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1. INTRODUCTION 

 

A weather derivative is a financial instrument designed to hedge or speculate on the risks 

associated with adverse weather conditions. Unlike traditional financial assets such as stocks or bonds, 

the value of weather derivatives is linked to atmospheric variables like temperature, precipitation, wind 

speed, or other meteorological factors (Brewer, 2000). Industries that are vulnerable to weather variability 

use weather derivatives to hedge against weather-related risks. These industries include agriculture, 

energy, tourism, and insurance. 

Weather derivative contracts typically involve two parties: a contract buyer and a contract seller. 

The buyer gets protection against weather-related risks by securing a prearranged payout based on 

specific weather conditions. The seller assumes the associated risk in exchange for a premium from the 

buyer (Hartmann & Geyer, 2005). Usually, weather derivatives exist, each tied to specific weather 

parameters like Temperature, Precipitation, Wind, etc. 

Temperature Derivatives: Temperature derivatives rely on temperature indexes such as Heating Degree 

Days (HDD) or Cooling Degree Days (CDD) to measure deviations from predetermined temperature 

thresholds. For example, during the winter season,  the buyer of an HDD contract might be entitled to a 

payout if the average temperature falls below a certain level during the winter months, being 

compensated for the loss associated with reduced heating demand. 

Precipitation Derivatives: These derivatives are linked to measures of rainfall or snowfall in specific 

regions. They could be used by agricultural producers to hedge against losses resulting from drought or 

excessive precipitation. 

Wind Derivatives: Wind derivatives are associated with wind speed or wind energy production and are 

frequently used by wind farm operators to manage revenue volatility stemming from fluctuations in 

wind conditions. 

By allowing market participants to transfer and manage these risks, weather derivatives 

contribute to overall market efficiency and stability (Weng & Zeng, 2017). The purpose of this paper is to 

develop a method, to price Temperature Weather derivatives using Montecarlo Modeling. 

 



Brief History of Temperature Weather Derivatives 

The history of temperature weather derivatives dates back to the last decade of the 20th century 

when financial markets began to recognize the economic impact of weather fluctuations on various 

industries.  

The inception of weather derivatives began in July 1996 with the first over-the-counter (OTC) 

trade written by Aquila Energy, which developed a dual-commodity hedge for Consolidated Edison Co. 

Since then, OTC trading of weather derivatives has persisted, gaining momentum from 1997 onward. As 

market demand expanded, the Chicago Mercantile Exchange (CME) played a pivotal role by introducing 

exchange-traded weather futures and options, including contracts based on temperature indexes on 

September 22, 1999 (Brewer, 2000). These contracts provided market participants with a standardized 

mechanism for managing temperature-related risks. After its introduction, Temperature weather 

derivatives gained traction among corporations seeking to mitigate the financial impact of weather 

fluctuations. These derivatives became increasingly popular in industries sensitive to temperature 

variations, such as energy utilities, agricultural producers, and retail businesses. The early 2000s 

witnessed further innovation and expansion in the temperature derivatives market, with the 

development of sophisticated pricing models and risk management strategies.  

It is estimated that about 30% of the U.S. economy is directly affected by the weather. CME Group 

offers Weather futures and options which are index-based products geared to average seasonal and 

monthly weather in 18 cities around the world (CME Group Inc., 2021) 

 

Fig. 1.1. Weather derivative percent of Total value by market. Source: CME Group Inc, 2021 

 



Academic research contributed to the advancement of mathematical models for pricing 

temperature derivatives, enhancing the understanding of temperature dynamics and their impact on 

derivative values (Hartmann & Geyer, 2005) (Considine, 2000). As the temperature derivatives market 

matured, it diversified to include a range of contract types and underlying indexes. Heating Degree Days 

(HDD) and Cooling Degree Days (CDD) emerged as the predominant indexes used in temperature 

derivatives, reflecting the demand for heating and cooling services based on temperature thresholds.  

In recent years, temperature weather derivatives have become an integral component of risk 

management strategies for businesses exposed to temperature-related risks. The market continues to 

evolve with the introduction of new products and innovations aimed at addressing the diverse needs of 

market participants 

 

Figure 1.2. CME Option and Future Traded Values 2019-2020. Source CME Group Inc., 2021 

 

Features of Temperature Weather Derivatives Contracts 

Temperature derivatives are characterized by several features: 

1. Settlement Mechanism: Settlement of temperature derivatives can occur in cash or physical delivery. 

Cash settlement involves a payment based on the difference between the actual and reference 

temperature multiplied by a predetermined contract value. 

2. Underlying Index: The most common indexes used in temperature derivatives are Heating Degree 

Days (HDD) and Cooling Degree Days (CDD). HDD measures deviations below a reference 



temperature, indicating heating demand, while CDD measures deviations above a reference 

temperature, indicating cooling demand. For a given day  ∈ 𝑁 

                                 𝐶𝐷𝐷𝑛 = (𝑇𝑛 − 65)+                      1.1 

                                  𝐻𝐷𝐷𝑛 = (65 − 𝑇𝑛)+                     1.2 

Where Tn is the average of the maximum daily temperature (Tmax) and the minimum daily 

temperature. In this paper, Tn was calculated as 

 

𝑇𝑛 =
𝑇𝑚𝑎𝑥−𝑇𝑚𝑖𝑛

2
.             1.3 

 

3. Contract Specifications: Temperature derivatives specify the reference temperature, contract 

period, and payout structure. For example, a contract may pay out if the cumulative HDD during 

winter months exceeds a certain threshold (usually 65 degrees Fahrenheit in the US). The buyer 

of the option will receive a payout that is a function of the cumulative index over a period with a 

number of days N, i.e.  

𝜉 = 𝑓(𝐷𝐷)            1.4 

 

So DD for Heating (Hn, usually May 15 to October 15 for OTC) and Cooling season (Cn, usually 

November 15 to March 15 for OTC) 

 

       𝐷𝐷 =  𝐻𝑛 = 𝐻𝐷𝐷𝑁 = ∑ (T𝑛 − 65)+𝑁
𝑛=1                             1.5 

        𝐷𝐷 =  𝐶𝑛 = 𝐶𝐷𝐷𝑁 = ∑ (T𝑛 − 65)+𝑁
𝑛=1        1.6 

 

Two popular payoff functions are call options with caps and put options with floors. In the case 

of a call option with a cap, the payoff function is  

𝜉 =  𝑚𝑖𝑛{𝛼(𝐷𝐷 − 𝐾)+, 𝐶}                                          1.7 

Where 𝛼 is the payout rate (Typically 2,500 or 5000 USD), and the cap C,  500,000 or 1000,000 USD, 

and KC is the strike. See Figure 1.2 (see Appendix 1 for Python code) 

 

Figure 1.2. Call option with K = $750 and C = $500,000 

 



The payoff function for a put option with a payoff function   

 
𝜉 =  𝑚𝑖𝑛{𝛼(𝐷𝐷 − 𝐾)+, 𝐶}                                     1.8 

 is shown in Figure 1.3. 

 

 

 

 

 

        

                                 Figure 1.3. Put option with Strike KP = $550 and Floor F = $1000,000 

 

 

 

2. MEAN-REVERSION AND THE ORNSTEIN-UHLENBECK PROCESS 

 

2.1 Mean Reversion: Asset prices will eventually return to their long-term mean or average. This 

concept is grounded in the belief that asset prices and historical returns will gravitate toward a long-term 

average over time. 

How It's Used: 

Statistical Analysis: Investors use statistical tools like Z-scores to measure how far an asset price has 

deviated from its mean.  

Volatility: Some traders and investors use mean reversion in the context of volatility, buying options 

when volatility is high with the expectation that it will revert to the mean. 

Risk Management: Stop-loss orders and take-profit points can be typically set around the mean to 

manage potential losses and secure gains. 

Algorithmic Trading: Quantitative analysts use mean reversion in algorithmic trading strategies, often 

using complex mathematical models to predict price movements. 

 

Limitations of Mean-eversion 



• Market Conditions: Mean reversion is less effective in strongly trending markets, where prices 

may not revert to the mean for extended periods. 

• Transaction Costs: The strategy often involves frequent trading, which has a propensity for 

higher transaction costs. 

• False Signals: Shorter time frames in particular are susceptible to market noise, which can 

generate false mean-reverting signals. 

• Economic Events: Economic shocks or sudden news can disrupt mean-reverting patterns, 

leading to potential losses. 

• Lack of Direction: Unlike trend-following strategies, mean reversion is non-directional, which 

may not suit all trading styles. 

 

2.2 Ornstein–Uhlenbeck Process (U-O) 

The Ornstein–Uhlenbeck process is a stationary Gauss–Markov process, which means that it is 

a Gaussian process, a Markov similar to a discrete-time AR(1) process (Doob, 1942). 

The Black-Scholes equation (Øksendal, 1998), commonly used to price financial options, assumes 

that the underlying asset's price follows a geometric Brownian motion. This means that the price of the 

underlying moves in a continuous and normally distributed fashion over time. However, weather 

derivatives are based on underlying assets like temperature, rainfall, or wind speed, which do not exhibit 

the same characteristics as financial assets. 

Weather variables often have non-normal distributions and exhibit patterns like seasonality and 

autocorrelation, which makes them more complex than financial assets (Wigley, 2006). Additionally, 

weather data can have jumps or discontinuities, such as sudden temperature changes due to weather 

events like storms, which are not captured by the continuous and smooth movements assumed in the 

Black-Scholes model. 

Therefore, applying the Black-Scholes equation directly to weather derivatives would not 

accurately reflect the unique characteristics of weather-related data, leading to inaccurate pricing and 

risk assessment. Instead, models specifically designed for weather derivatives take into account the 

statistical properties and dynamics of weather variables to provide more accurate pricing and risk 

management. 

The cyclical nature of the temperature time series justifies the use of a mean-reverting process in 

modeling its dynamics which can be done as an Ito process with a mean reverting O-U process. 

 

𝒅𝑻𝒕 = 𝜿(𝑻̅𝒕 − 𝑻𝒕)𝒅𝒕 + 𝝈𝒕𝒅𝑾𝒕𝒕   2.1 

Dornier and Queruel (Dornier and Queruel, 2000). Benth and Šaltytė-Benth (Benth, et. al., 2008), 

Benth and Benth (Benth and Saltyte-Benth, 2005)], Alaton et al. (Alaton, et. al., 2002)  observed that in 

general the speed of mean reversion should be a function of time. However, the authors provided no 

https://en.wikipedia.org/wiki/Stationary_process
https://en.wikipedia.org/wiki/Discrete_time
https://en.wikipedia.org/wiki/Autoregressive


evidence as no studies had been undertaken to compute the daily mean reversion as the process is very 

complex. 

To capture fully the mean-reverting dynamics of the temperature, it is important to have the 

Expectation of the temperature 𝑻𝒕 to approximate the long-term reverting average temperature 𝑻̅𝒕. i.e.  

𝑬𝒙𝒑[𝑻𝒕] ≈ 𝑻̅𝒕                                    2.2 

Ito-Doeblin Formula 

𝒅𝒇(𝒕, 𝒙) = 𝒇𝒕(𝒕, 𝒙)𝒅𝒕 + 𝒇𝒙(𝒕, 𝒙)𝒅𝒙 +
𝟏

𝟐
𝒇𝒙𝒙(𝒕, 𝒙)𝒅𝒙𝒅𝒙  2.3 

 

The function to be used is similar to the one used for the Cox-Ingersoll_Ross (CIR) (Bensoussan and 

Brouste, 2016) interest rate model, i.e.:  

𝒇(𝒕, 𝒙) = 𝒆𝜿𝒕𝒙, 𝒇𝒕(𝒕, 𝒙) = 𝜿𝒆𝜿𝒕, 𝒇𝒙(𝒕, 𝒙) = 𝒆𝜿𝒕, 𝒇𝒙𝒙(𝒕, 𝒙) = 𝟎 

 

𝒅(𝒆𝜿𝒕𝑻𝒕) = 𝒅𝒇𝒕(𝒕, 𝑻𝒕) + 𝒇𝒕(𝒕, 𝑻𝒕)𝒅𝒕+𝒇𝒙(𝒕, 𝑻𝒕)𝒅𝑻𝒕 +
𝟏

𝟐
𝒇𝒙𝒙(𝒕, 𝒙)𝒅𝑻𝒕𝒅𝑻𝒕   2.4 

𝒅(𝒆𝜿𝒕𝑻𝒕) = 𝜿𝒆𝜿𝒕𝑻𝒕𝒅𝒕 + 𝒆𝜿𝒕𝒅𝑻𝒕 +
𝟏

𝟐
(𝟎)𝒅𝑻𝒕𝒅𝑻𝒕 

𝒅(𝒆𝜿𝒕𝑻𝒕) = 𝜿𝒆𝜿𝒕𝑻𝒕𝒅𝒕 + 𝒆𝜿𝒕𝜿(𝑻̅𝒕 − 𝑻𝒕)𝒅𝒕 + 𝒆𝜿𝒕𝝈𝒕𝒅𝑾𝒕 

𝒅(𝒆𝜿𝒕𝑻𝒕) = 𝒆𝜿𝒕𝜿(𝑻̅𝒕)𝒅𝒕 + 𝒆𝜿𝒕𝝈𝒕𝒅𝑾𝒕                            2.5 

Integrating over  𝒖 ∈, 𝒕 > 𝒔 

∫ 𝒅(𝒆𝜿𝒕𝑻𝒕)
𝒕

𝒔
= 𝒆𝜿𝒕𝑻𝒕 − 𝒆𝜿𝒔𝑻𝒔 = ∫ 𝜿𝒆𝜿𝒖𝑻̅𝒖𝒅𝒖

𝒕

𝒔
+ ∫ 𝒆𝜿𝒖𝝈𝒕𝒅𝑾𝒖

𝒕

𝒔
   2.6 

𝒆𝜿𝒕𝑻𝒕 = 𝒆𝜿𝒔𝑻𝒔 + ∫ 𝜿𝒆𝜿𝒖𝑻̅𝒖𝒅𝒖
𝒕

𝒔
+ ∫ 𝒆𝜿𝒖𝝈𝒕𝒅𝑾𝒖

𝒕

𝒔
   2.7 

Changing the base on the integral to 𝒅𝑻̅𝒕 and dividing by 𝒆𝜿𝒕 

𝑻𝒕 = 𝒆−𝜿(𝒕−𝒔)𝑻𝒔 + ∫ 𝜿𝒆−𝜿(𝒕−𝒖)𝒅𝑻̅𝒖
𝒕

𝒔
+ ∫ 𝒆−𝜿(𝒕−𝒖)𝝈𝒕𝒅𝑾𝒖

𝒕

𝒔
   2.8 

Integrating the second term on the right, 

𝑻𝒕 = 𝑻𝒔𝒆−𝜿(𝒕−𝒔) + 𝑻𝒕𝒆−𝜿(𝒕−𝒕) − 𝑻𝒔𝒆−𝜿(𝒕−𝒔) + ∫ 𝒆−𝜿(𝒕−𝒖)𝝈𝒕𝒅𝑾𝒖
𝒕

𝒔
  2.9 

Grouping similar terms, 

𝑻𝒕 = 𝑻̅𝒕+(𝑻𝒕 −  𝑻̅𝒔)𝒆−𝜿(𝒕−𝒔) + ∫ 𝒆−𝜿(𝒕−𝒖)𝝈𝒕𝒅𝑾𝒖
𝒕

𝒔
  2.10 

 

Since  



𝑬𝒙𝒑 [∫ 𝒆−𝜿(𝒕−𝒖)𝝈𝒕𝒅𝑾𝒖

𝒕

𝒔

] = 𝟎 

𝑬𝒙𝒑[𝑻𝒕] = 𝑻̅𝒕+(𝑻𝒕 −  𝑻̅𝒔)𝒆−𝜿(𝒕−𝒔) ≠ 𝑻̅𝒕   2.11 

This issue arises from the fact that 𝜿 is not constant but it changes over time.  

This issue was corrected by adding a term 
𝑑𝑻̅𝒕

𝑑𝑡
  so the O-U model was modified to be written as 

𝒅𝑻𝒕 = [
𝑑𝑻̅𝒕

𝑑𝑡
 + 𝜿(𝑻̅𝒕 − 𝑻𝒕)]𝒅𝒕 + 𝝈𝒕𝒅𝑾𝒕   2.10 

The solution used to mitigate this issue was initially proposed by Dornier and Querel (Dornier 

and Queruel, 2000)  and further developed by Dzupire, Ngare, and Odongo (Dzupire, Ngare and 

Odongo, 2019) who used a Lévy process-driven Ornstein-Uhlenbeck daily temperature model that took 

into account a time-dependent speed of mean reversion, 𝜿. The long average temperature 𝑻̅𝒕 was 

modeled as the sum of a seasonal term (sinusoidal) and a term that incorporates a small trend in the 

temperature data which can be due to global warming and urban heating effects (linear). 

The SDE is solved by multiplying the equation by the factor 𝑒∫ 𝜿𝑑𝑢
𝑡

0   so we have 

𝑒∫ 𝜿𝑑𝑢
𝑡

0 𝒅𝑻𝒖 − 𝑒∫ 𝜿𝑑𝑢
𝑡

0 𝜿(𝑻̅𝒖 − 𝑻𝒖)𝒅𝒖 + 𝑒∫ 𝜿𝑑𝑢
𝑡

0 𝑑𝑇𝑢 = 𝑒∫ 𝜿𝑑𝑢
𝑡

0 𝝈𝒕𝒅𝑾𝒖  2.11 

𝑑[𝑒∫ 𝜿𝑑𝑢
𝑡

0 𝜿(𝑻̅𝒖 − 𝑻𝒖)]𝒅𝒖 = 𝑒∫ 𝜿𝑑𝑢
𝑡

0 𝝈𝒕𝒅𝑾𝒖  2.12 

Let  𝑍𝑡 = 𝑒∫ 𝜿𝑑𝑢
𝑡

0 (𝑻̅𝒖 − 𝑻𝒖),   then 𝑑𝑍𝑡 = 𝑑 [𝑒∫ 𝜿𝑑𝑢
𝑡

0 (𝑻̅𝒖 − 𝑻𝒖)] = 𝑒∫ 𝜿𝑑𝑢
𝑡

0 𝝈𝒕𝒅𝑾𝒖  with   

𝑍𝑡 = 𝑍𝑜 − ∫ 𝑒∫ 𝜿𝑑𝑢
𝑡

0 𝝈𝒕𝒅𝑾𝒖
𝑡

0
  2.13 

Substituting  𝑍𝑡 = 𝑒∫ 𝜿𝑑𝑢
𝑡

0 (𝑻̅𝒖 − 𝑻𝒖)  with 𝑻̅𝟎 − 𝑻𝟎        into 2.11 

𝑒∫ 𝜿𝑑𝑢
𝑡

0 𝜿(𝑻̅𝒕 − 𝑻𝒕) = 𝑒∫ 𝜿𝑑𝑢
𝑡

0 𝜿(𝑻̅𝒐 − 𝑻𝒐) − ∫ 𝑒∫ 𝜿𝑑𝑢
𝑡

0 𝝈𝒕𝒅𝑾𝒖
𝑡

0
  rearranging terms  

𝑻𝒕 = 𝑻𝒕 + 𝑒− ∫ 𝜿𝑑𝑢
𝑡

0 ∫ 𝑒∫ 𝜿𝑑𝑢
𝑡

0 𝝈𝒕𝒅𝑾𝒖
𝑡

0
     2.12 

So 𝑬[𝑻𝒕] = 𝑻𝒕   2.13 

 

Temperature Model for Trend and Seasonality. 

𝑻𝒕𝒓𝒆𝒏𝒅 = 𝒂 + 𝒃𝒕 

𝑻𝒔𝒆𝒂𝒔𝒐𝒏 = 𝜶𝒔𝒊𝒏(𝝎𝒕 + 𝝓) 

𝑻̅𝒕 = 𝒂 + 𝒃𝒕 + 𝜶𝒔𝒊𝒏(𝝎𝒕 + 𝝓)        with 𝝎 =  
𝟐𝝅

𝟑𝟔𝟓
 



3. MODIFIED ORNSTEIN-UHLENBECK PROCESS WITH MONTE CARLO 

SIMULATION FOR WEATHER DERIVATIVE PRICING. 

Weather derivatives, financial instruments whose values are derived from weather variables such as 

temperature, precipitation, or wind speed, have gained significant traction in recent years as tools for 

managing weather-related risks. These derivatives allow businesses to hedge against adverse weather 

conditions that might impact their operations, such as farmers protecting against crop damage due to 

droughts or energy companies hedging against revenue losses from mild winters affecting energy 

demand. 

One of the commonly used models for pricing weather derivatives is the modified Ornstein-

Uhlenbeck process, a stochastic model that describes the mean-reverting behavior of a variable over time. 

This model, coupled with Monte Carlo simulation techniques, offers a robust framework for pricing 

weather derivatives accurately (Stein, Lopes, and Medino, 2021). 

Understanding the Modified Ornstein-Uhlenbeck Process 

The Ornstein-Uhlenbeck process is a stochastic process that models the evolution of a variable 

over time. It is characterized by two parameters: the long-term mean to which the variable reverts and a 

parameter controlling the speed of reversion. The modified Ornstein-Uhlenbeck process introduces 

additional parameters to account for seasonality and trends in the data, making it particularly suitable 

for modeling weather variables that exhibit such characteristics. 

In the context of weather derivatives, the modified Ornstein-Uhlenbeck process can be used to 

model various weather variables such as temperature or precipitation. By calibrating the model to 

historical weather data, analysts can estimate the parameters governing the mean-reverting behavior of 

the variable, allowing them to simulate future scenarios. 

 

4. MONTE CARLO SIMULATION FOR WEATHER DERIVATIVE PRICING 

Monte Carlo simulation is a computational technique used to estimate the probability distribution of 

outcomes by repeatedly sampling from a probability distribution of input variables (Oetomo and 

Stevenson, 2005). In the context of weather derivative pricing, Monte Carlo simulation is employed to 

generate a large number of possible future paths for the weather variable of interest based on the 

modified Ornstein-Uhlenbeck process. 

To price a weather derivative using Monte Carlo simulation and the modified Ornstein-Uhlenbeck 

process, the following steps are typically followed: 

1. Calibration: Estimate the parameters of the modified Ornstein-Uhlenbeck process using historical 

weather data. This involves fitting the model to observed weather patterns to determine the long-

term mean, speed of reversion, seasonality, and trend parameters. 



2. Simulation: Generate a large number of simulated paths for the weather variable using the 

calibrated modified Ornstein-Uhlenbeck process. Each path represents a possible evolution of the 

weather variable over time. 

 

3. Derivative Valuation: For each simulated path, calculate the payoff of the weather derivative 

based on its contract specifications. This could involve comparing the simulated weather variable 

against a predetermined strike level or using more complex payoff structures. 

 

Monte Carlo Integration: Aggregate the payoffs from all simulated paths and calculate the average 

payoff. This average represents the expected value of the weather derivative under the modified 

Ornstein-Uhlenbeck process. 

The entire programming process of fitting the Temperature Data and Volatility, applying the model, 

and simulating predicting the option price by Monte Carlo simulation are shown in the Python code 

below. The coding process consisted of two parts. An initial code was developed to create a time series 

based on historical temperature data to obtain fitting parameters. These parameters were used in the 

second code to estimate the price function of the temperature weather derivative using a Monte Carlo 

simulation. The results from the Monte Carlo simulation using the O-U model were graphed in 

conjunction with the results from the Black-Scholes model. In this paper, the comparison was presented 

for visual inspection only. No deep analysis was carried out. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5. MONTE CARLO SIMULATION FOR PRICING WEATHER DERIVATIVE 

OPTION WITH PYTHON. 
 

5.1. Code 1. Data retrieval, cleaning, organization, and fitting. 

Code Title (WDDtata Processing.ipynb)  

5.1.1 Python’s library import, Data Frame uploading, and cleaning. Creation of Temperature time series 

with calculated Daily Time Average (DTA) 

 

 



5.1.2. The Data Frame was divided into winter and summer seasons and a histogram was plotted. 

 

 



 

 

5.1.3. Visualization of Trend and Seasonability. 

 

 

 



5.1.4. Seasonal decomposition and visualization of trend, seasonality, and residuals. 

 

 

 

 

 

 

 

 

 

 

 

 



5.1.5. Fitting models to daily average temperature time series were applied, and model parameters 

were obtained and compared. 

 

 

 

 

 

 



5.1.6. Fitting Parameters were calculated and applied to fitted data.  

 

5.1.7. Autocorrelation was applied and residuals were analyzed. 

 



 

5.1.8. Probability distribution was calculated and plotted. 

 

 

 

 



5.1.9. Visualization of Fitted Data. 

 

5.1.10. Autoregression was applied to temperature residuals. 

 

5.1.11. The monthly volatility of the DAT was estimated and plotted. 

 

 

 

 

 



5.1.12. The daily volatility of the DAT was estimated and plotted. 

 

5.1.13. A 5-knot (optimal) B-splined was applied to the daily volatility. 

 

 

 



5.1.14. Volatility function was obtained from the quadratic variation of the Temperature process. 

 

5.1.15. The volatility () of the volatility process was estimated using the quadratic variation of   

 

 

 

 

 

 

 

 

 

 

 

 



5.1.15. The data frame was approximated by applying an Euler-Maruyama scheme. O-U Parameters 

were obtained by using a Monte Carlo approximation. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 



5.2. The code shown below, uses the results obtained in part 5 to price the winter temperature option 

with the Monte Carlo simulation and the O-U model and compares it to the results obtained with 

the Black-Scholes Model. Code name: WDPricing 

 

5.2.1. Data Processing. 

 

 

 

 



 

5.2.1. Trading range was defined and models were applied.  

 

 



 

 

 

 

 



6. CONCLUSIONS AND RECOMMENDATIONS 

In this study, it was demonstrated a comprehensive approach to analyzing temperature data and 

estimating the price of temperature weather options. Python programs were developed to process 

temperature data and fit the average temperature along with its volatility using B-splines. This 

methodology enabled us to capture the intricate patterns and fluctuations in temperature and volatility 

time series. 

Subsequently, a Monte Carlo simulation was implemented, employing the modified Ornstein-

Uhlenbeck method to estimate the price of temperature weather options. By simulating multiple paths 

of the temperature time series, we obtained reliable estimates of option prices, accounting for the 

stochastic nature of temperature dynamics. 

Finally, we compared the obtained prices of temperature weather options with those derived from 

the Black-Scholes model for call and put options. This comparative analysis provided valuable insights 

into the effectiveness of our approach and highlighted the importance of incorporating temperature 

dynamics in pricing weather derivatives. 

Overall, our findings suggest that incorporating temperature data and utilizing advanced simulation 

techniques can significantly enhance the accuracy of pricing temperature weather options, thereby 

enabling better risk management strategies for stakeholders in weather-sensitive industries. 

Refinement of Simulation Models: Further research could focus on refining the simulation models 

used for estimating temperature dynamics. Exploring alternative stochastic processes or incorporating 

additional factors could potentially improve the accuracy of option price estimates. 

Incorporation of Additional Data Sources: Integrating other relevant data sources such as humidity, 

wind speed, or precipitation could enrich the analysis and provide a more comprehensive understanding 

of weather-related risk factors. 

Extension to Other Weather Derivatives: While our study primarily focused on temperature weather 

options, future research could extend the analysis to other types of weather derivatives such as rainfall 

or snowfall options. This expansion would broaden the applicability of the developed methodology. 

Validation and Sensitivity Analysis: Conducting extensive validation studies and sensitivity analyses 

can enhance the robustness of the proposed approach. Investigating the impact of varying model 

parameters and assumptions on option prices would provide valuable insights into the reliability of the 

results. 

Integration with Risk Management Frameworks: Exploring ways to integrate the pricing of 

temperature weather options into broader risk management frameworks within industries sensitive to 

weather fluctuations could facilitate more informed decision-making processes. 

By addressing these avenues for future work, researchers can further advance the understanding and 

application of quantitative methods in weather derivative pricing, ultimately contributing to improved 

risk management practices in weather-sensitive industries 
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