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Coordinated Restoration of Interdependent Critical Infrastructures: A Novel Distributed 

Decision-Making Mechanism Integrating Optimization and Reinforcement Learning 

ABSTRACT 

The proper functioning of any society heavily depends on its critical infrastructures (CIs), such as power grids, 

road networks, and water and waste-water systems. These infrastructures consist of facilities spread across a 

community to provide essential services to its residents. Their spatial expansion and functional 

interdependencies make them highly vulnerable against natural/manmade disasters. Functional 

interdependencies mean that the functionality of components in one CI relies on the services provided by 

others. These features, combined with decentralized decision-making structure of CIs and the stochastic nature 

of post-disaster environments, highly complicate the optimization process for restoring CIs damaged in 

disasters. Optimizing CI restorations is critical to maximizing the post-disaster resilience of communities.   

In this paper, we integrate and leverage Reinforcement Learning (RL) and optimization strengths to 

design a novel distributed modeling and solution approach for advancing the restoration process for 

interdependent CIs after disasters. The proposed approach (1) bridges the gap between integrative and distinct 

decision-making, enabling coordinated restoration planning for CIs within a decentralized decision-making 

context; (2) handles post-disaster uncertainties (e.g., uncertainty in recovery times of disrupted components); 

(3) generates adaptive solutions that cope with post-disaster dynamics (e.g., varying numbers of recovery 

teams); and (4) is flexible enough to handle several restoration decisions (e.g., restoration scheduling and 

resource allocation) simultaneously.  

To evaluate its performance, we focus on restoring the road and power CIs in Sioux Falls, South Dakota, 

disrupted by several tornado scenarios. The numerical results show that coordinated policies in the restoration 

process of interdependent CIs consistently yield higher service for the community. The overperformance of 

the coordinated restoration policies can be as high as 27.9%. The impact of coordination is more significant in 

severe disasters with higher disruptions and in the absence of efficient recovery resources.  
 

Keywords: Disaster management; Interdependent infrastructures; Resource allocation; Restoration 

scheduling; Reinforcement learning. 
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1. INTRODUCTION 

The proper functioning of any society heavily relies on its critical CIs, including road networks, power grids, 

and water/wastewater systems (Bush, 2003). Each CI comprises a set of physical components (e.g., cables, 

transmitters, and power generators in power CIs; roads, highways, bridges, and tunnels in road CIs; and pipes 

and water processing facilities in water/wastewater CIs) that span an area to provide key services to a 

community (Hafeznia and Stojadinović, 2023; Chertkov et al., 2015; Sharkey et al., 2015). Due to their spatial 

expansion and the increasing number of disruptive (natural or man-made) events, CIs are often subject to 

different types of disruption (Rezapour et al., 2021). For example, Hurricane Sandy, which hit the East Coast 

of the U.S. in 2012, significantly impacted several CIs: (1) the disruption in the power grid left 4.5 million 

customers without power for several days (Office of Electricity Delivery & Energy Reliability, 2012); (2) the 

closure of subway lines in New York City disrupted the road infrastructure (Kaufman et al., 2012); and (3) 

damage to wastewater treatment plans resulted in 10 billion gallons of sewage being spilled (Kenward et al., 

2013). The total cost of restoring CIs damaged during this disaster was estimated at $65 billion (US Department 

of Housing and Urban Development, 2013). More recently, the tornado outbreak on March 31, 2023, affected 

at least eight states in the South and Midwest of the U.S., leaving 32 dead and dozens injured. Based on 

aggregated data from PowerOutage.us, more than 400,000 customers were without power. Although most 

roads were passable, traffic flow in the affected regions was very slow due to non-functional traffic signals 

(Moritz et al., 2023). 

To enhance the resilience of communities against disruptive events, developing an efficient restoration 

policy for CIs is mandatory. The increasing interconnections among CIs have made them more vulnerable to 

disruptive events (Rinaldi et al., 2001, Fan et al., 2024), complicating their restoration efforts (Xu et al., 2024). 

CIs within a community are functionally interdependent, meaning the functionality of components in one CI 

depends on the services provided by other CIs (Huang and Wang, 2024). These interdependencies cause 

disruptions to cascade across communities (Amini et al., 2017; Sang et al., 2021; Lee II et al., 2007; Lee II et 

al., 2008; McDaniels et al., 2007; McDaniels et al., 2008). For example, a disruption in the power CI can lead 

to a wastewater treatment plant in the wastewater CI losing power and becoming inoperative, illustrating the 

propagation of disruptions across CIs. Similarly, restoration operations in CIs are interdependent. For instance, 

clearing roads of fallen trees in a road CI may only be possible after removing fallen power cables from the 

roads, a task carried out by the restoration crew of the power CI. This emphasizes the procedural 

interdependencies between restoration operations of CIs (Pinedo, 2012) and underscores the importance of 

coordinated restoration planning. 

In practice, restoration efforts for CIs often disregard procedural interdependencies and are typically 

planned independently, with little to no communication (Leavitt and Kiefer, 2006; McGuire and Schneck, 

2010). Recently, a few studies have focused on the concurrent restoration of interdependent CIs (Nurre et al., 

2012; González et al., 2016; Cavdaroglu et al., 2013; Lee II et al., 2007; Garay-Sianca and Pinkley, 2021; 

Talebiyan and Dueñas-Osorio, 2023; Fan et al., 2024; Xu et al., 2024). Assuming a centralized decision-maker 

for all CIs, these studies primarily employ optimization techniques to schedule restoration efforts. However, 

the practical feasibility of this approach is very limited. CIs do not have full access to each other’s information 

and conflicts of interest may arise among CIs due to differing priorities during restoration. For instance, a 

private power company might prefer to restore services to its higher-priority customers before addressing the 

power demands of other CIs. Observations from Emergency Operating Centers during previous disasters reveal 

that restoration decisions for CIs are made by different decision-makers, with local emergency managers 

facilitating communication among CIs (Sharkey et al., 2015). This highlights the necessity of coordinated 

restoration planning in a decentralized context for interdependent CIs. The importance of coordination and 

information-sharing in restoring CIs has already been underscored by many researchers (Caruson and 

MacManus, 2008; Somers and Svara, 2009; Kapucu and Garayev, 2013; Sharkey et al., 2015).  

The restoration of CIs is conducted in challenging post-disaster environments. Due to resource scarcity 

(e.g., limited facilities, supplies, and manpower) following a disaster, the restoration of disrupted components 

cannot be initiated simultaneously (Oruc and Kara, 2018; Farzaneh et al., 2023; Aksu and Ozdamar, 2014; 

Sahin et al., 2016). Resource constraints typically lead to sequential restoration efforts that extend throughout 

the disaster response phase (Farzaneh et al., 2023). All restoration activities occur in chaotic post-disaster 

situations characterized by varying levels of uncertainty and dynamism, such as uncertain damage levels and 

restoration times for disrupted components, and the dynamic number of facilities and recovery crews available 

for restoration. These facts highlight the importance of developing modeling and solution techniques to address 

the necessity of generating sequential, stochastic, and adaptive restoration policies for CIs. These complexities 

are compounded in the coordinated restoration of interdependent CIs. 

The above discussions demonstrate that coordinated restoration of interdependent CIs needs a distributed 
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decision-making approach that preserves the autonomy and decentralization of CIs while enabling them to 

coordinate their decisions with limited information sharing. As will be discussed in detail in Section 2, the CI 

restoration literature lacks a decision-making approach to handle these requirements. To design such a 

distributed decision-making approach, the following research questions are answered in this paper: 

▪ Research question 1 - To address the problem of restoring interdependent CIs, what decision-making 

elements are needed within this distributed approach? To address the decentralization of CI restorations, 

this approach needs several distinct decision-making elements, one for each CI. These elements should be 

able to make restoration decisions for their corresponding CI, operating in stochastic and dynamic post-

disaster circumstances with limited restoration resources. As shown in Figure 1, the decision-making 

element of each CI combines the strengths of Reinforcement Learning (RL) and optimization, called an 

RL-OP. This combination facilitates sequential, stochastic, and adaptive decision-making for each CI.  

▪ Research question 2 – To include interdependencies, how can we coordinate the restoration decisions 

made by distinct RL-OPs? To consider CI interdependencies in the decision-making process of each RL-

OP, we will design and embed a “coordinator” within the distributed decision-making approach (see Figure 

1). The coordinator assists RL-OPs in partially exchanging restoration information, preventing them from 

making infeasible (or non-executable) decisions, and enabling the evaluation of the consequences of their 

decisions on other CIs. This results in a coupled RL-OPs that make coordinated decisions, improving the 

performance of all CIs in providing better services to the community, rather than distinct decisions only 

improving the performance of their own CIs.           

▪ Research question 3 – In comparison to current practices where CI interdependencies are ignored in the 

restoration processes, how much improvement is expected from the restoration policies generated by this 

novel distributed decision- making approach, coupled RL-OPs? The post-disaster performance of CIs in 

providing services to the community will be compared under two groups of distinct and coordinated 

restoration policies under several disruption scenarios. This comparison will provide a good estimation of 

the improvement achievable by using this new decision-making approach.   

The application of the proposed approach is not limited to interdependent CIs and not just to restoration 

decisions. This modeling structure is generalizable for making coordinated decisions for a broad range of 

decentralized yet interdependent systems (DISs). A DIS represents a fusion of diverse, autonomous, yet 

interdependent systems operating in various physical, social, cyber, or technical contexts. Within this intricate 

arrangement, the behavior and performance of one system intricately intertwine with those of others. DISs find 

prominent applications in the contemporary world, including cyber-physical-social systems, the Internet of 

Things, and supply chains. The proposed mechanism can be widely used to optimize DIS decisions. 

The paper's organization is as follows: Section 2 reviews the literature on CI restoration and highlights 

the paper's contributions. A detailed description of the problem is included in Section 3. The proposed coupled 

RL-OPs approach is developed in Section 4. Section 5 explains the case study, presents numerical results, and 

discusses derived insights. Section 6 concludes the research. 

 
Figure 1. The structure of the coupled RL-OPs for road and power CIs. 
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2. LITERATURE REVIEW 

The literature on resilient CIs comprises two groups of research: (1) pre-disaster preparation, which addresses 

strengthening and fortifying CIs to reduce their vulnerability against disasters (Dobson et al., 2001; Botterud 

et al., 2005; Chen et al., 2005; Bienstock and Mattia, 2007; Fang and Zio, 2019; Ouyang, 2017; Bhuiyan et al., 

2020; Fakhry et al., 2022); and (2) post-disaster response, which pertains to the efficient restoration of damaged 

CIs. Of course, another possibility is the integration of pre- and post-disaster operations (Sütiçen et al., 2023). 

The problem investigated in this paper belongs to the post-disaster restoration of CIs. In this section, we review 

the papers of the second group and discuss the contributions of the research against two research streams in 

post-disaster CI restoration: (i) concurrent restoration of interdependent CIs (will be reviewed in Section 2.1) 

and (ii) optimization of CI restoration in stochastic and dynamic post-disaster circumstances (will be reviewed 

in Section 2.2). 

2.1. Concurrent Restoration of Interdependent CIs. In this section, we review the decision-making context 

(e.g., centralized or decentralized) of models that have been proposed in the literature for concurrent restoration 

of interdependent CIs and the restoration decisions optimized by these models. There are some studies that 

only focus on modeling interdependencies and commodity flow (e.g, Lee II et al., 2007) or forecasting failure 

cascading (e.g., Loggins and Wallace, 2015) in interdependent CIs. They do not make any restoration decisions 

and are out of the scope of this paper. In this paper, the restoration decisions that deal with determining the 

sequence/concurrency of recovering disrupted components are named “restoration scheduling,” and the 

decisions of assigning limited recovery resources (restoration crews, facilities, machineries, etc.) to the 

disrupted components selected to be recovered simultaneously are called “resource allocation”.  

Nurre et al. (2012) propose an optimization model to restore power, water, and emergency good supply 

networks concurrently. The model assigns disrupted links to a set of recovery crews to install them into the 

networks. The model pays no attention to the importance of links, limiting the assignment of only one team to 

each disrupted link for restoration. Resource allocation is not addressed in this model. In this model, restoration 

decisions for all CIs are centrally made by a single decision-maker with complete access to the information of 

all CIs. Gonzalez et al. (2016)  introduce the Interdependent Network Design and Scheduling (INDS) problem, 

focusing on designing a reconstruction strategy for a partially destroyed system of CIs. They propose a mixed 

integer optimization model to determine which disrupted components should be restored in each CI and the 

optimal sequence for restoring these components. This research does not address resource allocation decisions 

and makes all restoration decisions of CIs centrally. The authors solve the problem using a simulation-

optimization approach, testing it on power, water, and gas CIs in Shelby County, TN, U.S.  

Çavdaroğlu et al. (2013) investigate the challenge of restoring power and telecommunication CIs 

following unexpected events that disrupt their services. They devise a mixed-integer optimization model to 

optimize the recovery sequence of disrupted links for each recovery group. The objective is to minimize the 

total costs associated with flow, unmet demand, and new installations throughout the restoration timeframe. In 

this model, each disrupted component is assigned to only one recovery team, and no decision is made regarding 

resource allocation. A single authority centrally makes restoration decisions for all CIs. Almoghathawi et al. 

(2019) focus on the restoration challenges in a network of interdependent power-water CIs following a 

disruptive event. They develop a multi-objective restoration model: the primary objective is to enhance the 

resilience of the CIs while minimizing the overall restoration costs. Again, they assume that each disrupted 

component can only be restored by a single team, without the possibility for multiple teams to collaborate 

simultaneously on components to expedite their recovery processes. The decision-making nature of the 

problem is centralized.    

Garay-Sianca and Pinkley (2021) propose an integrated network design and scheduling problem for a 

system of two interdependent power and road CIs with the movement of restoration machines. They formulate 

the problem as mixed integer programming and solve it using a rolling horizon solution procedure. The model 

makes three key decisions for each CI: (i) identifying damaged links that should be restored, (ii) allocating the 

appropriate machinery for the restoration process of each link, and (iii) establishing the order of restoration 

tasks assigned to each machine. This model considers the dynamic movements of machinery as they navigate 

through the evolving layout of the road CI. The restoration decisions of CIs are made centrally by a single 

authority. Sütiçen et al. (2023) study pre-disaster reinforcement and post-disaster restoration within 

interdependent CIs. They model the problem as a scenario-based two-stage optimization model. In the initial 

stage, decisions regarding reinforcement are made, while in the subsequent stage, restoration activities are 

strategized for repair teams across various potential disaster scenarios. Their approach assumes that 

simultaneous restoration of impaired links is prohibited. So, there is no need for resource allocation. Oversight 

of reinforcement and repair operations for interdependent CIs is entrusted to a central decision-maker 
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possessing complete information. 

Maraqa et al. (2022) introduce a multi-objective model to optimize the restoration sequence and crew 

allocation for interdependent CIs. However, this model empowers a singular governing authority possessing 

comprehensive information on all CIs to make informed decisions regarding their restoration process. 

Alkhaleel et al. (2022) develop a mixed-integer linear programming model to optimize the restoration process 

for a set of interdependent CIs, including power and water CIs. In this model, a single decision-maker with 

full CI information access identifies failed components for restoration and assign work crews to those 

components. The model allows multiple crews to work simultaneously on a single component to enhance 

system resilience. Fan et al. (2024) employ mixed-integer second-order cone programming to optimize the 

coordinated restoration process for interdependent power, gas, and transportation CIs. The decision-making 

structure of the model is centralized, with objectives to maximize the restored power and gas demand and 

enhance traffic load capacity in the community. The model only determines the sequence of restoring disrupted 

links in each CI. Huang and Wang (2024) address post-disaster centralized restoration planning for 

interdependent CI systems, specifically focusing on electric power and potable water networks. Using a bi-

objective optimization model combined with Monte Carlo simulation, their research seeks Pareto-optimal 

solutions that balance trade-offs between losses in social services and economic production during the recovery 

process. The model determines the optimal sequence for restoring disrupted CI components. Xu et al. (2024) 

study centralized restoration planning for interdependent CI systems, focusing on electric power and gas 

systems. These systems are modeled as an undirected integrated network with bidirectional dependencies. 

Initially, a deterministic model is developed using mixed-integer linear programming to optimize the repair 

sequence and maximize system resilience. The model is then extended to a two-stage stochastic model that 

accounts for uncertainty in repair times, represented by a set of scenarios with known distribution functions. 

In all the studies reviewed above, restoration decisions for CIs are made in a centralized context using 

optimization techniques by a single decision-maker with full access to the information of all CIs. 

Acknowledging the limitations of optimization, there are a few studies that employ other techniques to 

interdependent CI restoration. For example, Sun and Zhang (2020) propose a model that integrates agent-based 

simulation and RL to determine the optimal sequence for restoring disrupted components in a network of 

interdependent CIs, including transportation, power generation, and wastewater treatment facilities. Again, the 

proposed model operates in a centralized context, with a single RL agent making restoration decisions for all 

CIs. At each decision-making step, only one team can be assigned to each disrupted component. Hafeznia and 

Stojadinović (2023) propose the Resilience Quantification Iterative Optimization-based Simulation (ResQ-

IOS) framework to study the seismic resilience of interdependent CI systems (CISs) in Shelby County, USA. 

This framework integrates simulation and optimization methods to assess resilience, emphasizing bi-

directional interdependencies between power generation and natural gas production, and between power 

generation and water supply sectors. The simulation component employs a heuristic approach using a 

criticality-based strategy to specify the restoration sequence of damaged components. For example, nodes with 

the largest demand are repaired first and links with the largest capacity are repaired first. The optimization 

component only determines the optimal flow of resources and services from and to each node in CIs to 

minimize the loss of resilience at each step of the recovery process. The framework does not make any resource 

allocation decision. However, they just analyze the impact of changing resource availability in a few scenarios 

on the resilience of the CI system.  

There are very few studies in literature considering decentralized decision-making for the restoration of 

interdependent CIs. One such study is Smith et al. (2020). They propose an ad hoc sequential game-theoretic 

model, representing a discrete time noncooperative game between CI decision-makers, to optimize restoration 

sequence in an interdependent CI system. In this formulation, restoration decisions of CIs are made 

sequentially by their corresponding decision-makers rather than concurrently. Additionally, the computational 

complexity of game models compels the authors to significantly simplify the restoration operations. For 

example, they assume that the required resources to recover all disrupted components (links or nodes) in all 

CIs are the same and equal to 1.  Talebiyan and Dueñas-Osorio (2023) propose an auction-based approach to 

allocate recovery resources among a set of disrupted interdependent CIs in a decentralized fashion. Each 

decision-maker employs a mixed-integer optimization model to devise the minimum-cost restoration plan, 

considering resource and operational constraints. The objective function includes network flow cost, arc and 

node restoration cost, under and oversupply penalties, and site preparation cost. The auctions entail no 

communication among decentralized decision-makers, implying lack of coordination during the decision-

making process. This is the main point differentiating their study from this paper.   

This literature review highlights the lack of a systematic modeling and solution approach for coordinately 

restoring interdependent CIs in a decentralized context. We address this methodological gap by developing a 



6 
 

new distributed decision-making approach capable of meeting the following requirements: (1) restoration 

decisions of CIs are made in a decentralized context (by separate decision-makers) but are coordinated through 

partial information sharing among CIs, (2) it preserves privacy of CIs by minimizing information sharing, and 

(3) the proposed approach is flexible enough to make several restoration decisions (e.g., restoration scheduling 

and resource allocation) simultaneously. 

2.2. Optimization of CI Restoration in Stochastic and Dynamic Post-disaster Circumstances. In this 

section, we review the post-disaster complexities (e.g., uncertainties and dynamics in restoration operations) 

considered in the literature in modeling CI restoration. We aim to highlight the additional contributions of the 

paper to the literature by discussing the extra flexibility added by the coupled RL-OPs approach to modeling 

restoration processes.  

In the aftermath of a disaster, the environment is often chaotic, characterized by numerous uncertainties 

and dynamics arising from incomplete information and predictions. However, the majority of studies 

examining restoration operation, even in a single CI, operate under deterministic and static assumptions. For 

example, Averbakh (2012) and Averbakh and Pereira (2012) employ mixed-integer programming to optimize 

the recovery sequence for damaged links in a transportation CI by one and several recovery teams. The models 

are completely deterministic without any temporal variations. Matisziw et al. (2010) propose a deterministic 

multi-objective model to optimize the sequence of recovering damaged links and nodes in a CI. The model 

analyzes the tradeoff between two objective functions: recovery cost minimization and system flow 

maximization. They assume all nodes and links have the same recovery times and can be restored within a 

single time unit. Baxter et al. (2014) propose an integer programming model for the incremental reconstruction 

of a damaged network. The objective is to minimize the cost of clearing/opening damaged links and to 

minimize the penalty of not satisfying demands. The model is static and deterministic. Nurre and Sharkey 

(2014) investigate the problem of network-based CI restoration when several identical machines are working 

in parallel. This problem includes designing a network of facilities (each facility includes multiple machines) 

and efficiently scheduling restoration activities on machines. However, the number of facilities is fixed over 

the restoration horizon and the recovery times of damaged components are known in advance.  

Morshedlou et al. (2018) investigate the problem of routing recovery teams to recover disrupted 

links/nodes in a single CI. They develop two optimization models to dispatch and route recovery teams towards 

disrupted components in the CI to maximize network resilience progress over the restoration horizon. The 

number of recovery teams is fixed, and no uncertainty is included in the models. Fan et al. (2024) assume that 

the capacity of restoration resources in the CI restoration process is static and recovery time of disrupted 

components is deterministic and uniform. For example, at two-hour intervals per step, they assume that 

recovery teams in the power CI repair 2 links per step, those in the natural gas CI repair 1 link, and teams in 

the transportation CI recover 2 roads per step. Other recent studies, such as Sun and Zhang (2020) and Hafeznia 

and Stojadinović (2023), also assume the fixed recovery resources and fixed recovery times in their restoration 

planning models.   

The number of studies considering post-disaster dynamics is very limited. For example, Aksu and 

Ozdamar (2014) propose a dynamic path-based model (formulated as integer programming) to maximize 

network accessibility in a road CI after a disaster. They assume that recovery times of disrupted components 

are different but deterministic. However, the number of recovery resources (e.g., teams and facilities) are 

dynamic and may change over time. Ulusan and Ergun (2018) present an innovative index inspired by network 

science to assess the criticality of components within a disrupted road CI. They propose a restoration heuristic 

aimed at prioritizing restoration activities according to this index. They ignore uncertainties and assume the 

presence of complete information about the debris level and recovery times of blocked links. However, the 

number of recovery teams may change over time.   

Very little research addresses the challenge of incomplete information or uncertainty in disaster 

restoration operations. Xu et al. (2016) propose a stochastic integer model to schedule inspection, damage 

assessment, and repair tasks for optimizing post-earthquake restoration in a power CI. The objective is to 

minimize each customer's average time without power. The expected recovery time for each disrupted 

component is uncertain, and to simplify the model, they define several limited scenarios representing 

uncertainty in recovery times of disrupted nodes. Following a similar approach, Alkhaleel et al. (2022) define 

scenarios to represent uncertainty in the recovery times of disrupted components. Similarly, Huang and Wang 

(2024) employ Monte Carlo simulation to generate scenarios representing damage levels and repair times of 

disrupted components. Farzaneh et al. (2023) explore the challenges stemming from incomplete data on 

damage and the lack of coordination among post-disaster restoration operations. To address the lack of 

complete damage information, they employ a real-time damage assessment and data collection mechanism 
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that requires pre-disaster Unmanned Aerial Vehicles (UAVs) prepositioning. Without a real-time damage 

assessment mechanism similar to our problem, considering uncertainty in damage levels and required recovery 

times significantly increases modeling accuracy. It avoids sub-optimality or even infeasibility of generated 

restoration policies when nominal values do not materialize for those parameters.       

This literature review reveals the lack of a systematic modeling approach for CI restoration that can 

address complexities of post-disaster circumstances without imposing unrealistic simplifying assumptions 

(e.g., discrete scenarios for recovery times) and locating pre-disaster monitoring facilities (e.g., pre-positioned 

UAVs). The modeling and solution approach proposed in this paper can address these gaps and contribute to 

the literature on CI restoration in the following ways: (1) It is capable of handling post-disaster uncertainties 

in the recovery times of disrupted components; and (2) It generates adaptive solutions that cope with post-

disaster dynamics of varying numbers of recovery teams. 

2.3. Research Contributions. The contributions of this paper to the CI restoration literature can be 

summarized as follows: 

▪ This paper proposes the first systematic distributed decision-making approach, coupled RL-OPs, to 

generate coordinated restoration policies for a set of interdependent CIs operating in a decentralized 

context. This approach allows CI decision-makers to preserve the information privacy of their CIs while 

coordinating their policies with partial information sharing.  

▪ The problem decomposition capability added to the proposed approach by RLs enables it to handle post-

disaster complexities, such as uncertainty in the recovery time of disrupted components and the dynamic 

number of recovery teams over the restoration process of CIs.  

▪ The proposed approach generates comprehensive restoration policies that not only determine the 

restoration schedule for disrupted components but also identify the best resource allocation to the 

components selected for concurrent restoration.            

3. PROBLEM DESCRIPTION 

Without sacrificing generality, in this section, we concentrate on developing coordinated restoration policies 

for interdependent road and power CIs (as displayed in Figure 1). The structure of the disrupted power and 

road CIs, the restoration decisions for each CI, and their interdependencies are explained in the subsequent 

sections. However, it is worth noting that the mathematical and computational foundations of the proposed 

approach can be extended to any set of interdependent CIs managed within a decentralized context.  

3.1. Power CI. We represent the power CI in the disaster-affected community using a network: 𝐺𝑃(𝑁𝑃, 𝐿𝑃). 

The set of nodes in the network includes supply nodes that generate power (𝑁𝑆
𝑃), intermediate nodes that 

transfer power (𝑁𝐼
𝑃), and demand nodes representing aggregated households in municipal sites (𝑁𝐷

𝑃): 𝑁𝑃 =
𝑁𝑆

𝑃 ∪ 𝑁𝐼
𝑃 ∪ 𝑁𝐷

𝑃. These nodes are connected through cables represented as links in the network, 𝑙 = (𝑛, 𝑛́) 
where 𝑛 and 𝑛́ ∈ 𝑁𝑃. The daily power generation capacity at each supply node is denoted by 𝑃𝐶𝑛

𝑃 (∀𝑛 ∈ 𝑁𝑆
𝑃). 

The parameter 𝐷𝐷𝑛
𝑃 (∀𝑛 ∈ 𝑁𝐷

𝑃) represents the daily demand at the demand nodes of the network. Additionally, 

there is a flow capacity for the links/cables of the network represented by 𝑇𝐶𝑙
𝑃 (∀𝑙 ∈ 𝐿𝑃). Under power 

generation and transmission limitations, the power distribution plan in a power CI determines how the daily 

generated power at the supply nodes should be routed throughout the network to fulfill the daily demands 

materialized at the demand nodes. 

Extreme events (e.g., thunderstorms, hail, lightning, tornados, and hurricanes) may damage the power CI 

by disrupting some of the links (e.g., downing some power lines) in the network. This may distort its power 

distribution plan and leave some of the demand nodes without power. A restoration plan for the power CI 

includes two groups of decisions: (1) restoration scheduling, which determines the sequence or concurrency 

of restoring disrupted links in the network, and (2) resource allocation, which determines the best scheme to 

assign recovery teams to the links selected for concurrent restoration. The objective of the restoration plan is 

to minimize the total unfulfilled power demand during the restoration period, represented by 𝑇. Limitation of 

restoration teams, uncertainty in the recovery times of disrupted links, interdependencies between the road and 

power CIs, and the decentralized decision-making structure of CIs are the key barriers complicating restoration 

optimization for power CIs.    

The main assumption related to the power CI is that we employ a linear DC model to approximate the 

nonlinear AC model used for power distribution planning in the power network.  The accuracy of this 

approximation has been shown by Bienstock and Mattia (2007).         
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3.2. Road CI. The road CI in the community is represented by another network, 𝐺𝑅(𝑁𝑅 , 𝐿𝑅), in which urban 

sites constitute nodes of the network (𝑁𝑅), connected through roads/highways represented by links (𝐿𝑅). Each 

link has a traffic flow capacity (𝐹𝐶𝑙
𝑅 , ∀𝑙 ∈ 𝐿𝑅). When an extreme event damages the road CI, some 

roads/highways become disrupted and impassable, decelerating the post-disaster traffic flow in the affected 

area. The post-disaster traffic need is represented as a set of Origin-Destination (OD) pairs, where OD pairs 

correspond to daily traffic flow moving from origin (𝑁𝑂
𝑅) to destination (𝑁𝐷

𝑅) nodes of the road CI through 

intermediate nodes (𝑁𝐼
𝑅): 𝑂𝐷 = {𝑜𝑑 = (𝑚, 𝑚́)|𝑚 ∈ 𝑁𝑂

𝑅 𝑎𝑛𝑑 𝑚́ ∈ 𝑁𝐷
𝑅}. The traffic demand of each pair 𝑜𝑑 is 

denoted by 𝑇𝐹𝑜𝑑
𝑅  (∀𝑜𝑑 ∈ 𝑂𝐷).  

Developing a restoration plan for a road CI involves strategizing the restoration schedule and resource 

allocation for disrupted roads to maximize the acceleration of post-disaster traffic flow within the restoration 

period, 𝑇. This optimization process must account for constraints such as limited and dynamic resources (e.g., 

a finite and dynamic number of recovery teams) and uncertainties such as incomplete information regarding 

the recovery time of blocked or damaged roads and highways.      

In this paper, the focus is on short-term restoration of critical CIs that starts immediately after a disaster 

in a community. These operations should be accomplished within a short planning horizon after the disaster 

(e.g., within a couple of weeks) (FEMA, 2018). That is why we introduced the planning horizon 𝑇 in the 

problem. Within this short interval after the disaster, the travel flow in the affected region is usually limited to 

relief operations such as transferring casualties to hospitals, transporting relief commodities from stocks and 

airports to affected regions, and relocating affected residents to shelters. Therefore, we assume that routine 

pre-disaster traffic flows that may cause traffic jams do not exist in the area. In Section 4.2.2, we will explain 

how this assumption can be relaxed in the problem. 

3.3. Interdependencies Between Road and Power CIs. We define several sets to model restoration 

interdependency between the road and power CIs. Π𝑙
𝑃 includes the set of prerequisite links in the road CI that 

should be restored before restoring link 𝑙 ∈ 𝐿𝑃. Similarly, Π𝑙
𝑅 includes the set of prerequisite links in the power 

CI that should be restored before restoring link 𝑙 ∈ 𝐿𝑅. In this paper, our goal is to coordinately optimize the 

restoration plans for the damaged power and road CIs, considering their interdependencies, to minimize the 

total unfulfilled power demand in the power CI and travel time/cost in the road CI. The restoration decisions 

for CIs are made in a decentralized context by separate decision-makers. 

4. PROBLEM FORMULATION 

Figure 1 demonstrates the general structure of the approach developed to generate coordinated restoration 

policies for the road and power CIs, referred to as the coupled RL-OPs mechanism. This mechanism includes 

a distinct RL-OP for each CI dealing with its restoration decisions. Having a separate RL agent for each CI is 

consistent with the decentralized nature of the problem. Having a separate learning environment for each agent 

enables us to handle the heterogeneous operational environment of CIs. To harmonize the decisions of agents 

and generate coordinated policies, we will design and locate a “coordinator” to facilitate limited information 

sharing among the RL agents.  

RL is a machine learning technique consisting of an agent and a learning environment. It trains the agent 

by using feedback from the learning environment to guide the agent toward optimal solutions. RL mimics the 

trial-and-error learning process employed by humans to achieve their goals (Li, 2023). For more information 

about the principles of RL refer to Ding et al. (2020), Meyn (2022), and Morales (2020).  

Figure 2 demonstrates the structure of the RL-OP that is generated for each CI in this paper. The agent of 

the RL-OP will make restoration decisions for the CI that include restoration schedule and resource allocation. 

Since scheduling is a sequential process (we want to identify the sequence of restoring damaged links), we 

model the decision-making structure of the agent of the RL-OP as a Markov Decision Process (MDP) which 

permits the agent to have several decision-making stages. In each stage, a new set of restoration decisions will 

be made by the agent for the CI. The consequence/reward of the restoration decisions made in each stage is 

evaluated in its learning environment. The learning environment is an optimization model that replans the flow 

(traffic or power flow) movement in the CI after restoring selected links and calculates the improvement in its 

performance (e.g., total reduction in the unfulfilled demand of the power CI or reduction in travel cost/time of 

the road CI). Figure 2 shows the flow of information between the agent and the environment of an RL-OP in 

one learning iteration. These iterations train the agent to learn more about the reward achievable by making 

any decision in each stage of the RL-OP and gradually guide the agent to make better decisions with higher 

rewards in MDP stages. After a high number of iterations, the agent is trained enough to select the optimal 

decision for each MDP stage.               
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Figure 2. The structure of the RL-OP for each CI. 

More details about the RL-OPs designed for the power and road CIs are respectively explained in Sections 

4.1 and 4.2. Section 4.3 includes the development of the “coordinator” to harmonize the decisions of the RL-

OPs’ agents. Connecting agents of the RL-OPs through the “coordinator” results in the coupled RL-OPs 

mechanism that is able to make coordinated restoration decisions for the power and road CIs.  

4.1. RL-OP Development for the Power CI. In this section, we explain the procedure for developing a distinct 

RL-OP for the power CI. The decision-making process for the agent of the power RL-OP and the reward 

generation process in its learning environment are explained in Sections 4.1.1 and 4.1.2, respectively. Section 

4.1.3 details the solution approach for the power MDP, including the learning procedure used by the agent of 

the power RL-OP to train and ultimately generate uncoordinated restoration policies for the disrupted power 

network.  

4.1.1. Decision-making process for the agent of the power RL-OP. As explained before, in the presence of 

limited recovery resources (e.g., limited recovery teams), the agent of the power RL-OP should determine the 

best sequence and concurrency for recovering disrupted links in the power network. Therefore, we formulate 

the problem of restoration scheduling and resource allocation by the agent as a MDP with sequential decision-

making stages. 

In the context of the power network, let 𝐿́𝑃 be the set of disrupted links. At each decision-making stage 

of the power MDP (∀𝑘𝑃 ∈ 𝐾𝑃), the agent is tasked with two key decisions: (1) selecting a subset of disrupted 

links for restoration (𝐿́𝑘
𝑃 ⊂ 𝐿́𝑃); and (2) allocating recovery teams (Λ𝑘

𝑃) available at stage 𝑘𝑃 to the links selected 

for restoration in that stage. The number of recovery teams (Λ𝑘
𝑃) is dynamic and may change from stage to 

stage. The process of allocating recovery teams to a subset of links (e.g., 𝐿́𝑘
𝑃) that can be selected for restoration 

at stage 𝑘𝑃 is explained the next section, addressing resource allocation decisions. The process of modeling 𝐿́𝑘
𝑃  

selection in each stage of the MDP will be explained in the later section, addressing restoration scheduling 

decisions (the notation used in the paper is summarized in Appendix A). 

Resource allocation decisions: The recovery time needed to restore each link in set 𝐿́𝑘
𝑃  depends on the number 

of recovery teams allocated to that link. The resource allocation process aims to minimize the restoration time 

for the selected links in 𝐿́𝑘
𝑃 , ensuring their swift recovery. We develop an optimization model to assign recovery 

teams to the links of set 𝐿́𝑘
𝑃 . In this model, variable 𝑤𝑙

𝑃 indicates the number of teams allocated to link 𝑙 ∈ 𝐿́𝑘
𝑃 , 

while 𝜎̅𝑙 demonstrates the average restoration time for link 𝑙 if only one team were allocated to it (where 𝜎𝑙 is 

a random variable ranging from 𝜎̌𝑙 to 𝜎̂𝑙). The optimal allocation of teams to the links in set 𝐿́𝑘
𝑃  is determined 

by Model (1-4): 

Minimize          𝜗𝐿́𝑘
𝑃 = MAX

∀𝑙∈𝐿́𝑘
𝑃
𝜗𝑙 = (

𝜎̅𝑙

𝑤𝑙
𝑃)                                                                                        (1)                                                                      

Subject to:        𝑤𝑙
𝑃 ≤ 𝐶𝑙                                                                ∀𝑙 ∈ 𝐿́𝑘

𝑃                                    (2) 

      ∑ 𝑤𝑙
𝑃 ≤ Λ𝑘

𝑃
𝑙∈𝐿́𝑘

𝑃                                                                                                      (3) 
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  𝑤𝑙
𝑃 ≥ 0  and integer                                             ∀𝑙 ∈ 𝐿́𝑘

𝑃                                    (4)                 

 

Objective function (1) allocates recovery teams to the links of set 𝐿́𝑘
𝑃  in a way to minimize the maximum 

time needed to recovery of each link in that set. It is assumed that the allocated teams will remain dedicated to 

their assigned links throughout the recovery process, and the restoration of links in 𝐿́𝑘
𝑃  will be considered 

complete once all links are restored. This assumption is commonly adopted in literature (Celik et al., 2015; 

Averbakh et al., 2012; Tzeng et al., 2007). Constraint (2) ensures that the number of allocated teams to each 

link does not exceed the maximum number of teams that can work simultaneously on that link (𝐶𝑙). 

Additionally, constraint (3) guarantees that the number of allocated teams at stage 𝑘 does not exceed the total 

number of available teams at that stage (Λ𝑘
𝑃). The process of linearizing and solving Model (1-4) is explained 

in Appendix B. 

Restoration scheduling decisions: This section explains the process of modeling 𝐿́𝑘
𝑃  selection by the agent of 

the power RL-OP at each stage of its MDP. As depicted in Figure 3, the MDP consists of several decision-

making stages. Each stage corresponds to a state-decision matrix. The states (or rows) of a matrix represent 

potential configurations that the power network may have at the beginning of its corresponding stage. The 

decisions (or columns) of the matrix represent the potential restoration decisions that can be selected by the 

agent. The remainder of this section explains the interconnections among the decisions made at different stages 

of the MDP.   

 

Figure 3. The sequence of decisions made by the agent in the power MDP. 

In the state-decision matrix of stage 𝑘, the initial configuration of the power network is represented by set 

𝑆𝑘
𝑃 = {𝑠𝑘

𝑃}. Each state (∀𝑠𝑘
𝑃 ∈ 𝑆𝑘

𝑃) corresponds to a set of disrupted links that remain unrecovered up to that 

stage. In the first stage (𝑘𝑃 = 1), there exists a single state encompassing all links in 𝐿́𝑃 available for restoration 

(see Stage 1 in Figure 3). The decision space in state 𝑠𝑘
𝑃, denoted by 𝐴𝑠𝑘

𝑃 = {𝑎𝑠𝑘
𝑃 }, encompasses all feasible 

subsets of links that can be selected for restoration in that state. Decision 𝑎𝑠𝑘
𝑃  is feasible if solving Model (1-

4) yields a finite minimum recovery time 𝜗
𝐿́𝑘
𝑃=𝑎𝑠𝑘

𝑃
∗  and the optimal team allocation scheme {𝑤𝑙

𝑃∗}
𝐿́𝑘
𝑃=𝑎𝑠𝑘

𝑃 for the 

selected links in that decision. In the initial stage (𝑘𝑃 = 1), the decision space includes a maximum of 2|𝐿́𝑃| 

decisions. However, depending on the availability of recovery teams (Λ𝑘=1
𝑃 ), some of these decisions may 

become infeasible. In the case in which decision 𝑎𝑠1=
𝑃 𝐿́1

𝑃 is selected by the agent in stage 1 for restoration, the 

pool of available links for restoration in stage 2 diminishes to 𝐿́𝑃 − 𝐿́1
𝑃, consequently reducing the maximum 

size of the decision space to 2|𝐿́𝑃−𝐿́1
𝑃|.  

As shown by red arrows in Figure 3, the initial state of the power CI in stage 𝑘 + 1 (𝑠𝑘+1
𝑃 ) depends on its 

initial state in stage 𝑘 (𝑠𝑘
𝑃) and the restoration decision made by the agent in stage 𝑘 (𝑎𝑠𝑘

𝑃 ): 𝑠𝑘+1
𝑃 ←(𝑎𝑠𝑘

𝑃 |𝑠𝑘
𝑃). 

This transition function interconnects decisions made in sequential stages of an MDP. The reward of selecting 

decision 𝑎𝑠𝑘
𝑃  in state 𝑠𝑘, represented by 𝜃𝑘

𝑃(𝑎𝑠𝑘
𝑃 ), is calculated based on the total increase that making this 

decision (recovering the selected links) will make in fulfilling power demand of the community from the 

moment that the restoration for decision 𝑎𝑠𝑘
𝑃  ends up to 𝑇. This reward will be calculated in the learning 

environment of the power RL-OP that will be elaborated in Section 4.1.2.  
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MDP is one of the most well-known approaches for making sequential decisions in stochastic 

environments. That is why it is used to frame the decision-making process for the agents of RL-OPs. It can 

handle uncertainties that may arise in the implementation process of selected decisions, which affect transition 

functions (𝑠𝑘+1
𝑃 ←(𝑎𝑠𝑘

𝑃 |𝑠𝑘
𝑃)) (Nilim and Ghaoui, 2005) and uncertainties that may occur in rewards generated 

after implementing decisions (𝜃𝑘
𝑃(𝑎𝑠𝑘

𝑃 )) (Paschalidis and Kang, 2008). In this paper, we focus only on 

uncertainties in recovery times that impact rewards. However, employing MDPs provides the opportunity to 

consider other types of uncertainties in the problem formulation. 

4.1.2. Learning environment of the power RL-OP. Assume that decision 𝑎𝑠𝑘
𝑃  is selected at stage 𝑘 

(corresponds to the decision-making moment of 𝑡𝑘), and the total time needed to restore the links of this 

decision is 𝜗
𝐿́𝑘
𝑃=𝑎𝑠𝑘

𝑃
∗ , calculated by Model (1-4). The reward of making this decision, 𝜃𝑘

𝑃(𝑎𝑠𝑘
𝑃 ), would be equal 

to the total power demand that can be fulfilled by the power CI in [𝑡𝑘 + 𝜗
𝑎𝑠𝑘

𝑃
∗ , 𝑇] interval in the presence of 

links of set 𝑎𝑠𝑘
𝑃  minus the total power demand that can be fulfilled by the power CI in [𝑡𝑘 + 𝜗

𝑎𝑠𝑘
𝑃

∗ , 𝑇] interval 

in the absence of links of set 𝑎𝑠𝑘
𝑃 . The demand that can be fulfilled by the power CI with a given set of active 

links in each time unit (e.g., a day) is calculated using Model (5-13). This model optimizes the power 

distribution in the power CI, 𝐺𝑃(𝑁𝑃 , 𝐿𝑃), under different link availability scenarios. To include link 

availability scenarios, we will assign a binary parameter (𝛽𝑙
𝑃) to each link in the power network. Parameter 

𝛽𝑙
𝑃 = 1 if directed link 𝑙 = (𝑛́, 𝑛⃗⃗ ⃗⃗ ⃗⃗  ) ∈ 𝐿𝑃 is active and can be employed for transferring power in the power 

network, and 0 otherwise.  

Minimize       𝑍𝑃 = ∑ 𝑈𝐷𝑛
𝑃

𝑛∈𝑁𝐷
𝑃                                                                                                                (5) 

Subject to:     ∑ 𝑥
𝑙=(𝑛 ,𝑛́⃗⃗⃗⃗ ⃗⃗⃗⃗  )

𝑃
𝑛́∈𝑁𝑃 ≤ 𝑃𝐶𝑛

𝑃                                                                        (∀𝑛 ∈ 𝑁𝑆
𝑃)             (6) 

                     ∑ 𝑥
𝑙=(𝑛́,𝑛⃗⃗ ⃗⃗ ⃗⃗  )

𝑃
𝑛́∈𝑁𝑃 = ∑ 𝑥

𝑙=(𝑛,𝑛"⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )
𝑃

𝑛"∈𝑁𝑃                                                       (∀𝑛 ∈ 𝑁𝐼
𝑃)             (7) 

                     ∑ 𝑥
𝑙=(𝑛́,𝑛⃗⃗ ⃗⃗ ⃗⃗  )

𝑃
𝑛́∈𝑁𝑃 = 𝐷𝐷𝑛

𝑃 − 𝑈𝐷𝑛
𝑃                                                            (∀𝑛 ∈ 𝑁𝐷

𝑃)             (8) 

 𝑥
𝑙=(𝑛́,𝑛⃗⃗ ⃗⃗ ⃗⃗  )

𝑃 ≤ 𝑇𝐶
𝑙=(𝑛́,𝑛⃗⃗ ⃗⃗ ⃗⃗  )

𝑃 . 𝛽
𝑙=(𝑛́,𝑛⃗⃗ ⃗⃗ ⃗⃗  )

𝑃 . 𝑦
𝑙=(𝑛́,𝑛⃗⃗ ⃗⃗ ⃗⃗  )

𝑃                                                  (∀𝑙 ∈ 𝐿𝑃)              (9) 

𝑦
𝑙=(𝑛́,𝑛⃗⃗ ⃗⃗ ⃗⃗  )

𝑃 + 𝑦
𝑙=(𝑛 ,𝑛́⃗⃗⃗⃗ ⃗⃗⃗⃗  )

𝑃 ≤ 1                                                                        (∀𝑙 ∈ 𝐿𝑃)            (10) 

𝑏𝑙
𝑃 . 𝑥

𝑙=(𝑛́,𝑛⃗⃗ ⃗⃗ ⃗⃗  )

𝑃 ≤ (𝜑𝑛́ − 𝜑𝑛) + 𝑀 (1 − 𝑦
𝑙=(𝑛́,𝑛⃗⃗ ⃗⃗ ⃗⃗  )

𝑃 )                                     (∀𝑙 ∈ 𝐿𝑃)            (11) 

𝑏𝑙
𝑃 . 𝑥

𝑙=(𝑛́,𝑛⃗⃗ ⃗⃗ ⃗⃗  )

𝑃 ≥ (𝜑𝑛́ − 𝜑𝑛) − 𝑀 (1 − 𝑦
𝑙=(𝑛́,𝑛⃗⃗ ⃗⃗ ⃗⃗  )

𝑃 )                                     (∀𝑙 ∈ 𝐿𝑃)            (12) 

                    𝑥𝑙
𝑃 , 𝑏𝑙

𝑃, 𝜑𝑛  ≥ 0 and 𝑦𝑙
𝑃 ∈ {0,1}                                         (∀𝑛 ∈ 𝑁𝑃)  (∀𝑙 ∈ 𝐿𝑃)            (13) 

Objective function (5) minimizes the total unfulfilled demand at the demand nodes of the power CI during 

a day. Variable 𝑈𝐷𝑛
𝑃 measures the daily demand that cannot be fulfilled at node 𝑛 ∈ 𝑁𝐷

𝑃 under the link 

availability scenario of {𝛽𝑙
𝑃|∀𝑙 ∈ 𝐿𝑃}. Therefore, the maximum demand that can be fulfilled per day is equal 

to ∑ 𝐷𝐷𝑛
𝑃

𝑛∈𝑁𝐷
𝑃 − 𝑍∗𝑃. Based on constraint (6), the total power flow originating from a supply node cannot 

violate its generation capacity (𝑃𝐶𝑛
𝑃). At intermediary nodes, the sum of power inflow must equal the sum of 

power outflow (constraint (7)). At each demand node, the total power inflow is equal to the fulfilled portion 

of the demand at that node (constraint (8)). Constraint (9) ensures that the power flows only through the links 

available in that scenario and in the movement direction identified by variable 𝑦
𝑙=(𝑛́,𝑛⃗⃗ ⃗⃗ ⃗⃗  )

𝑃 . Variable 𝑦
𝑙=(𝑛́,𝑛⃗⃗ ⃗⃗ ⃗⃗  )

𝑃  is 1 

if the movement direction of power is from node 𝑛́ toward node 𝑛, and 0 otherwise. Through each link, the 

power flow is only possible in one direction (constraint (10)). Constraints (11) and (12) are related to physics 

of the power network that is approximated as a linear DC model. In the DC model, the power flow through 

each link should be consistent with the reactance of that link (𝑏𝑙
𝑃) and the phase angle of its connecting nodes 

(𝜑𝑛 and 𝜑𝑛́). For more details, refer to Nurre et al. (2012).  

Model (5-13) optimizes the power distribution in the power network under the link availability scenario 

of {𝛽𝑙
𝑃|∀𝑙 ∈ 𝐿𝑃}. This optimization model constitutes the learning environment of the power RL-OP and 

provides reward 𝜃𝑘
𝑃 for the restoration decisions 𝑎𝑠𝑘

𝑃  made by the agent of the power RL-OP. The process of 

calculating rewards based on the outcomes of Model (5-13) is detailed in Section 4.1.3.   
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4.1.3. Solution approach: The learning and optimal policy generation by the agent in the power RL-OP. To 

link the rewards of decisions made across different power MDP stages, counter-cumulative improvements, 

denoted as 𝑄 values, are calculated for the cells of its state-decision matrices. The 𝑄 values in the power MDP 

of Figure 3 represent the best counter cumulative rewards achievable by making each decision in each state of 

the state-decision matrices. For example, 𝑄(𝑠𝑘
𝑃 , 𝑎𝑠𝑘

𝑃 ) quantifies the maximum expected improvement attainable 

from stage 𝑘 to the final stage |𝐾| if decision 𝑎𝑘⃗⃗ ⃗⃗  is selected by the agent in state 𝑠𝑘
𝑃 at stage 𝑘. To reduce the 

computational complexity of calculating 𝑄 values of all matrices, RL is used in this paper to estimate 𝑄 values. 

We explain the process of estimating 𝑄 values and training the power agent in this section. 

In each iteration of power RL-OP, the first restoration decision is made by the agent at time 0 (𝑘𝑃 = 1), 

and a subset of disrupted links, 𝑎𝑠𝑘=1
𝑃 = 𝐿́𝑘=1

𝑃 , is selected for recovery using the 𝜀-greedy approach (Jasmin et 

al., 2011). The restoration process of these links will end at time 𝜗
𝑎𝑠𝑘=1

𝑃 =𝐿́𝑘=1
𝑃

∗ , if average recovery times are 

materialized for the links of set 𝐿́𝑘=1
𝑃 . To consider uncertainty in the recovery times, random values from the 

variation ranges of [𝜎̌𝑙 , 𝜎̂𝑙] will be assigned to each link, denoted as 𝜎̃𝑙. These random values are used to 

calculate the actual time it may take to restore the selected links (𝜗́𝑎𝑠𝑘=1
𝑃 =𝐿́𝑘=1

𝑃 ):        

𝜗́𝐿́𝑘=1
𝑃 = MAX

∀𝑙∈𝐿́𝑘=1
𝑃

{
𝜎̃𝑙

𝑤𝑙
𝑃∗}                                                                  (14) 

where 𝑤𝑙
𝑃∗ values are calculated by Model (1-4). Selecting disrupted links of 𝑎𝑠𝑘=1

𝑃 = 𝐿́𝑘=1
𝑃  for recovery will 

make some improvement in the daily demand that can be fulfilled by the power CI. This improvement, 

𝜃𝑘=1
𝑃 (𝑎𝑠𝑘=1

𝑃 = 𝐿́𝑘=1
𝑃 ), is calculated using Model (5-13) in the RL-OP’s learning environment as follows: 

𝜃𝑘=1
𝑃 (𝑎𝑠𝑘=1

𝑃 ) = 𝑍𝑃∗
(𝛽𝑙

𝑃 = 0 (∀𝑙 ∈ 𝐿́𝑃), 𝛽𝑙
𝑃 = 1 (∀𝑙 ∈ 𝐿𝑃 − 𝐿́𝑃)) . (𝑇 − 𝜗́𝐿́𝑘=1

𝑃 ) − 

𝑍𝑃∗
(𝛽𝑙

𝑃 = 0 (∀𝑙 ∈ 𝐿́𝑃 − 𝐿́𝑘=1
𝑃 ), 𝛽𝑙

𝑃 = 1 (∀𝑙 ∈ 𝐿𝑃 − 𝐿́𝑃 + 𝐿́𝑘=1
𝑃 )) . (𝑇 − 𝜗́𝐿́𝑘=1

𝑃 )                  (15) 

This reward will be used to update the 𝑄 estimation of cell (𝑠𝑘=1
𝑃 , 𝑎𝑠𝑘=1

𝑃 ) in the power MDP using the 

Bellman’s equation (Sutton and Barto, 1999):  

𝑄𝜏+1(𝑠𝑘=1
𝑃 , 𝑎𝑠𝑘=1

𝑃 ) = (1 − 𝛼)𝑄𝜏(𝑠𝑘=1
𝑃 , 𝑎𝑠𝑘=1

𝑃 ) + 𝛼 [𝜃𝑘=1
𝑃 (𝑎𝑠𝑘=1

𝑃 ) + 𝛾 max
𝑎𝑠𝑘=2

𝑃
𝑄𝜏(𝑠𝑘+1=2

𝑃 , 𝑎𝑠𝑘+1=2
𝑃 )]    (16) 

where 𝛼 and 𝛾 respectively control the convergence speed of the learning process and the weight of future 

rewards. The selected decision is stage 1 determines the state of the network in stage 2: 𝑠𝑘=2
𝑃 ←(𝑎𝑠𝑘=1

𝑃 |𝑠𝑘=1
𝑃 ).  

Then, the second restoration decision is selected by the agent from the action set of state 𝑠𝑘=2
𝑃  in the second 

stage (𝑘𝑃 = 2) which includes another subset of disrupted links, 𝐿́𝑘=2
𝑃 , that have not been recovered by time 

𝜗́𝐿́𝑘=1
𝑃 . The reward of making this decision and the 𝑄 estimation of the selected cell, (𝑠𝑘=2

𝑃 , 𝑎𝑠𝑘=2
𝑃 = 𝐿́𝑘=2

𝑃 ), are 

calculated using the same approach. The agent continues this decision-making process until all disrupted links 

are restored. This is the end of the first learning iteration.   

Using the 𝜀-greedy approach, in different iterations of the RL-OP, different decisions are selected by the 

agent in MDP stages, and 𝑄 values are updated continuously. After a high number of iterations (𝜏 → ∞), the 

𝑄 values of the power MDP, estimated by equation (16), converge to their actual values. After convergence, 

the agent derives the optimal link restoration policy for the power CI (𝜋𝑃∗: 𝑆𝑃 → 𝐴𝑃) as follows: 

𝜋𝑃∗ = 𝐴𝑟𝑔max
𝜋𝑃∗

(∑ 𝛾𝑘𝑃
. 𝜃𝑘

𝑃|𝐾𝑃|

𝑘𝑃=1
)                                                  (17) 

This policy recommends the best restoration schedule and resource allocation for the disrupted links of 

the power CI with stochastic recovery times and dynamic number of recovery teams. However, the 

interdependencies of these decisions to the restoration decisions of the road CI are completely ignored in this 

policy. Therefore, some restoration decisions of the recommended policy may not be executable in practice.  

4.2. RL-OP Development for the Road CI. This section explains the process of developing a distinct RL-OP 

for the road CI. Section 4.2.1 explains the decision-making process for the agent of the road RL-OP. The 

consequence/reward of the decisions made by the agent is evaluated in the road RL-OP’s learning environment, 

which will be elaborated in Section 4.2.2. The learning procedure for the agent which helps it generate an 

uncoordinated restoration policy for the disrupted links of the road network is explained in Section 4.2.3. 
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4.2.1. Decision-making process for the agent of the road RL-OP. Similar to the power RL-OP, the problem 

of identifying the best restoration schedule and team allocation for the disrupted links in the road network is 

formulated as an MDP. Assuming that 𝐿́𝑅 is the set of disrupted links in the road network, at each decision-

making stage of the road MDP (∀𝑘𝑅 ∈ 𝐾𝑅), the agent selects a subset of disrupted links for restoration (𝐿́𝑘
𝑅 ⊂

𝐿́𝑅) and allocates recovery teams (Λ𝑘
𝑅) to those links (𝑤𝑙

𝑅, 𝑙 ∈ 𝐿́𝑘
𝑅). The method used for team allocation is 

similar to the power RL-OP. Model (1-4) is used to determine the best pattern of assigning recovery teams to 

the links selected for simultaneous restoration in 𝐿́𝑘
𝑅 , {𝑤𝑙

𝑅∗}
𝐿́𝑘
𝑅. 

The decision-making procedure used by the agent of the road RL-OP for the restoration schedule is the 

same as for the power RL-OP. At each stage of the road MDP, the initial configuration of the road network is 

represented by a set of potential states: 𝑆𝑘
𝑅 = {𝑠𝑘

𝑅}. Each state corresponds to a set of disrupted links that have 

not been recovered up to that stage. In state 𝑠𝑘
𝑅, the decision space, denoted as 𝐴𝑠𝑘

𝑅 = {𝑎𝑠𝑘
𝑅 }, encompasses all 

feasible subsets of links eligible for restoration. The reward associated with selecting decision 𝑎𝑠𝑘
𝑅  in state 𝑠𝑘 

is determined by quantifying the overall reduction in post-disaster travel time/cost resulting from making 

decision 𝑎𝑠𝑘
𝑅  (i.e., restoring the chosen roads of this decision). This reduction will be calculated from the 

moment that the restoration operation ends for decision 𝑎𝑠𝑘
𝑅  up to 𝑇. This reward is calculated in the learning 

environment of the road RL-OP, which will be elaborated in section 4.2.2.  

4.2.2. Learning environment of the road RL-OP. In the case in which decision 𝑎𝑠𝑘
𝑅  is selected at stage 𝑘 

(corresponds to the decision-making moment 𝑡𝑘), the time needed to complete this restoration operation is 

𝜗́𝑎𝑠𝑘
𝑅 . This means the links of decision 𝑎𝑠𝑘

𝑅  will be available for use at time 𝑡𝑘 + 𝜗́𝑎𝑠𝑘
𝑅 . So, the reward of making 

this decision, 𝜃𝑘
𝑅(𝑎𝑠𝑘

𝑅 ), would be equal to the total travel time/cost in the road CI in [𝑡𝑘 + 𝜗́𝑎𝑠𝑘
𝑅 , 𝑇] interval in 

the absence of the links of set 𝑎𝑠𝑘
𝑃  minus the total travel time/cost  in the road CI in [𝑡𝑘 + 𝜗́𝑎𝑠𝑘

𝑅 , 𝑇] interval in 

the presence of links of set 𝑎𝑠𝑘
𝑃 . The post-disaster travel time/cost in the road CI in each time unit (e.g., each 

day) is calculated using Model (18-23). This model optimizes the traffic routing over the road CI, 𝐺𝑅(𝑁𝑅 , 𝐿𝑅), 
under different link availability scenarios. The availability of links in the network is determined by a binary 

parameter 𝛽𝑙
𝑅. Parameter 𝛽𝑙

𝑅 = 1 if link 𝑙 = (𝑛 , 𝑛́) is active and available for traveler usage, and 𝛽𝑙
𝑅 = 0 

otherwise. 

Minimize       𝑍𝑅 = ∑ ∑ 𝑥𝑙=(𝑛 ,𝑛́)
𝑅,𝑜𝑑 . 𝑡𝑡𝑙=(𝑛 ,𝑛́)∀𝑙∈𝐿𝑅∀𝑜𝑑∈𝑂𝐷                                                                     (18) 

       Subject to:     ∑ 𝑥𝑙=(𝑛́,𝑛)
𝑅,𝑜𝑑

∀𝑜𝑑∈𝑂𝐷 ≤ 𝐹𝐶𝑙=(𝑛́,𝑛)
𝑅 . 𝛽𝑙=(𝑛́,𝑛)

𝑅                                                      (∀𝑙 ∈ 𝐿𝑅)    (19)  

∑ 𝑥𝑙=(𝑚 ,𝑛)
𝑅,𝑜𝑑

𝑛∈𝑁𝑅 = 𝑇𝐹𝑜𝑑
𝑅                                                       (∀𝑜𝑑 = (𝑚, 𝑚́) ∈ 𝑂𝐷)    (20) 

∑ 𝑥𝑙=(𝑛 ,𝑚́)
𝑅,𝑜𝑑

𝑛∈𝑁𝑅 = 𝑇𝐹𝑜𝑑
𝑅                                                       (∀𝑜𝑑 = (𝑚, 𝑚́) ∈ 𝑂𝐷)    (21) 

                              ∑ 𝑥𝑙=(𝑛 ,𝑛́)|𝑛́≠𝑚,𝑚́
𝑅,𝑜𝑑

𝑛∈𝑁𝑅 = ∑ 𝑥𝑙=(𝑛́ ,𝑛")|𝑛́≠𝑚,𝑚́
𝑅,𝑜𝑑

𝑛"∈𝑁𝑅               (∀𝑜𝑑 = (𝑚, 𝑚́) ∈ 𝑂𝐷)    (22)                

𝑥𝑙
𝑅,𝑜𝑑 ≥ 0                                                                      (∀𝑙 ∈ 𝐿𝑅) and (∀𝑜𝑑 ∈ 𝑂𝐷)    (23)   

Objective function (18) minimizes the total post-disaster travel time/cost in the road network. Parameter 

𝑡𝑡𝑙 represents the travel time/cost for a traveler moving through link 𝑙 ∈ 𝐿𝑅. According to constraint (19), 

traffic can only flow through active links (when 𝛽𝑙
𝑅 = 1), and the flow volume cannot exceed the capacity of 

the link (𝐹𝐶𝑙
𝑅). Constraint (20) ensures that the total traffic outflow from the origin node of each OD pair is 

equal to the traffic demand of that OD. Similarly, the total traffic inflow to the destination node of each OD is 

equal to the OD’s traffic demand (constraint (21)). At intermediate nodes, which are neither the origin nor the 

destination of an OD pair, the sum of inflow must equal the sum of outflow, as expressed by constraint (22).  

As explained before in Section 3.2, we assume that routine pre-disaster traffic flows that may cause traffic 

jams in roads do not exist in the area. In the cases in which we expect traffic jams (more than travel flow 

capacity) and delayed travel time in the links of the road CI, we can replace parameter 𝑡𝑡𝑙 (that shows the travel 

time/cost for a traveler moving through link 𝑙 ∈ 𝐿𝑅) with a function that connects the travel time/cost of a link 

to its capacity and traffic flow. One of these functions that is suggested by the Bureau of Public Roads (Bureau 

of Public Roads, 1964) and widely used in the literature is: 

𝑡𝑡𝑙(∑ 𝑥𝑙
𝑅,𝑜𝑑

∀𝑜𝑑∈𝑂𝐷 ) = 𝑐0 [1 + 0.15 (
∑ 𝑥𝑙

𝑅,𝑜𝑑
∀𝑜𝑑∈𝑂𝐷

𝐹𝐶𝑙
𝑅 )

4

]  

In this function, traversing link 𝑙 is associated with a positive cost/time of 𝑡𝑡𝑙 for travelers, which is a 
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function of its traffic flow (∑ 𝑥𝑙
𝑅,𝑜𝑑

∀𝑜𝑑∈𝑂𝐷 ), free-flow travel time (𝑐0), and nominal capacity (𝐹𝐶𝑙
𝑅). Also, we 

need to modify constrain (19) in Model (18-23) as: ∑ 𝑥𝑙=(𝑛́,𝑛)
𝑅,𝑜𝑑

∀𝑜𝑑∈𝑂𝐷 ≤ 𝑀.𝛽𝑙=(𝑛́,𝑛)
𝑅  where 𝑀 is a very large 

positive value.    

Model (18-23) determines the best post-disaster traffic pattern in the road CI with the minimum travel 

cost/time under the link availability scenario of {𝛽𝑙
𝑅|∀𝑙 ∈ 𝐿𝑅}. As the learning environment of the road RL-

OP, this model provides rewards for the restoration decisions made by the agent of the road RL-OP at each 

stage of its MDP. The process of calculating rewards based on the outcomes of Model (18-23) is detailed in 

Section 4.2.3.   

4.2.3. Solution approach: The learning and optimal policy generation by the agent in the road RL-OP. The 

RL mechanism, similar to the power CI, is used in this section to estimate 𝑄 values for state-decision matrices 

of the road MDP. In each learning iteration, the first set of restoration decisions (𝑘𝑅 = 1) is made at time 0, 

and a subset of disrupted links, 𝑎𝑠𝑘=1
𝑅 = 𝐿́𝑘=1

𝑅 , is selected by the agent for recovery using the 𝜀-greedy approach. 

The restoration process of these links will end at time 𝜗́𝐿́𝑘=1
𝑅 . This decision will make some improvement in 

daily traffic time/cost throughout the road CI, which will be calculated using Model (18-23) in the RL-OP’s 

learning environment. The outcomes of the model used to calculate the decision’s reward as follows: 

  𝜃𝑘=1
𝑅 (𝑎𝑠𝑘=1

𝑅 ) = 𝑍𝑅∗
(𝛽𝑙

𝑅 = 0 (∀𝑙 ∈ 𝐿́𝑅), 𝛽𝑙
𝑅 = 1 (∀𝑙 ∈ 𝐿𝑅 − 𝐿́𝑅)) . (𝑇 − 𝜗́𝐿́𝑘=1

𝑅 ) − 

     𝑍𝑅∗
(𝛽𝑙

𝑅 = 0 (∀𝑙 ∈ 𝐿́𝑅 − 𝐿́𝑘=1
𝑅 ), 𝛽𝑙

𝑅 = 1 (∀𝑙 ∈ 𝐿𝑅 − 𝐿́𝑅 + 𝐿́𝑘=1
𝑅 )) . (𝑇 − 𝜗́𝐿́𝑘=1

𝑅 )         (24) 

Equation (24) calculates the total reduction in travel time/cost during 𝑇 if we select to restore links of set 

𝑎𝑠𝑘=1
𝑅  at 𝑘𝑅 = 1. This reward is used to update the 𝑄 estimation of cell (𝑠𝑘=1

𝑅 , 𝑎𝑠𝑘=1
𝑅 ) in the road MDP as 

follows:  

𝑄𝜏+1(𝑠𝑘=1
𝑅 , 𝑎𝑠𝑘=1

𝑅 ) = (1 − 𝛼)𝑄𝜏(𝑠𝑘=1
𝑅 , 𝑎𝑠𝑘=1

𝑅 ) + 𝛼 [𝜃𝑘=1
𝑅 (𝑎𝑠𝑘=1

𝑅 ) + 𝛾 max
𝑎𝑠𝑘=2

𝑅
𝑄𝜏(𝑠𝑘=2

𝑅 , 𝑎𝑠𝑘=2
𝑅 )]        (25) 

The similar procedure is repeated to update 𝑄 values for other stages of the MDP. After a high number of 

iterations (𝜏 → ∞), the 𝑄 values of the road MDP converge to their actual values. After convergence, the agent 

derives the optimal link restoration policy for the road CI (𝜋𝑅∗: 𝑆𝑅 → 𝐴𝑅) as follows: 

𝜋𝑅∗ = 𝐴𝑟𝑔max
𝜋𝑅∗

(∑ 𝛾𝑘𝑅
. 𝜃𝑘

𝑅|𝐾𝑅|

𝑘𝑅=1
)                                                   (26) 

This policy determines the best uncoordinated restoration schedule and resource allocation for the 

disrupted links of the road CI.  

4.3. Coupled RL-OPs for Coordinated Restoration of Road and Power CIs.  

4.3.1. Coordinator development. There is no communication or information sharing between the agents of the 

power and road RL-OPs developed in Sections 4.1 and 4.2. This lack of coordination results in overlooking 

procedural interdependencies (represented by sets Π𝑙
𝑃 (∀𝑙 ∈ 𝐿𝑃) and Π𝑙

𝑅 (∀𝑙 ∈ 𝐿𝑅)) in the restoration policies 

generated by their RL-OPs. Therefore, the uncoordinated policies generated by distinct RL-OPs may be 

infeasible or suboptimal. Infeasibility means the recommended policy for a CI cannot be executed in practice 

as is because the prerequisites of the links selected for restoration in each decision-making stage may not have 

been restored in the interdependent CI. To facilitate communication between the agents of RL-OPs, we will 

design a “coordinator” that enables partial information sharing between the agents in the coupled RL-OPs. 

This coordinator prevents them from making infeasible restoration decisions and coordinates their decisions 

to be more beneficial for the entire community, not just their own CI. The coordinator includes two modules 

(see Figure 4): 

▪ Feasibility Module (FM): After accomplishing each restoration decision in each RL-OP, the information 

of the recovered links and their availability times are stored in the FM module (represented by sets 𝛬𝑘
𝑃 and 

𝛬𝑘
𝑅 and parameters 𝜓𝑘

𝑃 and 𝜓𝑘
𝑅). This information will be available for the agents of other RL-OPs and will 

prevent them from making infeasible restoration decisions.  

▪ Prediction Module (PM): This module shares the maximum Q value that is achievable in each state of 

each MDP stage with agents of other RL-OPs (represented by arrays 𝛺𝑘
𝑃,𝜏

 and 𝛺𝑘
𝑅,𝜏

). This information 

helps those agents predict the consequences of their decisions in each stage on interdependent CIs and 
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select decisions that result in better aggregated rewards (summation of rewards achieved by the agent and 

the agents of its interdependent CIs) rather than individual rewards.  

This means the agent of each RL-OP does not have any information about the network structure (e.g., the 

number and location of nodes and links in networks), operational limitations (e.g., supply capacities and 

demand quantities), and restoration operations (e.g., number of recovery teams and recovery times of disrupted 

links) of other networks. They only have access to the limited information shared through the coordinator. 

Figure 4 demonstrates how the decision-making structure of the agents should be modified in the proposed 

coupled RL-OPs mechanism. There is no change in the RL-OPs’ learning environments. In the rest of this 

section, we explain the flow of information among the state-decision matrices of RL-OPs and the modules of 

the coordinator: 

▪ Information sharing through FM: After making a restoration decision in each stage of an RL-OP, the 

information of the recovered links and their recovery accomplishment times are recorded in the FM module 

of the “coordinator” (depicted as solid green arrows in Figure 4). In the under-study problem of 

coordinated restoration planning for power and road CIs, there are two RL-OPs. Therefore, the FM module 

will include two sets: 

Λ𝑘
𝑃 = {(𝑙𝑃 , 𝑐𝑡𝑙

𝑃)}     and      Λ𝑘
𝑅 = {(𝑙𝑅 , 𝑐𝑡𝑙

𝑅)}                                             (27) 

Set Λ𝑘
𝑃  includes all the links that have been restored in the power CI up to the stage 𝑘𝑃 (𝑙𝑃) and their 

recovery accomplishment times (𝑐𝑡𝑙
𝑃). The same information is recorded in set Λ𝑘

𝑅  for the road CI. Also, 

we need to keep a record of the decision-making moments throughout the stages of the MDPs:  

ψ𝑘
𝑃 = ψ𝑘−1

𝑃 + 𝜗́𝐿́𝑘−1
𝑃   (1 < 𝑘𝑃 ≤ |𝐾𝑃|)   and    ψ𝑘

𝑅 = ψ𝑘−1
𝑅 + 𝜗́𝐿́𝑘−1

𝑃  (1 < 𝑘𝑅 ≤ |𝐾𝑅|)       (28) 

Parameter ψ𝑘
𝑃 represents the time at which the restoration decisions are made at stage 𝑘𝑃 of the power 

MDP. ψ𝑘
𝑅 demonstrates the same time for the road MDP (ψ1

𝑃 = ψ1
𝑅 = 0).    

 
Figure 4. The decision-making structure of the coupled RL-OPs. 

▪ Feasibility checking through FM: Before making any decision in each stage of an MDP, the feasibility of 

these decisions will be checked with the sets of the FM (depicted as dashed yellow arrows in Figure 4). 

For example, the decision 𝑎𝑠𝑘
𝑅  is feasible in stage 𝑘𝑅 of the road MDP if all of its prerequisites in set 
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⋃ Π𝑙
𝑅

𝑙∈𝑎𝑠𝑘
𝑅  exist in set Λ𝑘

𝑃 , and their recovery accomplishment times are less than or equal to ψ𝑘
𝑅:  

𝑐𝑡𝑙
𝑃 ≤ ψ𝑘

𝑅      for      ∀𝑙 ∈ ⋃ Π𝑙
𝑅

𝑙∈𝑎𝑠𝑘
𝑅                                                  (29) 

The sets of feasible decisions in each stage of the power and road MDPs are represented by 𝐴̂𝑠𝑘
𝑃 =

{𝑎̂𝑠𝑘
𝑃 } and 𝐴̂𝑠𝑘

𝑅 = {𝑎̂𝑠𝑘
𝑅 }.  

▪ Consequence predicting through PM: The PM of the coordinator helps the agent of each RL-OP to predict 

the consequences of its decisions on its interdependent CIs. This guides the agent to make coordinated, 

rather than distinct, decisions because it will consider the impacts of decisions not only on its own CI but 

also on the interdependent CIs. For this purpose, the PM records the maximum 𝑄 value that is achievable 

in each state of each MDP stage (depicted as solid blue arrows in Figure 4). These values are not fixed and 

updated in the iterations of RLs (𝜏): 

Ω𝑘
𝑃,𝜏 = [𝑀𝑄𝑃,𝜏(𝑠𝑘

𝑃) = max
𝑎𝑠𝑘

𝑃
𝑄𝜏(𝑠𝑘

𝑃 , 𝑎𝑠𝑘
𝑃 )]   and    Ω𝑘

𝑅,𝜏 = [𝑀𝑄𝑅,𝜏(𝑠𝑘
𝑅) = max

𝑎𝑠𝑘
𝑅

𝑄𝜏(𝑠𝑘
𝑅 , 𝑎𝑠𝑘

𝑅 )]         (30)   

The information of these sets is shared with the agents of all RL-OPs (partial information sharing) to 

help them select coordinated decisions (depicted as dashed orange arrows in Figure 4). To employ these 

predictions in the decision-making process of agents, we revise the Bellman’s equation, equation (16), as 

follows:   

𝑄𝜏+1(𝑠𝑘
𝑃 , 𝑎𝑠𝑘

𝑃 ) = (1 − 𝛼)𝑄𝜏(𝑠𝑘
𝑃 , 𝑎𝑠𝑘

𝑃 ) + 𝛼 [𝜃𝑘
𝑃(𝑎𝑠𝑘

𝑃 ) + 𝛾 max
𝑎𝑠𝑘+1

𝑃
𝑄𝜏(𝑠𝑘+1

𝑃 , 𝑎𝑠𝑘+1
𝑃 ) + 𝜆𝑀𝑄𝑅,𝜏(𝑠𝑘

𝑅)]     (31) 

According to (31), the agent of the power RL-OP not only considers the impact of the decisions made 

at stage 𝑘𝑃 on the future achievable rewards in the power CI, term max
𝑎𝑠𝑘+1

𝑃
𝑄𝜏(𝑠𝑘+1

𝑃 , 𝑎𝑠𝑘+1
𝑃 ), but also considers 

the sequence of these decisions on the maximum achievable reward in the road CI, term 𝑀𝑄𝑅,𝜏(𝑠𝑘
𝑅). 

Parameter 𝜆 represents the importance of the road CI performance for the agent of the power RL-OP. 

Similarly, the Q values for the road CI’s agent will be calculated as follows: 

𝑄𝜏+1(𝑠𝑘
𝑅 , 𝑎𝑠𝑘

𝑅 ) = (1 − 𝛼)𝑄𝜏(𝑠𝑘
𝑅 , 𝑎𝑠𝑘

𝑅 ) + 𝛼 [𝜃𝑘
𝑅(𝑎𝑠𝑘

𝑅 ) + 𝛾 max
𝑎𝑠𝑘+1

𝑅
𝑄𝜏(𝑠𝑘+1

𝑅 , 𝑎𝑠𝑘+1
𝑅 ) + 𝜆𝑀𝑄𝑃,𝜏(𝑠𝑘

𝑃)]         (32) 

For the decision-maker (or agent) of a CI, the priority of rewards achievable within its own CI may 

be higher than those from interdependent CIs. This is why we included the parameter "λ" in equations (31) 

and (32). In equation (31), this parameter represents the importance of the reward achievable in the road 

CI for the decision-maker of the power CI. When λ=1, the rewards of both CIs have equal priority for the 

decision-maker of the power CI. When λ<1, the reward in the power CI has higher priority than that of the 

road CI. When λ=0, the decision-maker of the power CI prioritizes the individual reward of its own CI. 

4.3.2. Reward normalization. When the rewards of CIs are on completely different scales, it is necessary to 

normalize the rewards generated by the learning environments of the RL-OPs. This ensures that they (and 

consequently 𝑄 values) are on a common scale, making them comparable with each other. For example, in the 

problem of coordinated restoration planning for the power and road CIs, the reward for restoring a given set 

of links in a stage of the power MDP is calculated as follows:  

𝑅𝑒𝑤𝑎𝑟𝑑 = (
𝑇𝑜𝑡𝑎𝑙 𝑢𝑛𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑒𝑑 𝑝𝑜𝑤𝑒𝑟 𝑑𝑒𝑚𝑎𝑛𝑑 𝑑𝑢𝑟𝑖𝑛𝑔 𝑡ℎ𝑒 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 

 𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑇 𝑖𝑛 𝑡ℎ𝑒 𝑎𝑏𝑠𝑒𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑙𝑖𝑛𝑘𝑠
) − (

𝑇𝑜𝑡𝑎𝑙 𝑢𝑛𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑒𝑑 𝑝𝑜𝑤𝑒𝑟 𝑑𝑒𝑚𝑎𝑛𝑑 𝑑𝑢𝑟𝑖𝑛𝑔 𝑡ℎ𝑒 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔
𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑇 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑙𝑖𝑛𝑘𝑠

) 

For normalization, we need to adjust the reward calculation in the power MDP as follows:  

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑟𝑒𝑤𝑎𝑟𝑑 =
(
𝑇𝑜𝑡𝑎𝑙 𝑢𝑛𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑒𝑑 𝑝𝑜𝑤𝑒𝑟 𝑑𝑒𝑚𝑎𝑛𝑑 𝑑𝑢𝑟𝑖𝑛𝑔 𝑡ℎ𝑒 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 

𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑇 𝑖𝑛 𝑡ℎ𝑒 𝑎𝑏𝑠𝑒𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑙𝑖𝑛𝑘𝑠
) − (

𝑇𝑜𝑡𝑎𝑙 𝑢𝑛𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑒𝑑 𝑝𝑜𝑤𝑒𝑟 𝑑𝑒𝑚𝑎𝑛𝑑 𝑑𝑢𝑟𝑖𝑛𝑔 𝑡ℎ𝑒 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔

𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑇 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑙𝑖𝑛𝑘𝑠
)

𝑇𝑜𝑡𝑎𝑙 𝑢𝑛𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑒𝑑 𝑝𝑜𝑤𝑒𝑟 𝑑𝑒𝑚𝑎𝑛𝑑 𝑑𝑢𝑟𝑖𝑛𝑔 𝑇 𝑖𝑛 𝑡ℎ𝑒 𝑎𝑏𝑠𝑒𝑛𝑐𝑒 𝑜𝑓 𝑎𝑛𝑦 𝑟𝑒𝑠𝑡𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦
 

Similarly, the reward for restoring a given set of links in a stage of the road MDP can be normalized as 

follows: 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑟𝑒𝑤𝑎𝑟𝑑 =
(

𝑇𝑜𝑡𝑎𝑙 𝑡𝑟𝑎𝑣𝑒𝑙 𝑐𝑜𝑠𝑡/𝑡𝑖𝑚𝑒 𝑑𝑢𝑟𝑖𝑛𝑔 𝑡ℎ𝑒 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 

𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑇 𝑖𝑛 𝑡ℎ𝑒 𝑎𝑏𝑠𝑒𝑛𝑐𝑒  𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑙𝑖𝑛𝑘𝑠
) − (

𝑇𝑜𝑡𝑎𝑙 𝑡𝑟𝑎𝑣𝑒𝑙 𝑐𝑜𝑠𝑡/𝑡𝑖𝑚𝑒  𝑑𝑢𝑟𝑖𝑛𝑔 𝑡ℎ𝑒 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔

𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑇 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑙𝑖𝑛𝑘𝑠
)

𝑇𝑜𝑡𝑎𝑙 𝑡𝑟𝑎𝑣𝑒𝑙 𝑐𝑜𝑠𝑡/𝑡𝑖𝑚𝑒 𝑑𝑢𝑟𝑖𝑛𝑔 𝑇 𝑖𝑛 𝑡ℎ𝑒 𝑎𝑏𝑠𝑒𝑛𝑐𝑒 𝑜𝑓 𝑎𝑛𝑦 𝑟𝑒𝑠𝑡𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦
 

This normalization process converts rewards into ratios within [0, 1] interval, bringing them to a common 

scale and making them comparable.  

4.3.3. Sequence of decisions in the coupled RL-OPs. In the first learning iteration, the sequence of decisions 

in the coupled RL-OPs of the road and power CIs is as follows: 
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▪ Using the 𝜀-greedy approach and considering Λ𝑘=1
𝑅 = ∅ in the FM and Ω𝑘=1

𝑅,𝜏=1 = [0⃗ ] in the PM, the agent 

of the power RL-OP makes the first set of restoration decisions, 𝑎̂𝑠𝑘=1
𝑃 , for the power CI at stage 𝑘𝑃 = 1. 

After making these decisions, the information of the links selected for recovery and their restoration 

accomplishment times is added to set Λ𝑘=2
𝑃  in the FM. After updating Q values using equation (31), set 

Ω𝑘=1
𝑃,𝜏=1

 is updated in the PM. Note that the time at the moment of making these decisions is ψ1
𝑃 = 0. After 

making these decisions, the time increases to ψ2
𝑃 = ψ1

𝑃 + 𝜗́𝑎̂𝑠𝑘=1
𝑃 in the power RL-OP.  

▪ Then, using the 𝜀-greedy approach and considering Λ𝑘=1
𝑃 = ∅ in the FM and Ω𝑘=1

𝑃,𝜏=1
 in the PM, the agent 

of the road RL-OP makes the first set of restoration decisions, 𝑎̂𝑠𝑘=1
𝑅 , for the road CI at stage 𝑘𝑅 = 1. The 

information of the links selected for recovery and their restoration accomplishment times is added to set 

Λ𝑘=2
𝑅  in the FM. After updating Q values using equation (32), set Ω𝑘=1

𝑅,𝜏=1
 is updated in the PM. Also, the 

decision-making time increases to ψ2
𝑅 = ψ1

𝑅 + 𝜗́𝑎̂𝑠𝑘=1
𝑅 in the road RL-OP.    

▪ Then, considering Λ𝑘=2
𝑅  in the FM and Ω𝑘=2

𝑅,𝜏=1 = [0⃗ ] in the PM, the agent of the power RL-OP makes the 

second set of restoration decisions, 𝑎̂𝑠𝑘=2
𝑃 , for the power CI using the 𝜀-greedy approach. The information 

of selected links is added to set Λ𝑘=3
𝑃  in the FM, used to calculate new Q values and update set Ω𝑘=2

𝑃,𝜏=1
 in 

the PM, and employed to increase the power RL-OP time to ψ3
𝑃 = ψ2

𝑃 + 𝜗
𝑎̂𝑠𝑘=2

𝑃
∗ . 

▪ This procedure continues for all stages in the coupled RL-OPs. In the other iterations, all the calculations 

will be the same, but the Q values of the previous iteration will substitute the zero values of Q in the MDP 

matrices. 

5. EXPERIMENTAL RESULTS 

5.1. Study Region. Tornadoes are a prevalent natural disaster in the U.S., with an average of 1200 occurrences 

annually (Perkins, 2002). The U.S. experiences a higher frequency of severe tornadoes, including those 

categorized as EF4 and EF5, compared to other regions worldwide. Particularly, these severe tornadoes are 

common in the central U.S., predominantly on the eastern side of the Rocky Mountains. The term “Tornado 

Alley” is often used to denote the most tornado-prone areas in the U.S., stretching from northern Texas to the 

Canadian prairies and encompassing several states such as Texas, Louisiana, Oklahoma, Kansas, Nebraska, 

Iowa, and South Dakota (Broyles et al., 2004). To evaluate the performance of the proposed approach, coupled 

RL-OPs, we have chosen Sioux Falls, located in South Dakota, as our study region. The road and power CIs 

of the study region are respectively represented in Figures 5a and 5b (for more details about these CIs refer to 

He et al., 2016). For performance evaluation, we generated several tornado scenarios for the study region that 

concurrently cause some disruptions in the power and road CIs.  

 
Figure 5. The road and power CIs of the study region.  

5.2. Scenario Generation. Tornado forecasts and warnings in the U.S. are exclusively issued by the National 

Weather Service, operating under the National Oceanic and Atmospheric Administration (NOAA). According 

to NOAA reports, tornadoes exhibit variable movement patterns, although their predominant trajectories are 

typically from southwest to northeast and from west to east (Roger, 2021). Most tornadoes have durations of 

less than 10 minutes. Utilizing data on tornado path lengths since 1950, the average distance covered by 

tornadoes is approximately 3.5 miles. This information serves as the basis for generating realistic tornado 
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scenarios. 

For scenario generation, we consider four primary movement directions for the tornado: 

southwest→northeast, west→east, southeast→northwest, and east→west. Additionally, we consider three 

options for tornado path length (2.5, 3.5, and 4.5 miles) and severity (low, medium, and high). Within the 

tornado's movement path (yellow line segments in Figures 5c and 5d) and its affected region (green areas in 

Figures 5c and 5d), a varying percentage (30%, 60%, and 90%) of links are disrupted at different severity 

levels. For example, at the low severity level, only 30% of the links located within the tornado’s affected area 

are randomly selected as disrupted links. This ratio increases to 60% and 90% for medium and high severity 

levels, respectively. This approach enables us to generate small, medium, and large size problem instances. In 

Figures 5c and 5d, we show a sample tornado trajectory with a southwest→northeast movement direction to 

provide more details about the scenario generation process. Figures 5c shows that links (21-24), (21-22), (20-

22), (15-19), (19-20), (18-20), and (17-19) in the road CI are located within the tornado’s potential damage 

area. According to Figure 5d, links (16-18), (15-16), (14-15), (13-14), (14-19), (19-20), and (23-24) in the 

power CI are located within the tornado’s potential damage area. In a scenario with a high severity level, all 

of these links are considered disrupted in the road and power CIs. In a scenario with a low severity level, three 

links are randomly selected from these sets as disrupted links for that scenario.  

The recovery time for each disrupted link is proportional to its length and is considered a random variable 

with a uniform distribution, varying 20% around its average value. Each scenario is evaluated under three 

different numbers of recovery teams (3, 6, and 9 crews) to assess the approach's performance across varying 

levels of resource availability. The prerequisite set for each disrupted link in a CI is determined based on 

spatial  closeness. For example, the prerequisite set of a disrupted link in a power CI includes 0, 1, 2, or 3 

randomly selected disrupted links in the road CI that are located in a given spatial proximity to that power link. 

The learning and exploration parameters used in the original (Equations (16) and (25)) and revised 

(Equations (31) and (32)) Bellman’s equations for distinct and coupled RL-OPs are as follows: 𝛼 = 0.25, 𝛾 =
1, and 𝜆 =  0.1. The RL-OPs are coded using Python 3.10.0 and PyCharm IDE. The optimization models 

within the learning environment of RLs are coded using Gurobi Optimizer version 9.5.2. The computer used 

to run the scenarios is 2.40 GHz Intel Core i9- 10885H CPU with 64 GB of RAM. 

5.3. Results. The results of solving the generated scenarios are summarized in Tables 1 and 2. Each scenario 

is solved by two different approaches: (1) distinct RL-OPs (explained in Sections 4.1 and 4.2), which generate 

uncoordinated restoration policies for the power and road CIs without considering their interdependencies, and 

(2) coupled RL-OPs (explained in Section 4.3), which generate coordinated policies that account for 

interdependencies between the CIs. 

The restoration policies generated by these two approaches will be evaluated from two perspectives: (i) 

the feasibility of the policies: this determines the ratio of policies that can be implemented in practice as they 

are and can generate nominal rewards predicted by their corresponding approach, and (ii) the quality of the 

policies: this determines the actual reward provided by the policies to the community. For feasible policies, 

the nominal and actual rewards are equal. Infeasible policies must be modified according to CI 

interdependencies, resulting in actual rewards lower than the nominal predicted values.     

5.3.1. Restoration policies generated by the distinct RL-OPs. The policies generated by distinct RL-OPs may 

be infeasible in practice as they are, because the agents (representing CI decision-makers) do not consider CI 

interdependencies during policy generation. Columns 9 and 10 in Table 1 show the feasibility of policies 

generated by distinct RL-OPs for the power and road CIs. The actual rewards achieved by infeasible policies 

(measured by the improvement in the service they provide to the community) differ from the nominal rewards 

predicted by RL-OPs. To calculate their real reward, we modified the implementation of these policies to 

account for CI interdependencies. For instance, the implementation of a decision (including a set of selected 

disrupted links) in a generated policy is delayed until all prerequisite links in interdependent CIs are restored. 

Meanwhile, restoration priority is given to the next decision in the policy that is implementable due to its 

prerequisites. If there is no such decision, the teams remain idle for a time unit (e.g., a day) and check the 

decisions again in the next time unit. After this modification, the actual rewards of the policies (e.g., increased 

demand fulfillment capability for the power CI and reduced travel time/cost for travelers in the road CI) are 

recalculated. These actual rewards and their nominal values are summarized in Columns 11-13 and Columns 

6-8 of Table 1, respectively. A comparison of actual and nominal rewards highlights the implementation bias 

resulting from uncoordinated restoration planning for interdependent CIs.   
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Results summarized in Columns 9 and 10 of Table 1 show that 94.4 percent of policies generated by 

distinct RL-OPs for the power and road CIs are not feasible and implementable in practice. As in current 

practices, adopting and implementing these policies will result in some implementation bias. 

Table 1. Implementation bias of uncoordinated restoration policies generated for interdependent CIs.    

 

A comparison of actual and nominal rewards for the power CI in different disaster scenarios reveals that 

the actual additional service (e.g., extra fulfilled power demand) provided by uncoordinated policies is up to 

25.4% lower than their nominal predicted values (Figure 6a). This reduction ratio is called implementation 

bias of uncoordinated restoration for the power CI. Similarly, for the road CI, the actual extra service (e.g., 

reduction in total traffic time/cost of the road network) provided by uncoordinated policies can be up to 34.3% 

less than their nominal predicted values (Figure 6a). Aggregation of extra services provided by both power 

and road CIs (equal to the sum of the extra services provided by each CI) shows that the lack of coordination 

among CI decision-makers in the post-disaster restoration process leads to an implementation bias ranging 

from 2.3% to 31.4% (Figure 6b). These results are summarized in the following observation: 

Observation 1: The lack of coordination among decision-makers in the post-disaster restoration process of 

interdependent CIs results in infeasible policies in 94.4 percent of the time. Modification of these policies to 

make them implementable may lead to up to a 31.4% reduction in their expected service provision capabilities. 

These numerical results demonstrate that the lack of coordination among CI decision-makers imposes a 

substantial burden on the post-disaster resilience of communities facing potential disasters.  

5.3.2. Influential factors in the implementation bias of uncoordinated restoration policies. As depicted in 

Table 1 and Figure 7, the nominal extra services (called rewards) expected to be provided by the uncoordinated 

restoration policies increase with the number of recovery teams. This trend is observed across the nominal 

rewards of the power CI, road CI, and their aggregated rewards. The rationale behind this lies in the 

dependency of each disrupted link’s recovery time on the number of teams assigned to it. By increasing the 

number of recovery teams, more teams can be assigned to the links selected for restoration. Therefore, less 

time is needed to restore these links in the CIs, and links become operative more quickly. This swift availability 

of links enables the CIs to provide better services to the community. 
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(a) Reduction in the service provided by                                          (b) Reduction in the aggregated service 

the power and road CIs.                                                                     provided by both CIs. 

Figure 6. The implementation bias of the uncoordinated restoration policies.  

 
 

                                         (a) Individual rewards for                                                            (b) Aggregated rewards   

                                              the power and road CIs.                                                          for the entire community. 

Figure 7. The impact of the number of recovery teams on the nominal rewards of uncoordinated policies.  

However, a similar trend is not necessarily seen in the actual rewards of uncoordinated policies (refer to 

Columns 11-13 in Table 1). This happens because the implementation bias amount in each scenario depends 

on two sets of factors: (1) First Influential Factor Set (FIFS): This includes the number and recovery times of 

prerequisite links for the disrupted links within that scenario, and (2) Second Influential Factor Set (SIFS): 

This entails the number of recovery teams available for the CIs within that scenario. 

▪ Impacts of FIFS: In scenarios in which the number and recovery times for prerequisite links of important 

disrupted links (links whose disruption significantly reduce the service provision capability of the CI) are 

high, we expect a substantial implementation bias (e.g., Scenarios 7 with the aggregated implementation 

bias of 24.4% and Scenario 16 with the aggregated implementation bias of 31.4% in Table 1). This occurs 

because uncoordinated policies prioritize these important links in the restoration schedule. However, in 

practice, their restoration and activation in the network is contingent upon the recovery of their 

prerequisites in other CIs. The high number and extended recovery times of these prerequisites lead to 

significant restoration delays for these important links in modified policies. This delay significantly 

increases the implementation bias of these scenarios.  

▪ Impacts of SIFS: The restoration times of disrupted links depends on the number of teams assigned to those 

links. By increasing the number of recovery teams, more teams can be assigned to the links selected for 

recovery and average restoration times of links reduce. This reduction accelerates the restoration process 

of CIs. This means delays caused in the absence of prerequisite links will be shorter under uncoordinated 

policies, leading to a reduction in the implementation bias. 

According to this discussion, by increasing the number of recovery teams in a scenario, two outcomes 

may occur: 

▪ If the increase in the number of recovery teams does not significantly alter the restoration schedule of 

disrupted links, the impact of SIFS on reducing implementation bias is more substantial than the impact 

Reward value Reward value 

Number of 
teams 

Number of 
teams 

3  6  9 3  6  9 3  6  9 3  6  9 3  6  9 3  6  9 3  6  9 3  6  9 3  6  9 3  6  9 3  6  9 3  6  9 

Percentage Percentage 

Scenario Scenario 
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of FIFS on changing it. As a result, the implementation bias reduces by increasing the number of teams. 

In the tested scenarios, we can see this trend in Scenarios 7-9 and 16-18 (Column 16 in Table 1).     

▪ If the increase in the number of recovery teams significantly alters the restoration schedule of disrupted 

links, predicting its impact on the implementation bias becomes challenging. If this rescheduling prioritizes 

links with a high number and recovery times of prerequisites (since uncoordinated policies do not account 

for prerequisites), it may increase the implementation bias (as explained in the impacts of FIFS). On the 

other hand, increasing the number of recovery teams may reduce the implementation bias (as explained in 

the impacts of FIFS). In this case, the tradeoff between these factors determines the change (reduction or 

increase) in the implementation bias caused by the increased number of teams. In the tested scenarios, we 

can see this trend in Scenarios 1-3, 4-6, 10-12, and 13-15 (Column 16 in Table 1).           

In our numerical results (summarized in Table 1), the average implementation bias in the power CI for 

scenarios with 3 recovery teams is 11.9%. This average bias reduces to 5.8% and 5.7% for scenarios with 6 

and 9 teams, respectively. For the road CI, the average implementation bias for scenarios with 3, 6, and 9 

recovery teams is 14.0%, 6.7%, and 4.7%, respectively. The same trend persists when increasing the number 

of recovery teams involved in the restoration process of both CIs. The average aggregated bias for scenarios 

with 3, 6, and 9 recovery teams is 14.0%, 6.6%, and 5.0%, respectively. These findings can be summarized as 

follows: 

Observation 2: The implementation bias caused by the lack of coordination in the restoration process of 

interdependent CIs is expected to be more significant under the scarcity of recovery resources. This 

underscores the importance of coordination in disasters with limited recovery resources.  

5.3.3. Comparison of coordinated and uncoordinated restoration policies. In Table 2, Column 9 illustrates 

the additional power demand that can be met by the power CI over the 𝑇 horizon when implementing the 

coordinated restoration policy generated by the coupled RL-OPs. Column 10 displays the reduction in post-

disaster travel time/cost for travelers in the road network over the 𝑇 horizon when the restoration policy 

generated by the coupled RL-OPs is applied. Column 11 includes the aggregated rewards of implementing 

coordinated policies for both CIs. Columns 6, 7, and 8 provide the same information for the uncoordinated 

policies generated by the distinct RL-OPs. As shown in Columns 12 and 13, all the policies generated by the 

coupled RL-OPs are feasible and can be implemented without any modifications.   

The improvement percentage in the rewards resulting from coordinated policies relative to those 

generated by uncoordinated policies is displayed in Columns 14, 15, and 16 for the power CI, road CI, and 

both CIs, respectively. Column 17 shows the computational time for the coupled RL-OPs approach. This time 

represents the running time required to complete the iterations of the coupled RL-OPs approach. The iterations 

terminate either when the maximum number of iterations defined for the approach is reached or when the 𝑄 

values converge. Convergence occurs when the differences between 𝑄 values in two successive iterations 

become smaller than a small, predetermined threshold. 

 

 

 

 

 

 

 

  
 

 

 

 

 

 

 

Figure 8. The comparison of the aggregated rewards generated by the coordinated and uncoordinated policies.  
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Table 2. Actual rewards of coordinated and uncoordinated restoration policies.    

 

The comparison of aggregated rewards resulting from uncoordinated and coordinated restoration policies 

reveals that (see Figure 8): 

Observation 3: The implementation of coordinated policies in the restoration process of interdependent CIs 

consistently yields higher aggregated service for the community. The overperformance of the coordinated 

restoration policy can be as high as 27.9%. The average improvement caused by coordination in scenarios 

with 3, 6, and 9 recovery teams is 10.7%, 4.0%, and 3.4%, respectively. This implies that the average 

improvement caused by coordination is more significant in post-disaster circumstances with lower resource 

availability.  

5.3.4. Importance of coordination in large disaster scenarios with a high number of disruptions. As seen in 

Figure 8, the difference between the extra service provision capability of CIs restored using coordinated and 

uncoordinated policies is more significant in large disaster scenarios with numerous disrupted links (the 

difference between the orange and blue bars in Figure 8 grows as the number of disrupted links increases). The 

improvement due to coordination in large disaster scenarios with 18, 20, 22, and 24 disrupted links (averaged 

across different numbers of recovery teams) is 8.7%, 6.7%, 4.9%, and 13.5%, respectively. In contrast, these 

values drop to 0.8% and 1.8% in small scenarios with 6 and 14 disrupted links.   

A comparison of improvements due to coordination in the aggregated service/reward of CIs (see Column 

16 in Table 2) indicates that the above-mentioned trend is not strict and exhibits some fluctuations. These 

variations occur because the improvement is scenario-specific and depends on the prerequisites (the number 

of prerequisite links and their recovery times) of the disrupted links in that scenario. In scenarios in which links 

with challenging prerequisites (a high number of prerequisites and long recovery times) are disrupted, 

coordination yields more significant improvements. Overall, the rough trend of improvement due to 

coordination is an increasing function of scenario size. We can summarize these findings as follows:  

Observation 4: In large disaster scenarios, it is more likely that prerequisites of disrupted links in one CI will 

be disrupted in its interdependent CI. In such situations, coordinating restoration activities between CIs 

becomes crucial to ensure that the prerequisites of links selected for restoration in each decision-making stage 

of a CI have already been recovered in its interdependent CIs. This underscores the critical role of 

coordination in restoring interdependent CIs during severe disasters that cause extensive link disruption in 

their networks.   

5.3.5. Impact of coordination on the individual performance of each CI. An individual examination of the 

improvements made by coordinated restoration policies on the power and road CIs reveals interesting results. 

In some of the disaster scenarios, the coupled RL-OPs approach attempts to identify and propose 

feasible/executable restoration policies that are Pareto-optimal compared to the infeasible/un-executable 

restoration policies generated by distinct RL-OPs. For example, in Scenarios 2 and 3, the reward from the 
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coordinated policy of the coupled RL-OPs is 1.8% lower for the road CI but 7.7% higher for the power CI 

(refer to Columns 14 and 15 in Table 2). However, in other scenarios, the coordinated restoration policies 

generated by the coupled RL-OPs dominate the uncoordinated policies of distinct RL-OPs (see Figure 9). For 

example, in Scenario 16, the rewards from the coordinated restoration policy are 13.2% higher for the power 

CI and 29.8% higher for the road CI. Similarly, in Scenario 13, coordinated policies lead to a 5.9% higher 

reward for the power CI and a 3.0% higher reward for the road CI. These findings can be summarized as 

follows:  

Observation 5: The proposed coupled RL-OPs approach always generate feasible solutions. These solutions 

are optimal or at least pareto-optimal in comparison to the infeasible policies generated by distinct RL-OPs. 

     

 

Figure 9. The improvement percentage made by the coordinated restoration policies in the service provision 

capabilities of CIs.  

6. CLOSING REMARK 

In this paper, we developed a new approach called coupled RL-OPs, which leverages the decision-making 

strengths of optimization models through RL. This technique has been used to make restoration decisions for 

a set of disrupted interdependent CIs operating in a decentralized context. The proposed technique enables us 

to make several contributions to the field of CI resilience: (i) It facilitates coordinated restoration for a set of 

interdependent CIs controlled by separate decision-makers with limited intention for information sharing, (ii) 

It incorporates uncertain recovery times and dynamic numbers of recovery times in CI restoration planning, 

and (iii) The approach is flexible enough to make several restoration decisions (e.g., restoration scheduling 

and resource allocation) simultaneously.  

The coupled RL-OPs approach was applied to make restoration decisions for the road and power CIs in 

Sioux Falls, South Dakota, under several tornado scenarios. Numerical results demonstrate the effectiveness 

of the coupled RL-OPs in generating superior restoration policies that outperform uncoordinated policies 

neglecting interdependencies. The ineffectiveness of uncoordinated policies becomes more pronounced in the 

presence of insufficient restoration resources (e.g., when there are few recovery teams) in most scenarios. On 

average, the advantage of coordination is expected to be more significant in large-scale disasters with 

significant disruptions across the interdependent CIs of a community. The proposed approach clearly enhances 

the post-disaster resilience of communities and cities against disruptive events and disasters affecting their CIs.             

The suggested future research directions to expand this study are as follows: (1) Theoretical expansion: 

The computational time of the coupled RL-OPs increases exponentially with the size of problem instances. 

Enhancing the computational efficiency of this mechanism is possible by incorporating and integrating deep 

learning; (2) Application expansion: Beyond disaster management, the proposed coupled RL-OPs can be 

applied to make synergistic decisions in a wide range of decentralized yet interdependent systems, such as 

designing risk mitigation policies for interdependent yet autonomous companies within supply chains and 

devising infection control policies for a set of interdependent wards in healthcare facilities.             
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Appendix A 

Table A1. Notation used in the paper. 
Sets 

𝐺𝑃(𝑁𝑃, 𝐿𝑃) The power network as a directed graph with a set of nodes, 𝑁𝑃 and a set of links, 𝐿𝑃= 

{ 𝑙 = (𝑛, 𝑛́)} where 𝑛 and 𝑛́ ∈ 𝑁𝑃 

𝑁𝑆
𝑃 The set of supply nodes in the power network that generate power 

𝑁𝐼
𝑃 The set of intermediate nodes in the power network that transfer power 

𝑁𝐷
𝑃 The set of demand nodes in the power network, representing aggregated households in 

municipal sites 

𝑁𝑃 = 𝑁𝑆
𝑃 ∪ 𝑁𝐼

𝑃 ∪ 𝑁𝐷
𝑃 The set of all nodes in power network 

𝐺𝑅(𝑁𝑅, 𝐿𝑅) The road network as a directed graph with a set of nodes, 𝑁𝑅 and a set of links, 𝐿𝑅 

𝑁𝑅 The set of all nodes in the road network, representing urban sites 

𝐿𝑅 The set of all links in the road network, representing roads/highways connecting urban sites  

𝑁𝑂
𝑅 The set of all origin nodes for daily traffics in the road network 

𝑁𝐷
𝐼  The set of all intermediate nodes in the road network 

𝑁𝐷
𝑅 The set of all destination nodes for daily traffics in the road network 

𝑂𝐷 The set of all OD pairs in the road network, OD = {𝑜𝑑 = (𝑚, 𝑚́)|𝑚 ∈ 𝑁𝑂
𝑅 𝑎𝑛𝑑 𝑚́ ∈ 𝑁𝐷

𝑅} 

Π𝑙
𝑃 The set of prerequisite links in the road network that should be restored before restoring link 

𝑙 ∈ 𝐿𝑃 in the power network 

Π𝑙
𝑅 The set of prerequisite links in the power network that should be restored before restoring link 

𝑙 ∈ 𝐿𝑅 in the road network 

𝐿́𝑃 The set of all disrupted links in the power network  

𝐾𝑃 = {𝑘𝑃} The set of decision-making stages in the power MDP 

𝐿́𝑘
𝑃  A subset of disrupted links in the power network that can be selected for restoration at stage 

𝑘 

𝑆𝑘
𝑃 The set of potential states, including potential network configurations, in the power network 

at stage 𝑘 

𝐴𝑠𝑘
𝑃 = {𝑎𝑠𝑘

𝑃 } The set of actions, including all subsets of links that can be selected for restoration in state 𝑠𝑘, 

in the power network 

𝐿́𝑅  The set of disrupted links in the road network  

𝐾𝑅 = {𝑘𝑅} The set of decision-making stages in the road MDP 

𝐿́𝑘
𝑅  A subset of disrupted links in the road network that can be selected for restoration at stage 𝑘 

𝑆𝑘
𝑅 The set of potential states, including potential network configurations, in the road network at 

stage 𝑘 

𝐴𝑠𝑘
𝑅 = {𝑎𝑠𝑘

𝑅 } The set of actions, including all subsets of links that can be selected for restoration in state 𝑠𝑘, 

in the road network 

Parameters 

𝑃𝐶𝑛
𝑃 The daily power generation capacity at supply node 𝑛 ∈ 𝑁𝑆

𝑃 of the power network 

𝐷𝐷𝑛
𝑃 The daily power demand at demand node 𝑛 ∈ 𝑁𝐷

𝑃 of the power network 

𝑇𝐶𝑙
𝑃 The flow capacity of link 𝑙 ∈ 𝐿𝑃in the power network 

𝐹𝐶𝑙
𝑅 The traffic flow capacity of link 𝑙 ∈ 𝐿𝑅 in the road network 

𝑇𝐹𝑜𝑑
𝑅  The traffic demand of pair 𝑜𝑑 ∈ 𝑂𝐷 in the road network 

𝑇 The post-disaster restoration horizon 

𝜎(𝑛,𝑛́) The average restoration time of link 𝑙 = (𝑛, 𝑛́) 

𝜎(𝑛,𝑛́) The actual restoration time of link 𝑙 = (𝑛, 𝑛́) 

𝜎̌(𝑛,𝑛́) The lower bound for the restoration time of link 𝑙 = (𝑛, 𝑛́)  

𝜎̂(𝑛,𝑛́) The upper bound for the restoration time of link 𝑙 = (𝑛, 𝑛́) 

𝛽𝑙
𝑃 The binary parameter 𝛽𝑙

𝑃 is 1 if link 𝑙 ∈ 𝐿𝑃 is active in the power network; and 0 otherwise 

𝛼 The learning convergence speed in RL 

𝛾 The weight of future rewards in RL 

𝛽𝑙
𝑅  The binary parameter 𝛽𝑙

𝑅 is 1 if link 𝑙 ∈ 𝐿𝑅 is active in the road network; and 0 otherwise 

𝑡𝑡𝑙 The travel time/cost for a traveler moving through link 𝑙 ∈ 𝐿𝑅 in the road network 

𝑐𝑡𝑙
𝑃 The recovery accomplishment time for link 𝑙 ∈ 𝐿𝑃 in power network  

𝑐𝑡𝑙
𝑅 The recovery accomplishment time for link 𝑙 ∈ 𝐿𝑅 in power network 
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𝐶𝑙 The maximum number of teams that can work concurrently on link 𝑙 
𝜏 This index represents RL iterations 

𝑀 A big positive value 

Λ𝑘
𝑃  The number of recovery teams available in the power network at stage 𝑘  

Λ𝑘
𝑅  The number of recovery teams available in the road network at stage 𝑘 

λ The importance of the reward achievable in an interdependent CI for the decision-maker/agent 

of a CI. 

Variables 

𝜗́𝐿́𝑘
𝑃 The actual time needed to recover the links of set 𝐿́𝑘

𝑃  

𝜗
𝐿́𝑘
𝑃

∗  The minimum time needed to recover the links of set 𝐿́𝑘
𝑃  if average recovery times occur for 

the links of this set 

𝜃𝑘
𝑃(𝑎𝑠𝑘

𝑃 ) The reward of selecting decision 𝑎𝑠𝑘
𝑃  in state 𝑠𝑘 in the power MDP  

𝑍𝑃 The total unfulfilled demand at the demand nodes of the power network during a day 

𝑄(𝑠𝑘
𝑃 , 𝑎𝑠𝑘

𝑃 )  The maximum counter-cumulative improvement achievable from stage 𝑘 to the final stage 

|𝐾|, if decision 𝑎𝑠𝑘
𝑃  is selected by the power agent in state 𝑠𝑘

𝑃 at stage 𝑘 

𝜋𝑃∗ The optimal link restoration policy for the power network 

𝜗́𝐿́𝑘
𝑅 The actual time needed to recover the links of set 𝐿́𝑘

𝑅  

𝜗
𝐿́𝑘
𝑅

∗  The minimum time needed to recover the links of set 𝐿́𝑘
𝑅  if average recovery times occur for 

the links of this set 

𝜃𝑘
𝑅(𝑎𝑠𝑘

𝑅 ) The reward of selecting decision 𝑎𝑠𝑘
𝑅  in state 𝑠𝑘 in the road MDP 

𝑍𝑅 The total post-disaster travel time/cost in the road network 

𝑄(𝑠𝑘
𝑅 , 𝑎𝑠𝑘

𝑅 )  The maximum counter-cumulative improvement achievable from stage 𝑘 to the final stage 

|𝐾|, if decision 𝑎𝑠𝑘
𝑅  is selected by the road agent in state 𝑠𝑘

𝑅 at stage 𝑘 

𝜋𝑅∗ The optimal link restoration policy for the road network 

ψ𝑘
𝑃 The time at which the restoration decisions are made in stage 𝑘 of the power MDP 

ψ𝑘
𝑅 The time at which the restoration decisions are made in stage k of the road MDP 

Ω𝑘
𝑃,𝜏 The maximum 𝑄 values that are achievable in states of stage 𝑘 in the power MDP 

Ω𝑘
𝑅,𝜏 The maximum 𝑄 values that are achievable in states of stage 𝑘 in the road MDP 

Decision Variables 

𝑤𝑙
𝑃 The number of recovery teams assigned to link 𝑙 ∈ 𝐿́𝑘

𝑃  in the power network 

𝑈𝐷𝑛
𝑃 The daily demand that cannot be fulfilled at node 𝑛 ∈ 𝑁𝐷

𝑃 in the power network 

𝑥
𝑙=(𝑛́,𝑛⃗⃗ ⃗⃗ ⃗⃗  )

𝑃   The total power flow from node 𝑛́ toward node 𝑛 in the power network 

𝑦
𝑙=(𝑛́,𝑛⃗⃗ ⃗⃗ ⃗⃗  )

𝑃  1 if the movement direction of power is from node 𝑛́ toward node 𝑛, and 0 otherwise 

𝑏𝑙
𝑃 The reactance of link 𝑙 ∈ 𝐿𝑃 in the power network 

𝜑𝑛 The phase angle of node 𝑛 ∈ 𝑁𝑃 in the power network  

𝑤𝑙
𝑅  The number of recovery teams assigned to link 𝑙 ∈ 𝐿́𝑘

𝑅  in the road network 

𝑥𝑙
𝑅,𝑜𝑑  The traffic flow through link 𝑙 related to traffic demand of OD pair 𝑜𝑑 in the road network 

 

Appendix B 

Initially, we replace objective function (1) with “Min 𝜗𝐿́𝑘
𝑃” and incorporate constraint (B2) into the model: 

𝑀𝑖𝑛       𝜗𝐿́𝑘
𝑃                                                                                                                                               (B1) 

S.T.       𝜗𝐿́𝑘
𝑃 ≥ 

𝜎̅𝑙

𝑤𝑃
𝑙
                                                ∀𝑙 ∈ 𝐿́𝑘

𝑃                                                                        (B2) 

𝑤𝑃
𝑙 ≤ 𝐶𝑙                                                  ∀𝑙 ∈ 𝐿́𝑘

𝑃                                                                        (B3) 

∑ 𝑤𝑃
𝑙 ≤ Λ𝑘

𝑃
𝑙∈𝐿́𝑘

𝑃                                                                                                                            (B4) 

𝑤𝑃
𝑙 ≥ 0  and integer                               ∀𝑙 ∈ 𝐿́𝑘

𝑃                                                                        (B5)                      

   

Next, to linearize the model, we define the set of all possible numbers of teams that can be assigned to 

link 𝑙 as Φ𝑙 = {1, 2, 3, … , 𝐶𝑙}. We introduce a binary variable 𝑣𝜃
𝑙 , where 𝑣𝜃

𝑙 = 1 if 𝜃 ∈ Φ𝑙 crews are assigned 

to link 𝑙, and 𝑣𝜃
𝑙 = 0 otherwise. Consequently, we replace the term 

𝜎̅𝑙

𝑤𝑃
𝑙
 with (

𝜎̅𝑙

1𝑣1
𝑙+2𝑣1

𝑙+⋯+𝐶l𝑣𝐶l
l ) and constraint 
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∑ 𝑤𝑃
𝑙 ≤ Λ𝑘

𝑃
𝑙∈𝐿́𝑘

𝑃  with ∑ ∑ 𝜃𝜃∈Φ𝑙𝑙∈𝐿́𝑘
𝑃 𝑣𝜃

𝑙 ≤ Λ𝑘
𝑃 . Additionally, to ensure that exactly one option is selected as the 

number of assigned crews to each link, we incorporate constraint (B9) into the model: 

𝑀𝑖𝑛        𝜗𝐿́𝑘
𝑃                                                                                                                                              (B6) 

S.T.        𝜗𝐿́𝑘
𝑃 ≥ 

𝜎̅𝑙

1𝑣1
𝑙+2𝑣1

𝑙+⋯+𝐶l𝑣𝐶l
l                                 ∀𝑙 ∈ 𝐿́𝑘

𝑃                                                                  (B7) 

 ∑ ∑ 𝜃𝜃∈Φ𝑙𝑙∈𝐿́𝑘
𝑃 𝑣𝜃

𝑙 ≤ Λ𝑘
𝑃                                                                                                                (B8) 

∑ 𝑣𝜃
𝑙

𝜃∈Φ𝑙
= 1                                               ∀𝑙 ∈ 𝐿́𝑘

𝑃                                                                   (B9) 

𝑣𝜃
𝑙 ∈ {0,1}                                                    ∀𝑙 ∈ 𝐿́𝑘

𝑃  and ∀𝜃 ∈ Φ𝑙                                          (B10) 

 

We proceed by redefining constraint (B7) as [1(𝜗
𝐿′𝑘 × 𝑣1

𝑙) + 2 (𝜗
𝐿′𝑘 × 𝑣2

𝑙 ) + ⋯+ 𝐶𝑙(𝜗𝐿′𝑘 × 𝑣𝐶l

𝑙 )] ≥ 𝜎̅𝑙, 

and replacing 𝜗
𝐿′𝑘 × 𝑣θ

𝑙  with 𝑣́𝜃
𝑙 . Since 𝜗

𝐿′𝑘 is continuous and 𝑣θ
𝑙  is binary, 𝑣́𝜃

𝑙  must be either 0 or 𝜗
𝐿′𝑘. To 

enforce this condition, we introduce three additional constraints, (B13)-(B15), to the model. The resulting 

linearized model is as follows:         

𝑀𝑖𝑛        𝜗𝐿́𝑘
𝑃                                                                                                                                            (B11) 

S.T.       1. 𝑣́1
𝑙 + 2. 𝑣́2

𝑙 + ⋯+ 𝐶𝑙. 𝑣́𝐶l

𝑙 ≥ 𝜎̅𝑙                     ∀𝑙 ∈ 𝐿́𝑘
𝑃                                                              (B12) 

𝑣́𝜃
𝑙 ≤ 𝑀. 𝑣θ

𝑙                                                       ∀𝑙 ∈ 𝐿́𝑘
𝑃 and ∀𝜃 ∈ Φ𝑙                                       (B13) 

𝑣́𝜃
𝑙 ≤ 𝜗

𝐿′𝑘 + 𝑀(1 − 𝑣θ
𝑙 )                                 ∀𝑙 ∈ 𝐿́𝑘

𝑃  and ∀𝜃 ∈ Φ𝑙                                       (B14) 

𝑣́𝜃
𝑙 ≥ 𝜗

𝐿′𝑘 − 𝑀(1 − 𝑣θ
𝑙 )                                 ∀𝑙 ∈ 𝐿́𝑘

𝑃  and ∀𝜃 ∈ Φ𝑙                                       (B15) 

∑ 𝑣𝜃
𝑙

𝜃∈Φ𝑙
= 1                                                 ∀𝑙 ∈ 𝐿́𝑘

𝑃                                                              (B16) 

 ∑ ∑ 𝜃𝜃∈Φ𝑙𝑙∈𝐿́𝑘
𝑃 𝑣𝜃

𝑙 ≤ Λ𝑘
𝑃                                                                                                             (B17) 

𝑣𝜃
𝑙 ∈ {0,1} and 𝑣́𝜃

𝑙 ≥ 0                                   ∀𝑙 ∈ 𝐿́𝑘
𝑃  and ∀𝜃 ∈ Φ𝑙                                       (B18) 

 


