Table 
R301.2) 

FBC – Residential 
Chapter 3 
 

R322.1.4.2 Add: Exception: when the proposed buildings and structures are in a 
coastal high hazard area, then Chapter 4, ASCE 24 should be 
followed. 

FBC – Residential 
Chapter 3 
 

R322 The new, relevant FEMA publications on flood-resistant materials 
should be referenced throughout, like in R322.1.8 where FEMA 
technical publication TB-2 is referenced. 

FBC – Residential 
Chapter 3 
 

R322.2.1 Delete Coastal A zone from bullet since it is directing to R322.3 The 
existing bullet 3 is not clear. 

FBC – Residential 
Chapter 3 

R322.3.2 Add to bullet 1: To account for SLR and recurring influence of 
astronomical tide (free water on surfaces), …  is elevated to or above 
the base flood elevation plus 2 feet (610 mm), or the design flood 
elevation, whichever is higher. 

FBC – Residential 
Chapter 3 
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Summary of Priority Research Areas  
 

Rain Loads 

1. Determine the rainfall rate maps for different return intervals, at least 15-min, 100-yr, and 
compare with 1-hr, 100-yr for the State, for both historical and recent. 

 

Flood Loads 

1. Determine and apply a method to provide a scientific-basis for design flood elevations, based on 
uncertainties in flood frequency analyses, hydraulic modeling, increasing sea level, expected 
watershed development, changing rainfall patterns, and sources of flooding unaccounted for by 
FEMA BFE (e.g., sea level rise). 

2. Evaluate whether and under what conditions the coastal A-zone designation of flooding due to 
astronomical tide and subsurface soil salinity, and whether LiMWA is a suitable proxy for the 
inland extent of tidal flooding and saltwater intrusion.   

3. Advancements in experimental facilities and modeling warrant review, and possible update, of 
load combinations that include flood and the recommended flood load factor applied in V- and 
coastal-A zones (see p.256, C2.3.3. for a discussion of determination of flood load criteria). 

4. New research may be needed to compute and evaluate the cumulative flood hazard area 
encroachment using different storm tide elevations as the coastal boundary condition (cf. 1804.5). 

5. It is recommended that a study be conducted on the cost-benefit of reducing the substantial 
improvement/damage percentage criteria (<50%) for Flood Design Class 4 buildings and 
structures. 

6. For the combined total storm tide elevation value, we do not know to what extent the 
uncertainties in analyses and modeling and sources of flooding are determined (cf. Section 3109). 
It is recommended that a study be conducted to evaluate: a) how the combined total storm tide 
elevation for the 100-yr return period be evaluated against those using other, approved methods 
of determining that value, and b) the 500-yr combined total storm tide elevation for consideration 
and use for Flood Design Class 2 - 4 structures (compared with BFE, DFE and cost-benefit). We 
also recommend an assessment of how increasing the inland extent of the CCCL to include V-
zones reduces potential structural damage. Based on the results of these studies, further code 
changes may be warranted. 
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Appendix A. Relevant Sections of the Code 
 

(a) Chapter 11, Storm Drainage, also Appendix B of FBC-Plumbing. 
(b) Chapter 16, Structural Design, of the 6th Edition (2017) Florida Building Code (FBC), Building; 

Sections 1605 Load Combinations, 1610 Soil Lateral Loads 
(c) Section 1611, Rain Loads (Figure 1611.1), of the FBC, Plumbing; 
(d) Section 1612, Flood Loads, of the FBC, Building; 
(e) Chapter 18, Soil & Foundations, sections 1803 Geotechnical Investigations, 1804 Excavation, 

Grading & Filling, 1805 Damp proofing & Waterproofing, 1806 Presumptive Load-Bearing Values 
of soils, 1807 Foundation Walls, Retaining Walls & embedded Posts & Poles, 1808 Foundations, 
1809 Shallow Foundations, 1810 Deep Foundations 

(f) Chapter 3, Section R322 Flood Resistant Construction, of the FBC, Residential; 
(g) Chapter 31, Section 3109 Structures seaward of a coastal construction control line, of the FBC, 

Building; and  
(h) Any other Chapters of the Florida Building Code that may be affected by sea-level rise and changes 

to extreme rainfall. 
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