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Abstract 

Using data over 1934-2023, we find that climate change, proxied by temperature shock, predicts 

equity market crashes in the coming one-, two, and three-year horizon. The estimates, albeit 

weak in statistical significance, are of considerable economic significance. A one-standard-

deviation increase in the shock elevates the probability of an aggregate market crash within 

subsequent two years by more than 11%. There is seemingly asymmetry in the predictive 

relation – a shock in the top (bottom) 10 percentile increases (decreases) the market crash 

probability. The results hold at both the aggregate and the industry levels and are more 

pronounced at the industry level. 
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1. Introduction 

Climate change affects economic activity and human society profoundly (e.g., Stern, 2007; 

Nordhaus, 2010; Hsiang, Burke, and Miguel, 2013; Dell, Jones, and Olken, 2014). A stream of 

the climate economics/finance literature is delving into the effects of climate change on 

aggregate consumption and equity valuations. A climate shock not only immediately reduces 

consumption but also reduces future expected consumption growth (e.g., Dell, Jones, and Olken, 

2012; Burke, Hsiang, and Miguel, 2015; Bansal, Kiku, and Ochoa, 2019). In the spirit of the 

long-run risk model, Bansal, Kiku, and Ochoa (2019) argue that rising temperature affects 

future long-term growth and risk, aggregate wealth, current asset valuations, and current returns. 

Moreover, a climate shock, the extreme one in particular, brings substantial uncertainty about 

outcomes of business performance and reactions of financial markets to the shock (e.g., Barro 

2006; Kruttli, Tran, and Watugala, 2023). On the other hand, thanks to the increasing awareness 

to climate issues, economic agents may proactively take actions to mitigate the adverse effects 

of climate change. Furthermore, as weather conditions affect individuals’ mood, sentiment and 

behavior, climate change also influences investor activities and asset prices nontrivially (e.g., 

Saunders, 1993; Hirschleifer and Shumway, 2003; Kamstra, Kramer, and Levi, 2003). In a 

nutshell, whether and how climate change affects financial asset valuations and financial market 

performance remain elusive. 

In this paper we investigate the relations between climate change and financial market 

crash. Specifically, we hypothesize that climate shock predicts financial market crashes in the 

subsequent one to three years. Our conjecture is based on both theoretical asset pricing models 

embedding climate risk and empirical evidence that climate change impacts long-run growth, 

risk, and investor sentiment. 

In implementation, we follow the literature to calculate temperature shock and use it as a 

proxy for climate change (e.g., Dell, Jones and Olken, 2009 & 2012; Addoum, Ng and Ortiz-
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Bobea, 2020 & 2023). We view a market crash to occur if the monthly index return in excess 

of the risk-free rate is lower than -20%. In similar spirits to Baron and Xiong (2017), we define 

three equity market crash indicators that are respectively equal to one if the monthly excess 

index return is less than -20% for any month within the subsequent one-, two-, and three-year 

horizon, and to zero otherwise. We then predict equity market crash with climate shock and 

conduct both linear probability model estimations and Probit model estimations using data over 

the 1934-2023 period. 

Our baseline finding is that climate change is positively associated with aggregate market 

crashes in the subsequent one to three years. The estimates are somewhat weak in statistical 

significance but of considerable economic significance. Using the estimates obtained with the 

climate shock as the sole predictor, we infer that a one-standard-deviation increase in the shock 

heightens the aggregate market crash probability by about 26.9%, 23.1%, and 9.0% (relative to 

the average crash probability) in the one-, two-, and three-year horizon, respectively. Based on 

the estimates obtained after controlling for such usual equity premium predictors as dividend 

yield, term spread, default spread, and stock variance in the regressions, a one-standard-

deviation increase in the shock elevates the probability of an aggregate market crash within the 

coming one- and two-year horizon by about 13.5% and 11.5%, respectively. 

There exits striking asymmetry for the shock in the left and right tails to predict aggregate 

market crashes. If a climate shock exceeds the 90th percentile threshold, the probability of an 

aggregate market crash increases by about 27%, 20%, and 8% relative to the average probability 

in the subsequent one-, two, and three-year horizon, respectively. In contrast, if a climate shock 

is below the 10th percentile threshold, the probability of a market crash in the coming one-, two, 

and three-year horizon decreases by about 40%, 26%, and 11% relative to the average 

probability, respectively. This asymmetry shows that abnormally hot weather and abnormally 

cold weather affect the aggregate equity market crash risk in qualitatively opposite ways. 
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We proceed to assess the predictive relation between climate shock and industry market 

crashes and find similar results. That is, climate shock positively predicts industry market 

crashes in the coming one to three years. The estimates have much stronger statistical 

significance than the estimates for the aggregate level and continue to carry considerable 

economic significance. There also exists seemingly asymmetry in predicting industry market 

crashes with climate shock in the left tail versus climate shock in the right tail. A climate shock 

in the top (bottom) 10 percentile is associated with increased (reduced) likelihood of an industry 

market crash in the subsequent one to three years. Notably, compared to the aggregate-level 

estimates, the industry-level estimates are more pronounced, reflecting that the aggregate 

market is well diversified and tends to experience less crashes than industries. 

Our study contributes to the climate finance literature. A significant part of the literature 

examines the impacts of climate change on asset prices and investor activities (see, e.g., Giglio, 

Kelly, and Stroebel (2021) for a survey of the literature). To our best knowledge, we are the 

first to assess the relation between climate change and financial market crashes. As financial 

market crashes unlikely lead to abnormal temperature, our results point to a causal effect of 

climate shock on financial market crises. 

Our analysis demonstrates that climate shock predicts future market crashes with 

considerable economic significance. In developing early warning systems for financial crises, 

researchers and policy makers have used a few early indicators such as asset price growth and 

volatility, credit spreads, credit-default swap spread on banks, and growth of bank credit to 

GDP (e.g., Schularick and Taylor, 2012; Krishnamurthy and Muir, 2016; Baron and Xiong, 

2017; Hennig, Iossifov, and Varghese, 2023). Our analysis adds to this line of study by 

suggesting abnormal temperature as another potential predictor for future financial crises. 

Our results have implications for both practitioners and policy makers. Understanding 

climate change and its impacts on financial market crises is of considerable importance to the 
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development of investment strategy and risk management. Our analysis also informs the 

optimal policy response to climate change, global warning in particular. 

The remainder of the paper proceeds as follows. Section 2 describes data and variable 

construction. Section 3 explains the empirical method. Section 4 presents empirical results. 

Section 5 concludes. 

 

2. Data and Variable Construction 

The data consist of several types of variables, namely, climate shock, equity index returns, and 

various variables known to predict the equity premium. 

Following earlier works, our study focuses on temperature shock as the proxy for climate 

change (see, e.g., Dell, Jones and Olken, 2009 & 2012; Addoum, Ng and Ortiz-Bobea, 2020 & 

2023). From the U.S. National Ocean and Atmospheric Administration’s (NOAA) National 

Centers for Environmental Information (NCEI), we obtain monthly average temperature for the 

contiguous U.S.  (excluding Alaska and Hawaii) from January 1895 to December 2023. We 

construct the monthly US-wide temperature shock (SHK) as the US average temperature in a 

month minus its past 40-year average of the same month.1 

Our study uses the S&P 500 index as a proxy for the US equity market. Stock returns are 

the continuously compounded returns on the S&P 500 index, including dividends. The risk-free 

rate is the Treasury Bill rate. In similar spirits to Baron and Xiong (2017), we respectively 

define a crash indicator for one, two, and three years ahead for the market index, which equals 

one if the monthly index return in excess of the risk-free rate is less than -20% for any month 

within the one-, two-, and three-year horizon, and zero otherwise.2 We denote the total excess 

 
1 NCEI calculates anormal temperature for a month as the difference between the month’s temperature and the 

average temperature in the same months over 1901-2000. To avoid the look-ahead bias, we stochastically detrend 

the rolling averages of historic temperature to construct the temperature shock in our analysis.   
2 In practice, markets are said in bear territory if the market declines by 20% or more off its recent high. We thus 

choose -20% as the threshold to define the market crash indicators. We also experiment with other cutoffs like -

10%, -15%, -25%, -30% and obtain qualitatively similar results.   
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returns in the one-, two-, and three-year horizon by r_1y, r_2y, and r_3y, respectively, and the 

corresponding crash indicators are D_1y, D_2y, and D_3y. For our study at the disaggregate 

level,  we use the returns on the 10 industry portfolios defined in Fama and French (1997). 

Similarly, for each industry we define three industry crash risk indicators if the monthly 

continuously compounded return of the industry in excess of the risk-free rate is less than -20% 

for any month within the one-, two-, and three-year horizon, and zero otherwise. 

We use the following control variables that are known to predict the equity premium (e.g., 

Goyal and Welch, 2008): dividend yield, term spread, default spread and stock variance. 

Dividend yield (DY) is the log of the 12-month moving sums of dividends paid on the S&P 500 

index minus the log of the one-period-lagged price level of the index. The term spread (TMS) 

is the difference between the ten-year Treasury bond yield and the Treasury bill yield. The 

default spread (DEF) is the yield spread between Moody’s Baa- and Aaa- rated bonds. Stock 

variance (SVAR) is the sum of squared daily returns of the S&P 500 index. We obtain the S&P 

500 index return, risk-free rate, dividend and price on the index, bond yields, and stock variance 

from Professor Goyal’s website. We also control for investor sentiment in some of the 

regressions. We use Baker and Wurgler’s (2006) investor sentiment index orthogonalized to 

macroeconomic variables (SENT) and obtain the series from Professor Wurgler’s website.  

Our sample spans the period from January 1934 to December 2023 (1,080 months), with 

the exception that the sentiment measure starts from January 1966. Table 1 lists the summary 

statistics in Panel A and the pairwise correlations in Panel B.  

The climate shock measure, SHK, has a mean of 0.37 (Fahrenheit degrees) and a median 

of 0.32, showing that the U.S. temperature has been rising over the 1934-2023 period.3 The 

three market crash measures, D_1y,  D_2y, and D_3y, have their respective mean of 0.03, 0.07, 

and 0.09, suggesting that about 3%, 7%, and 9% of months experience a loss in returns of 20% 

 
3 As a reference, the abnormal temperature provided by NCEI has mean of 0.53, median of 0.50, and standard 

deviation of 2.12 during 1934-2023. 
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or more within a one-, two- and three-year horizon, respectively. Notably, the climate shock 

variable, SHK, is positively and significantly correlated with the three market crash  measures, 

with a correlation coefficient equal to 0.05 for D_1y,  0.06 for D_2y, and 0.03 for D_3y, 

respectively. The positive correlations provide preliminary evidence for the relation between 

climate shock and market crash, which we analyze in detail below. 

 

3. Empirical method 

To examine whether climate shocks predict market crashes, we implement both a linear 

probability model (LPM) and a probit model. Specifically, in the linear probability model 

(LPM), we express the probability of a market crash (𝑃(𝐶𝑟𝑎𝑠ℎ𝑡 = 1)) as a liner function of 

climate shocks (𝐶𝑙𝑖𝑚𝑎𝑡𝑒𝑆ℎ𝑜𝑐𝑘𝑡) and other control variables (𝑥𝑡). The model is specified as 

follows: 

  𝑃(𝐶𝑟𝑎𝑠ℎ𝑡+𝑗 = 1|𝐶𝑙𝑖𝑚𝑎𝑡𝑒𝑆ℎ𝑜𝑐𝑘𝑡 , 𝑥𝑡) =  𝛼 + 𝛽𝐶𝑙𝑖𝑚𝑎𝑡𝑒𝑆ℎ𝑜𝑐𝑘𝑡 + 𝛾𝑥𝑡 , (1) 

where P(Crasht+j=1) is the probability of an equity market crash in period t+j,  ClimateShockt 

represents the climate shock variable at time t, 𝑥𝑡 is a vector of control variables at time t, 𝛼 is 

the intercept, 𝛽  and 𝛾  are coefficients representing the effect of climate shocks and control 

variables, respectively. 

In the LPM, 𝛽  represents the change in the probability of a market crash associated with 

a one-unit change in the climate shock variable. However, since this model is linear, it may 

produce predicted probabilities that lie outside the [0,1] range, which is a limitation of the LPM. 

To circumvent the limitation of LPM, we consider the probit model. In the probit model, 

the probability of a market crash is modeled as a nonlinear function of climate shocks, using 

the cumulative distribution function (CDF) of a standard normal distribution. The model is 

specified as follows: 

𝑃(𝐶𝑟𝑎𝑠ℎ𝑡 = 1|𝐶𝑙𝑖𝑚𝑎𝑡𝑒𝑆ℎ𝑜𝑐𝑘𝑡 , 𝑥𝑡) =  Φ(𝛼 + 𝛽𝐶𝑙𝑖𝑚𝑎𝑡𝑒𝑆ℎ𝑜𝑐𝑘𝑡 + 𝛾𝑥𝑡).  (2) 
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Here, Φ(⋅) is the CDF of the standard normal distribution, which maps any real-valued input 

to a value between 0 and 1, the other variables are defined as in the LPM.  

In the probit model, the relationship between climate shocks and the probability of a 

market crash is nonlinear, and the use of the CDF ensures that the predicted probabilities are 

always within the [0,1] range. The coefficient 𝛽 in this context affects the argument of the CDF, 

rather than directly affect the probability. Additionally, the probit model captures potential non-

linearities in the relationship between climate shocks and crash probability, offering a more 

theoretically sound and accurate estimation. To interpret the marginal effect of 

𝐶𝑙𝑖𝑚𝑎𝑡𝑒𝑆ℎ𝑜𝑐𝑘𝑡 on the crash probability, we calculate the derivative of the CDF with respect 

to 𝐶𝑙𝑖𝑚𝑎𝑡𝑒𝑆ℎ𝑜𝑐𝑘𝑡, which is: 

𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝐸𝑓𝑓𝑒𝑐𝑡 =  ϕ(𝛼 + 𝛽𝐶𝑙𝑖𝑚𝑎𝑡𝑒𝑆ℎ𝑜𝑐𝑘𝑡 + 𝛾𝑥𝑡)𝛽,    (3) 

where ϕ(⋅) is the probability density function (PDF) of the standard normal distribution. 

 

4. Results 

4.1 Predicting Aggregate Market Crashes 

We first examine whether climate shock has power in predicting future aggregate equity market 

crashes. To do so, we regress the indicators (D_1y, D_2y, or D_3y) for aggregate market crashes 

within the future one, two, and three years against climate shock (SHK) and a set of control 

variables. 

Table 2 reports the results from estimating a linear probability model of the regression. In 

Columns (1)-(3), the regressions do not include other control variables. The coefficient 

estimates on SHK are all positive. When D_1y is the dependent variable, the estimate is 0.004 

and statistically significant at the 10% level. When D_2y is the dependent variable, the estimate 

equals 0.008 and is again statistically significant at the 10% level. When D_3y is the dependent 

variable, the  estimate equals 0.004 and becomes not statistically significant at the conventional 
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level. Despite the weak statistical significance, these estimates are economically significant. 

Using the summary statistics in Table 1, a one-standard-deviation increase in SHK is associated 

with an increase in the probability of aggregate equity market crashes in the coming one, two, 

and three years by 0.81, 1.62, and 0.81 percentage points, respectively. These quantities 

represent an increase in the aggregate market crash probability by 26.93%, 23.09%, and 8.98% 

relative to the average crash probability in the coming one-, two-, and three-year horizon, 

respectively.  

In Columns (4)-(6) of Table 2, the regressions include a set of control variables such as 

dividend yield (DY), term spread (TMS), default spread (DEF), and stock variance (SVAR). All 

the coefficient estimates on SHK become statistically insignificant, but they remain 

economically significant for D_1y and D_2y. A one-standard-deviation increase in SHK is 

associated with an increase in the aggregate market  crash probability by 13.47% and 11.54% 

in the coming one and two years, respectively. It is worth noting that the coefficient estimates 

on both TMS and DEF, DEF in particular, are all positive and strongly significant in the three 

regressions. We suspect that the loss of statistical significance of SHK in the regressions is due 

to that DEF sucks up much of the information content of SHK for future aggregate market  

crashes. To verify this conjecture, we run a predictive regression of SHK for DEF in the coming 

one, two, and three years. Table 3 reports the predictive regression results, with Columns (1)-

(3) and Columns (4)-(6) respectively excluding and including the set of above control variables. 

The results in Table 3 lend support to our conjecture. When no control variables are 

included in the regressions, the estimated coefficients on SHK are all positive and statistically 

significant, respectively at the 1% level for predicting one- and two-year-ahead DEF and at the 

10% level for three-year-ahead DEF. The results largely hold when the regressions include the 

set of control variables. These estimates suggest that climate shock significantly increases 

future default spread. As a market crash is often accompanied by and/or preceded by high 
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default spread, the results in Table 2 and Table 3 combined inform one channel via which 

climate shock predicts future market crash, i.e., by driving up the default spread. 

Because the dependent variables are aggregate market  crash indicators, which are binary-

response variables, we also conduct probit estimations of the predictive regressions. Table 4 

reports the estimated marginal effects of the probit regressions. In Columns (1)-(3) whereas 

SHK is the sole predictor, the coefficient estimates are all positive, and the estimate is 

statistically significant at the 5% level when predicting aggregate market  crashes in the coming 

two years.  In Columns (4)-(6) whereas the regressions include control variables, the coefficient 

estimates remain positive for D_1y and D_2y, and none of the estimates are statistically 

significant.  Nevertheless, the probit estimation results are quantitatively very similar to the 

LPM estimation results. Therefore, like the LPM estimates, the Probit estimates are 

economically significant despite the lack of statistical significance. 

It is well documented that extreme climate shock wreak havoc than otherwise. We thus 

go one further step to investigate the information role of extreme climate shock for future 

aggregate market  crashes. We define two extreme climate shock indicators, one for the left tail 

and the other for the right tail of the distribution of climate shock. Specifically, SHK90D takes 

a value of one if SHK is larger than the 90th percentile cutoff of 3.81, and 0 otherwise; SHK10D 

takes a value of one if SHK is smaller than the 10th percentile cutoff of -3.21, and 0 otherwise. 

We then replace SHK with the two extreme shock indicators in the predictive regressions. 

Table 5 reports the marginal effect estimates of the Probit regressions that predict the 

future aggregate market crashes with the two extreme shock indicators. There exists a 

seemingly asymmetry in the predictive relations between the two extreme climate shocks and 

subsequent aggregate market crashes. Regardless of inclusion of control variables in the 

regressions, the estimated marginal effects on SHK90D are all positive but not statistically 

significant across the six columns, and the estimated marginal effects on SHK10D are all 
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negative across the six columns and are statistically significant in three out of the six columns. 

In addition to the opposite signs, the magnitude of the estimated marginal effects on SHK10D 

is uniformly larger than the magnitude of the corresponding marginal effect estimates on 

SHK90D. 

Despite the lack of statistical significance for most of the marginal effect estimates, 

especially those on SHK90D, all the estimates are economically significant. Take a look at the 

estimates in Column (4), whereas control variables are included in predicting the one-year-

ahead crash risk. The estimate on SHK90D is 0.008, indicating that the hit of an extreme 

increase in temperature elevates the probability of an aggregate market  crash in the coming 

one year by 0.8 percentage points, which represents an almost 27% jump in the crash probability 

(relative to the average aggregate market  crash probability of 3%). The estimate on SHK10D 

is -0.012, meaning that the incidence of an extreme drop in temperature decreases the 

probability of an aggregate market crash in the coming one year by 1.2 percentage points, which 

represents an almost 40% drop in the crash probability (again relative to the average probability 

of aggregate market  crashes of 3%). The estimates in Column (5) imply that a climate shock 

in the top (bottom) 10 percentile increases (decreases) the probability of aggregate market crash 

in the subsequent two-year horizon by 20% (25.7%) relative to the average market crash 

probability. The estimates in Column (6) suggest that a climate shock in the top (bottom) 10 

percentile raises (reduces) the probability of aggregate market crash in the coming three-year 

horizon by 8% (11%). The corresponding economic significance with the marginal effect 

estimates in Columns (1)-(3) has even greater magnitude.  

The opposite signs on the estimates of SHK90D and SHK10D deserve a further discussion. 

The positive estimates on SHK90D imply that extreme rises in temperature tend to increase the 

chance of an aggregate market  crash in the coming few years. The negative estimates on 

SHK10D suggest the opposite – extreme drops in temperature reduce the probability of an 
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aggregate market  crash in the coming few years. Extreme increases (decreases) in temperature, 

i.e., at least 3.81 degrees higher (3.21 degrees lower) than the normal temperature in our case,  

usually point to abnormally hot (cold) weather. Therefore, one way to rationalize the opposite 

predictive relations between aggregate market crashes and the bifurcating temperature shocks 

is that abnormally hot and cold weather affect human psychology and behavior differently. In 

an abnormally hot weather, investors can become (over)optimistic/confident and trade, 

purchase in particular, stocks aggressively [e.g., Hirschleifer and Shumway, 2003]. This drives 

up current stock prices, leading to overpricing of assets and thus aggregate market  crashes in 

the future. To the contrary, when weather is abnormally cold, investors can become moody and 

(over-)pessimistic and trade less and/or sell more intensively [e.g., Saunders, 1993; Kamstra, 

Kramer, and Levi, 2003; deHaan, Madsen, and Piotroski, 2017]. As a result, current stock prices 

are depressed in abnormally cold weather and, in turn, the likelihood of aggregate market  

crashes in the future declines. 

 

4.2 Predicting Industry Market Crashes 

In the above subsection we look at the predictive relation between climate shock and market 

crashes at the aggregate level. In this subsection we assess the predictive relation at the 

disaggregate level. For this purpose, we zero in on market crashes at the industry level. We use 

the Fama-French 10 industry returns, and we follow the construction of the aggregate market 

crash indicators to define three market crash indicators for each industry. 

Table 6 reports the results of estimating the panel probit model for industry market crashes 

in the coming one-, two-, and three-year horizons. We include in all regressions industry-fixed 

effects to control for time-invariant industry characteristics. The fixed effects also allow us to 

control for substantial across-industry variations in the regressions. In Columns (1)-(3), climate 

shock is the sole crash predictor. The three coefficient estimates on SHK are all positive, 
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respectively equal to 0.052, 0.049, and 0.048 for the industry market crashes in the one-, two, 

and three-year horizons. Moreover, the three estimates on SHK are all statistically significant 

at the 1% level. In Columns (4)-(6), the regressions also include the four control variables: DY, 

TMS, DEF and SVAR. The three estimates on SHK remain positive and statistically significant 

at the 1% level. The results show that climate shock increases industry market crashes in the 

upcoming few years. 

For better interpretation of the results, we present the marginal effect estimates of the 

panel probit model in Table 7. Consistent with the parameter estimates, all the estimated 

marginal effects are positive and strongly significant at the 1% level, regardless of controlling 

for other predictors in the regressions. Without control variables, the estimated marginal effects 

are 0.006, 0.009, and 0.011 for the industry market crashes in the coming one-, two-, and three-

year horizons, respectively. After including the control variables, the estimated marginal effects 

are 0.004, 0.005, and 0.006 for the industry market crashes in the coming one-, two-, and three-

year horizons, respectively. These estimates are economically significant. Using the latter set 

of estimates, we infer that a one-standard-deviation increase in SHK raises the probability of an 

industry market crash in the next one, two, and three years by 0.81, 1.01, and 1.21 percentage 

points, respectively. Relative to the average industry market crash probabilities of 9.87%, 

16.2%, and 21.5% in the one-, two-, and three-year horizon, these figures translate into  

increases in the probability of an industry market crash in the corresponding horizons by 8.19%, 

6.23%, and 5.51%, respectively. We obtain larger values in the economic significance with the 

former set of marginal effect estimates.  

It is worth noting that the marginal effect estimates are considerably larger for industry 

market crashes as reported in Table 7 than the marginal effect estimates for aggregate market 

crashes as reported in Table 4. This result makes sense because the aggregate market is well 
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diversified and exhibits smaller swings, hence experiences less crashes, than industries do. In 

other words, climate shock has much larger effects on market crashes at the industry level. 

We proceed to assess whether the two tails of the climate shock predict industry market 

crashes in a symmetrical way. We replace SHK with the two indicators for the left and right 

tails, SHK10D and SHK90D, in the predictive models and conduct Probit estimations. Table 8 

reports the marginal effect estimates.  

There exists a seemingly asymmetry in the roles of the left and right tails of climate shock 

in predicting the industry market crashes in the coming one-, two-, and three-year horizon. 

Across the six columns of this table, the estimated coefficients on SHK90D are all positive and 

statistically significant at the 10% or stronger level, and the estimated coefficients on SHK10D 

are all negative and statistically significant at the 1% level. The results show that extreme rises 

in temperature significantly increase the probability of industry market crashes in the 

subsequent few years, and the extreme decreases in temperature significantly reduce the 

industry crash risk in the following few years.  

The marginal effect estimates are economically significant. Use the estimates in Columns 

(4)-(6) as illustration. Relative to the “normal” level of temperature shock, i.e., ranging from 

the 10th percentile to the 90th percentile of the shock distribution, a climate shock in the top 10th 

percentile will raise the probability of industry market crashes in the coming one-, two-, and 

three-year horizon by 2.3, 3.3, and 3.0 percentage points, respectively. These figures represent 

a respective 23.30%, 20.37%, and 13.64% jump in the crash probabilities (relative to the 

average industry market crash probabilities) in the three horizons.  Similarly, relative to the 

“normal” level of temperature shock, a climate shock in the bottom 10th percentile will reduce 

the probability of industry market crashes in the coming one-, two-, and three-year horizon by 

3.1, 3.4, and 4.3 percentage points, respectively. Relative to the average crash probabilities, 
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these figures represent a respective 31.41%, 20.99%, and 19.55% decline in the probability of 

an industry market crash in the three horizons. 

When combining the results in Tables 5 and 7, we infer that the asymmetric effects of the 

climate shock in the left and right tails on future market crash risk are stronger at the industry 

level than at the aggregate level. This is again consistent with the fact that the aggregate market 

is well diversified and tends to crash less than industries. 

 

4. Conclusions 

In this paper, we assess whether climate change, proxied by temperature shock, predicts 

financial market crashes in the coming one-, two-, and three-year horizon. Using data over the 

1934-2023 period, we find that climate change is positively associated with aggregate market 

crashes within the subsequent three years. The estimates, albeit somewhat weak in statistical 

significance, are of considerable economic significance. Using the estimates obtained with the 

climate shock as the sole predictor, we infer that a one-standard-deviation increase in the shock 

heightens the aggregate market crash probability by about 26.9%, 23.1%, and 9.0% (relative to 

the average crash probability) in the one-, two-, and three-year horizon, respectively. Based on 

the estimates obtained after controlling for usual equity premium predictors in the regressions, 

a one-standard-deviation increase in the shock elevates the probability of an aggregate market 

crash within the coming one- and two-year horizon by about 13.5% and 11.5%, respectively. 

There exits seemingly asymmetry for the shock in the left and right tails to predict 

aggregate market crashes. A climate shock in the top 10 percentile increases the market crash 

probability by about 27%, 20%, and 8% in the subsequent one-, two, and three-year horizon, 

respectively. In contrast, a climate shock in the bottom 10 percentile significantly decreases the 

market crash probability by about 40%, 26%, and 11% in the coming one-, two, and three-year 
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horizon, respectively. This asymmetry reveals that abnormally hot weather and abnormally cold 

weather affect the aggregate equity market in qualitatively opposite ways. 

The predictive relation between climate shock and market crash risk as well as the 

asymmetry pertaining to climate shock in the left tail versus climate shock in the right tail 

extend to the industry level. Notably, the results are more pronounced at the industry level than 

at the aggregate level, reflecting that the aggregate market is well diversified and tends to 

experience less crashes than industries. 

Our results have implications for the development of investment strategy, insurance 

strategy, and risk management. Our results also shed a light on including climate shock as an 

early warning indicator for future financial crises. Additionally, our analysis informs the policy 

response to challenges posed by climate change, global warming in particular. 
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Table 1 

Descriptive statistics and correlations 
Summary statistics in panel A are reported for climate shock (shk), one-year ahead, two-year ahead , and three-

year ahead log S&P index excess returns (r_1y, r_2y, and r_3y), one-year ahead, two-year ahead , and three-year 

ahead market crash (D_1y, D_2y, and D_3y), term spread (tms), default spread (def), stock variance (svar), and 

sentiment (SENT). The crash indicator is regressed on climate shock (shk), which is the difference between the 

current temperature and the mean temperature of the previous 40 years. Panel B reports pairwise correlations. The 

sample period spans from 1934:01–2023:12. 

Panel A: Descriptive Statistics    

 n mean sd median min max skew kurtosis    

shk 1080 0.37 2.02 0.32 -7.54 8.10 -0.05 1.14    

r_1y 1069 0.04 0.17 0.05 -0.75 0.56 -0.66 1.11    

r_2y 1057 0.04 0.12 0.04 -0.35 0.37 -0.40 0.35    

r_3y 1045 0.03 0.09 0.04 -0.22 0.22 -0.34 -0.27    

D_1y 1068 0.03 0.18 0.00 0.00 1.00 5.16 24.65    

D_2y 1056 0.07 0.25 0.00 0.00 1.00 3.42 9.72    

D_3y 1044 0.09 0.29 0.00 0.00 1.00 2.78 5.74    

DY 1080 0.29 0.21 0.20 0.06 1.68 1.72 3.84    

tms 1080 1.69 1.29 1.71 -3.65 4.55 -0.22 0.24    

def 1080 1.04 0.51 0.88 0.32 3.38 1.52 2.41    

svar 1080 0.23 0.46 0.12 0.01 7.32 9.68 126.61    

SENT 684 0.00 1.00 0.00 -2.49 3.21 0.16 0.86    

Panel B: Correlations 

 shk r_1y r_2y r_3y D_1y D_2y D_3y DY tms def svar 

r_1y 0.03           

r_2y 0.06 0.69          

r_3y 0.02 0.52 0.79         

D_1y 0.05 -0.21 -0.19 -0.20        

D_2y 0.06 -0.16 -0.26 -0.27 0.70       

D_3y 0.03 -0.04 -0.15 -0.23 0.59 0.85      

DY -0.06 0.08 0.10 0.11 0.07 0.08 0.08     

tms 0.05 0.16 0.20 0.25 0.12 0.16 0.22 -0.06    

def 0.10 0.08 0.04 -0.04 0.25 0.36 0.44 0.14 0.29   

svar 0.06 -0.02 0.01 -0.05 0.11 0.13 0.12 -0.01 0.12 0.35  

SENT 0.07 -0.09 0.00 0.14 0.12 0.16 0.21 -0.17 -0.04 -0.03 0.01 
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Table 2 

Climate Shock Predicts Increased Stock Market Crash 
This table reports estimates from the linear probability model (LPM) regression for market crash in the 

subsequent one, two, and three years. The dependent variable (D_1y, D_2y, or D_3y) is the crash indicator, 

which takes a value of 1 if there is a future equity crash—defined as a monthly drop of −20% or more—in the 

next K years (K = 1, 2, and 3), and 0 otherwise. The crash indicator is regressed on climate shock (shk), which 

is the difference between the current temperature and the mean temperature of the previous 40 years.  The 

regression also considers several subsets of control variables known to predict the equity premium, including 

dividend yield (DY), term spread (tms), default spread (def), and stock variance (svar). Standard errors, shown 

in brackets, are computed using White’s (1980) robust standard errors. ∗, ∗∗, and ∗∗∗ denote statistical 

significance at the 10%, 5%, and 1% levels, respectively. The sample period spans from January 1934 to 

December 2023. 

 Dependent variable 

 D_1y D_2y D_3y D_1y D_2y D_3y 

  (1) (2) (3) (4) (5) (6) 

shk 0.004* 0.008* 0.004 0.002 0.004 -0.002 

 (0.003) (0.004) (0.005) (0.003) (0.004) (0.004) 

DY    4.164 4.374 4.752 

    (2.831) (3.322) (3.499) 

tms 
 

  0.778*** 1.143*** 2.366*** 

 
 

  (0.273) (0.393) (0.530) 

def 
 

  7.727*** 16.580*** 23.485*** 

 
 

  (1.639) (2.252) (2.518) 

svar    1.004 0.038 -2.014 

    (1.834) (2.025) (2.104) 

Constant 0.032*** 0.065*** 0.092*** -0.075*** -0.138*** -0.200*** 

  (0.005) (0.008) (0.009) (-0.016) (-0.020) (-0.023) 

Observations 1,068 1,056 1,044 1,068 1,056 1,044 

Adjusted R2 0.002 0.003 -0.0002 0.065 0.132 0.199 

F-Statistic 2.686 4.231** 0.829 15.877*** 33.182*** 52.733*** 
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Table 3 

Climate shock predicts default spreads 

 
This table reports estimates from the regression for default spreads in the subsequent one, two, and three years 

(def_1y, def_2y, or def_3y) on climate shock (shk), which is the difference between the current temperature and 

the mean temperature of the previous 40 years.  The regression also considers several subsets of control 

variables known to predict the equity premium, including dividend yield (DY), term spread (tms), default spread 

(def), and stock variance (svar). Standard errors, shown in brackets, are computed using robust standard errors 

(White, 1980). ∗, ∗∗, and ∗∗∗ denote statistical significance at the 10%, 5%, and 1% levels, respectively. The 

sample period spans from January 1934 to December 2023. 

 def_1y def_2y def_3y def_1y def_2y def_3y 

 (1) (2) (3) (4) (5) (6) 

shk 0.002*** 0.002** 0.001* 0.002** 0.002* 0.001 

 (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 
       

DY    3.797*** 2.654*** 1.863** 

    (0.885) (0.843) (0.807) 
       

tms    0.752*** 0.243 0.069 

    (0.154) (0.151) (0.138) 
       

svar    3.811*** 2.911*** 2.431*** 

    (1.167) (0.988) (0.837) 
       

Constant 0.122*** 0.121*** 0.121*** 0.090*** 0.103*** 0.109*** 

  (0.002) (0.002) (0.002) (0.004) (0.004) (0.004) 

Nobs 1,069 1,057 1,045 1,069 1,057 1,045 

Adj R2 0.005 0.004 0.003 0.157 0.086 0.06 

F Stat 6.581** 5.591** 3.632* 50.597*** 25.805*** 17.645*** 
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Table 4 

Climate Shock Predicts Increased Stock Market Crash: Marginal Effect 
This table reports estimates from the probit model regression for market crash in the subsequent one, two, and 

three years. All reported estimates are marginal effects. The dependent variable (D_1y, D_2y, or D_3y) is the 

crash indicator, which takes a value of 1 if there is a future equity crash—defined as a monthly drop of −20% 

or more—in the next K years (K = 1, 2, and 3), and 0 otherwise. The crash indicator is regressed on climate 

shock (shk), which is the difference between the current temperature and the mean temperature of the previous 

40 years. The regression also considers several subsets of control variables known to predict the equity premium, 

including dividend yield (DY), term spread (tms), default spread (def), and stock variance (svar). Robust 

standard errors are in brackets. ∗, ∗∗, and ∗∗∗ denote statistical significance at the 10%, 5%, and 1% levels, 

respectively. The sample period spans from January 1934 to December 2023. 

 Dependent variable 

 D_1y D_2y D_3y D_1y D_2y D_3y 

  (1) (2) (3) (4) (5) (6) 

shk 0.004 0.008** 0.004 0.002 0.003 -0.001 

 (0.003) (0.004) (0.005) (0.002) (0.003) (0.003) 

DY    1.962 2.311 2.770 

    (1.246) (2.117) (2.395) 

tms 
 

  0.783*** 1.302*** 2.331*** 

 
 

  (0.220) (0.297) (0.389) 

def 
 

  3.108*** 7.918*** 11.040*** 

 
 

  (0.713) (1.173) (1.380) 

svar    -0.122 -1.124 -2.830* 

        (0.604) (1.165) (1.541) 

Observations 1080 1080 1080 1080 1080 1080 
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Table 5 

Climate Shock Predicts Increased Stock Market Crash: Asymmetric Marginal Effect 

 
This table reports estimates from the probit model regression for market crash in the subsequent one, two, and 

three years. All reported estimates are marginal effects. The dependent variable (D_1y, D_2y, or D_3y) is the 

crash indicator, which takes a value of 1 if there is a future equity crash—defined as a monthly drop of −20% 

or more—in the next K years (K = 1, 2, and 3), and 0 otherwise. The crash indicator is regressed on two climate 

shock dummies, shk90D takes a value of if shk is above 90th percentile, and 0 otherwise, shk10D takes a value 

of 1 if shk is below 10th percentile, and 0 otherwise. The regression also considers several subsets of control 

variables known to predict the equity premium, including dividend yield (DY), term spread (tms), default spread 

(def), and stock variance (svar). Robust standard errors are in brackets. ∗, ∗∗, and ∗∗∗ denote statistical 

significance at the 10%, 5%, and 1% levels, respectively. The sample period spans from January 1934 to 

December 2023. 

 Dependent variable 

 D_1y D_2y D_3y D_1y D_2y D_3y 

  (1) (2) (3) (4) (5) (6) 

shk90D 0.021 0.035 0.033 0.008 0.014 0.007 

 (0.021) (0.030) (0.034) (0.013) (0.020) (0.020) 

shk10D -0.026** -0.042** -0.039 -0.012* -0.018 -0.010 

 (0.012) (0.019) (0.025) (0.007) (0.014) (0.016) 

dp    1.857 2.166 2.775 

    (1.214) (2.092) (2.379) 

tms    0.741*** 1.247*** 2.308*** 

    (0.210) (0.292) (0.388) 

def    3.081*** 7.929*** 10.943*** 

    (0.727) (1.176) (1.374) 

svar    -0.16 -1.18 -2.868* 

        (-0.601) (-1.158) (-1.541) 

Observations 1080 1080 1080 1080 1080 1080 
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Table 6 

Climate Shock Predicts Increased Industry Stock Crash: Probit Model 
This table reports estimates from the panel probit regression for industry equity crash in the subsequent one, two, and 

three years. The 10 industry portfolios defined in Fama and French (1997) and assign the industry loadings to 

individual companies by matching on SIC codes. The dependent variable (D_1y, D_2y, or D_3y) is the crash 

indicator, which takes a value of 1 if there is a future industry equity crash—defined as a monthly drop of -20% or 

more—in the next K years (K = 1, 2, and 3), and 0 otherwise. The crash indicator is regressed on climate shock (shk), 

which is the difference between the current temperature and the mean temperature of the previous 40 years.  The 

regression also considers several subsets of control variables known to predict the equity premium, including dividend 

yield (DY), term spread (tms), default spread (def), and stock variance (svar). Standard errors, shown in brackets, are 

computed using White’s (1980) robust standard errors. ∗, ∗∗, and ∗∗∗ denote statistical significance at the 10%, 5%, 

and 1% levels, respectively. The sample period spans from January 1934 to December 2023. 

 Dependent variable 

 D_1y D_2y D_3y D_1y D_2y D_3y 

  (1) (2) (3) (4) (5) (6) 

shk 0.052*** 0.049*** 0.048*** 0.037*** 0.030*** 0.027*** 

 (0.010) (0.008) (0.007) (0.010) (0.008) (0.008) 

DY    -57.093*** -89.091*** -101.994*** 

    (11.166) (9.704) (9.031) 

tms    -5.771*** -9.392*** -6.168*** 

    (1.613) (1.372) (1.272) 

def    64.197*** 77.949*** 87.795*** 

    (3.805) (3.404) (3.291) 

svar    13.278*** 5.800 -2.185 

        (3.246) (3.212) (3.321) 

Log 

Likelihood -2466.45 -3700.48 -4469.18 -2279.01 -3380.34 -4028.76 

Industry effect Y Y Y Y Y Y 

Nobs 10681 10562 10442 10681 10562 10442 
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Table 7 

Climate Shock Predicts Increased Industry Stock Crash: Probit Model Marginal Effect 
This table reports estimates from the panel probit model regression for industry equity crash in the subsequent one, 

two, and three years. All reported estimates are marginal effects. The 10 industry portfolios defined in Fama and French 

(1997) and assign the industry loadings to individual companies by matching on SIC codes. The dependent variable 

(D_1y, D_2y, or D_3y) is the industry equity crash indicator, which takes a value of 1 if there is a future industry 

equity crash—defined as a monthly drop of -20% or more—in the next K years (K = 1, 2, and 3), and 0 otherwise. The 

crash indicator is regressed on climate shock (shk), which is the difference between the current temperature and the 

mean temperature of the previous 40 years. The regression also considers several subsets of control variables known 

to predict the equity premium, including dividend yield (DY), term spread (tms), default spread (def), and stock 

variance (svar). Standard errors are in brackets. ∗, ∗∗, and ∗∗∗ denote statistical significance at the 10%, 5%, and 1% 

levels, respectively. The sample period spans from January 1934 to December 2023. 

 Dependent variable 

 D_1y D_2y D_3y D_1y D_2y D_3y 

  (1) (2) (3) (4) (5) (6) 

shk 0.006*** 0.009*** 0.011*** 0.004*** 0.005*** 0.006*** 

 (0.001) (0.002) (0.002) (0.001) (0.002) (0.002) 

DY    -6.400*** -15.362*** -21.515*** 

    (1.317) (1.719) (1.887) 

tms    -0.647*** -1.620*** -1.301*** 

    (0.161) (0.215) (0.254) 

def    7.197*** 13.441*** 18.52*** 

    (0.404) (0.575) (0.680) 

svar    1.488*** 1.000 -0.461 

        (0.344) (0.516) (-0.692) 

Industry Eff. Yes Yes Yes Yes Yes Yes 

Log 

Likelihood -2466.448 -3700.482 -4469.183 -2279.005 -3380.344 -4028.76 

Nobs 10681 10562 10442 10681 10562 10442 
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Table 8 

Climate Shock Predicts Increased Industry Stock Crash: Asymmetric Marginal Effect 
This table reports estimates from the panel probit model regression for industry equity crash in the subsequent 

one, two, and three years. All reported estimates are marginal effects. The 10 industry portfolios defined in Fama 

and French (1997) and assign the industry loadings to individual companies by matching on SIC codes. The 

dependent variable (D_1y, D_2y, or D_3y) is the industry equity crash indicator, which takes a value of 1 if 

there is a future industry equity crash—defined as a monthly drop of -20% or more—in the next K years (K = 

1, 2, and 3), and 0 otherwise. The crash indicator is regressed on two climate shock dummies, shk_90D takes a 

value of 1 if shk is above the 90th percentile, and 0 otherwise, shk_10D takes a value of 1 if shk is below the 

10th percentile, and 0 otherwise. The regression also considers several subsets of control variables known to 

predict the equity premium, including dividend yield (DY), term spread (tms), default spread (def), and stock 

variance (svar). Standard errors are in brackets. ∗, ∗∗, and ∗∗∗ denote statistical significance at the 10%, 5%, 

and 1% levels, respectively. The sample period spans from January 1934 to December 2023. 

 Dependent variable 

 D_1y D_2y D_3y D_1y D_2y D_3y 

  (1) (2) (3) (4) (5) (6) 

shk_90D 0.032*** 0.049*** 0.056*** 0.023** 0.033** 0.030* 

 (0.009) (0.012) (0.013) (0.008) (0.011) (0.012) 

shk_10D -0.038*** -0.047*** -0.06*** -0.031*** -0.034*** -0.043*** 

 (-0.006) (-0.009) (-0.010) (-0.006) (-0.009) (-0.010) 

DY    -6.499*** -15.494*** -21.699*** 

    (-1.317) (-1.720) (-1.891) 

tms    -0.714*** -1.701*** -1.386*** 

    (-0.160) (-0.214) (-0.254) 

def    7.223*** 13.469*** 18.558*** 

    (0.404) (0.574) (0.679) 

svar    1.435*** 0.949 -0.546 

     (0.337) (0.508) (0.695) 

Industry 

Eff. 
Yes Yes Yes Yes Yes Yes 

Log like -2457.527 -3695.358 -4463.76 -2270.858 -3373.921 -4022.575 

Nobs 10681 10562 10442 10681 10562 10442 

 


