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Abstract. The objective of the paper is to price weather derivative
contracts using temperature as the underlying process when the later
follows a mean-reverting dynamics driven by a time-changed Brownian
motion coupled to a Gamma Levy subordinator and time-dependent
deterministic volatility. This type of model captures the complexity of
the temperature dynamic providing a more accurate valuation of their
associated weather contracts. An approximated price is obtained by a
Fourier expansion of its characteristic function combined with a selection
of the equivalent martingale measure following the Esscher transform as
proposed in Gerber and Shiu (1994).

1. Introduction

The objective of the paper is to price weather derivative contracts us-
ing temperature as the underlying process when the later follows a mean-
reverting dynamics driven by a time-changed Brownian motion coupled to
a Gamma Levy subordinator and a time-dependent volatility function. The
process reverts to a seasonal periodic deterministic process, while the volatil-
ity is considered also a periodic function of time, see Dacunha-Castelle,
Hoang and Parey (2015) for the later. Temperature models driven by Levy
noises and stochastic volatility have been originally considered in Benth and
Benth-S(2009). This type of model captures some aspects of the complexity
in the temperature dynamic, providing a more accurate valuation of the cor-
responding weather contracts. We follow an arithmetic version of the model
in Switshchuk and Cui(2013), applied to the analysis of temperatures in the
wetland of Everglades, Florida US. Our approach differs from the former in
the pricing method, payoff and data location. Moreover, we use a Gamma
subordinator instead of a Normal Inverse Gaussian one.
The availability of an explicit analytical expression of the characteristic func-
tion of the process allows for its Fourier expansion, which in turn leads
to compute the approximated price under an equivalent martingale mea-
sure(EMM) obtained after an Esscher transform. See Gerber and Shiu
(1994) for a rationale in terms of a utility-maximization criteria.
Methods based on Fourier expansions of the characteristic function in one
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and two dimensions have been implemented in Fang and Oosterlee (2008) to
European contracts and further extended to other derivatives by the same
authors, see Fang and Oosterlee (2014).
The combination of these three elements, namely the model, the pricing
method and the choice of the EMM in the context of weather derivatives
offers an efficient methodology for pricing such contracts.
The organization of the paper is the following:
In section 2 we describe the main model for the temperature process and
obtain the characteristic function associated with it on both the historic
and risk neutral dynamic. In section 3 we discuss the implementation of
the Fourier expansion techniques, while in section 4 we show the numerical
results regarding fitting of the model to the data, characteristic function,
Gerber-Shiu parameter and Monte Carlo simulation.

2. A mean-reverting model temperature with Levy noises

Let (Ω,A, (Ft)t≥0, P ) be a filtered probability space verifying the usual
conditions. For a stochastic process (Xt)t≥0 defined on the space filtered
space above the functions ϕXt and lXt(u) = 1

t logϕXt(−iu) represent its
characteristic function and the cumulant generating function respectively.
When the process has stationary and independent increments the later does
not depend on t. The discounted process (X̃t)t≥0 is defined as X̃t = e−rtXt,
where r is the constant interest rate.
Let (Tt)t≥0 be the temperature process defined on the filtered space above.
We assumed it verifies the mean-reverting stochastic differential equation:

(1) dTt = dst + α(st − Tt)dt+ σtdVt

where the temperature reverts to the deterministic seasonal process (st)t≥0

given by:

st = β0 + β1t+ β2 sin

(
2π

365
t

)
+ β3 cos

(
2π

365
t

)
(2)

The parameter α > 0 is the mean-reversion rate.
The deterministic volatility process (σt)t≥0 and background noise (Vt)t≥0

will be specified later on.
Changes of the average temperature over an interval [t, t + h) are denoted
∆Tt = Tt+h − Tt. In particular when h = 1

365 daily changes in temperature
are considered, measured in year units. Notice that the data consist in
temperature daily averages, whereas in pricing derivative contracts time is
usually measured in years.
The solution of equation (1) is given in the following elementary lemma.

Lemma 1. The solution of equation (1) is:

Tt = D1(t, α) + e−αtWt(3)

with Wt =
∫ t

0 σue
αudVu and D1(t, α) = st + e−αt(T0 − s0)
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Proof. We apply Ito formula to the function f(x, y) = xeαy and the process
(Tt, t)t≥0. Hence:

Tte
αt = T0 +

∫ t

0
eαudTu + α

∫ t

0
eαuTu−du

+
∑
u≤t

[Tue
αu − Tu−eαu −∆Tu−e

αu]

= T0 +

∫ t

0
eαudsu + α

∫ t

0
eαusudu− α

∫ t

0
eαuTu−du

+

∫ t

0
eαuσudVu + α

∫ t

0
eαuTu−du

= T0 +

∫ t

0
eαus′udu+ α

∫ t

0
eαusudu+

∫ t

0
eαuσudVu

Multiplying by e−αt on both sides leads to equation (3). �

We further assume that the volatility also follows a deterministic seasonal
component process:

(4) σt = c0 + c1t+ c2 sin

(
2π

365
t

)
+ c3 cos

(
2π

365
t

)
where cj ≥ 0, j = 0, 1, 2, 3.
We need to compute the characteristic function of an integral of the back-
ground noise process given by Wt. To this end we refer to a well-known
result about the functional of a Levy process (ξt)t≥0 with ξ0 = 0 and a
measurable function f given by:

(5) E(exp(i

∫ t

0
f(s) dξs)) = exp(

∫ t

0
lξ(−if(s)) ds)

See for example Eberlein and Raible (1999).
Specifically, for a stochastic process (Xt)t≥0 we consider its Esscher trans-
form:

(6)
dQθt
dPt

= exp(θXt − tlX(θ)), 0 ≤ t ≤ T, θ ∈ R

where Pt and Qθt are the respective restrictions of P and Qθ to the σ-algebra
Ft. By ϕθXt and lθX(u) are defined respectively the characteristic function
and cumulant generating function of a process (Xt)t≥0 under the probabil-
ity Qθ obtained by an Esscher transformation as given in equation (6). The
value θ ∈ R is a parameter in the Esscher transform.
For consistency we denote ϕ0

Xt
:= ϕXt and l0X = lX .

The expected value under Qθ is denoted by Eθ.
A subordinator process (Rt)t≥0 and a time-changed process (Vt)t≥0 are in-
troduced in a way that they verify:

Vt = BRt + µ1Rt(7)
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Here µ1 ∈ R is a parameter in the model and (Bt)t≥0 is a standard Brownian
motion.
The following result describes the characteristic function of the temperature
process under the historic and EMM measures.

Proposition 2. For the model given by equations (1), (2) and (7) the char-
acteristic function of Tt under the probability P is:

ϕTt(u) = C1(t, u, α) exp(I(0, t, u))(8)

where:

C1(t, u, α) = exp(iu(st − e−αts0 + e−αtT0)) = exp(iuD1(t, α))

v1(t, s, u) = uσse
−αt

Moreover, under the EMM Qθ:

ϕθTt(u) = C1(t, u, α)C2(t, θ) exp(Iθ(0, t, u))(9)

where:

C2(t, θ) = exp(−tlR(θµ1 +
1

2
θ2))

Iθ(a, t, u) =

∫ t

a
lR(−iµ1v1(t, s, u)eαs + µ1θ +

1

2
(−iv1(t, s, u)eαs + θ)2)ds

and I(a, t, u) = I0(a, t, u).

Proof. By conditioning:

ϕVt(u) = E[E[exp(i(uVt)/Rt)]] = E[exp(iµ1uRt)E[exp(iuBRt/Rt)]]

= E[exp(iµ1uRt) exp(−1

2
Rtu

2)] = E[exp(i(µ1u+
1

2
iu2)Rt)]

= ϕRt(µ1u+
1

2
iu2)

Hence:

(10) lV (u) = lR(µ1u+
1

2
u2)

By Lemma 1:

ϕTt(u) = E[eiuTt ] = C1(t, u, α)E[exp(iu

∫ t

0
σse
−α(t−s)dVs)]

= C1(t, u, α) exp(

∫ t

0
lV (−iuσse−α(t−s))ds)(11)

The previous result combined with equations (10)and (5) leads to equation
(8).
For the second part, notice that:

ϕθVt(u) = E(eiuVteθVt−tlV (θ)) =
ϕVt(u− iθ)
ϕVt(−iθ)
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and lθV (u) = lV (u+ θ)− lV (θ).
Noticing that:

ϕθTt(u) = C1(t, u, α) exp(

∫ t

0
lθV (−iuσse−α(t−s))ds)

= C1(t, u, α) exp(−tlV (θ)) exp(

∫ t

0
lV (−iuσse−α(t−s) + θ)ds)

from which equation (9) follows.
�

The result below specifies the value of θ under the Esscher transform.

Proposition 3. Let (Tt)t≥0 be the temperature process defined by equations
(1), (2) and (7). Then, the Esscher measure Qθ is an EMM if for any T > 0
the parameter θ verifies:

(12) l′V (θ) = −e(α+r)T (T0 − D̃1(T, α))K−1
2 (α, T )

where:

K2(α, T ) =

∫ T

0
σue

αu du =
c0

α
(eαT − 1) +

c1T

α
eαT − c1

α2
(eαT − 1)

− 365

2π
c2

(
cos

(
2π

365T

)
− 1

)
+

365

2π
c3

(
sin

(
2π

365T

)
− 1

)
Proof. From Lemma 1 the discounted temperature process (T̃t)t≥0 verifies:

T̃t = D̃1(t, α) + e−αtW̃t

It is a Qθ-martingale if and only if for any 0 ≤ s < t:

Eθ(T̃t/Fs) = T̃s

⇔ Eθ(e
−αtW̃t − e−αsW̃s/Fs) = D̃1(s, α)− D̃1(t, α)

But:

Eθ(e
−αtW̃t − e−αsW̃s/Fs) = Eθ(e

−(α+r)t

∫ t

0
σue

αu dVu − e−(α+r)s

∫ s

0
σue

αu dVu/Fs)

= Eθ(e
−(α+r)t

∫ t

s
σue

αu dVu + (e−(α+r)t − e−(α+r)s)

∫ s

0
σue

αu dVu/Fs)

= Eθ(e
−(α+r)t

∫ t

s
σue

αu dVu)

+ (e−(α+r)t − e−(α+r)s)

∫ s

0
σue

αu dVu

On the other hand, from equation (5):

ϕθ∫ t
s σudVu

(x) = exp(

∫ t

s
lθV (−ixσueαu) du) = exp(

∫ t

s
(lV (−ixσueαu + θ)− lV (θ)) du)

(13)
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Hence:

Eθ[e
−(α+r)t

∫ t

s
σue

αu dVu] = e−(α+r)t 1

i
(ϕθ∫ t

s σue
αu dVu

)′(x)|x=0

= −e−(α+r)t

[
1

i
(i

∫ t

s
σue

αul′V (−ixσueαu + θ) du|x=0)

exp(

∫ t

s
(lV (−ixσueαu + θ)− lV (θ)) du|x=0)

]
= −e−(α+r)tl′V (θ)

∫ t

s
σue

αu du

In particular, for t = T and s = 0 the result in equation (12) follows from
elementary calculation. �

Example 4. A model with Gamma subordinator
Consider the subordinator (Rt)t≥0 is a Gamma process with parameters a >
0, b > 0, see Carr and Madan (1999). The respective characteristic function
and Laplace exponent are:

ϕRt(u) =

(
1− iu

b

)−at
, a > 0, b > 0

lR(u) = −a log
(

1− u

b

)
, u < b

Therefore:

ϕVt(u) = ϕRt(µ1u+
1

2
iu2) =

(
1− iµ1u

b
+

1

2b
u2

)−at
lV (u) = −a log[A1(u)]

where:

A1(u) = 1− µ1u

b
− 1

2b
u2

Moreover:

lθV (u) = lV (u+ θ)− lV (θ)

= −a [logA1(u+ θ)− logA1(θ)]

= −a log

(
A1(u+ θ)

A1(θ)

)
Then, in this case we have:

C2(t, θ) = exp(−tlR(µ1θ +
1

2
θ2)) = Aat1 (θ)

Iθ(0, t, u) = exp(

∫ t

0
lθV (−iuσse−α(t−s))ds)

= exp

(
−a
∫ t

0
log

(
A1(−iuσse−α(t−s) + θ)

A1(θ)

)
ds

)
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The integral in the expression above is calculated numerically.
We compute the Gerber-Shiu parameter θ from the martingale condition
given by equation (12). Namely:

e−(α+r)TK2(α, T )l′V (θ) = (T0 − e−rTD1(T, α))

Since

l′V (θ) =
a(µ1 + θ)

bA1(θ)

the value θ that solves:

(14)
b

a
e(α+r)T [T0 − e−rTD1(T, α)]K−1

2 (α, T )A1(θ)− θ − µ1 = 0

makes the discounted prices martingales under the Esscher transformation.

3. Pricing temperature contracts

Weather contracts are based on cumulate temperatures (CAT), heating-
degrees-days (HDD) or cooling-degrees-days (CDD) over certain period [0, T ]
containing n days. Futures and option contracts are offered in Chicago Mer-
cantile Exchange. They are respectively defined as:

ξT = CAT =

n∑
k=1

Tk(15)

ξ2,T = HDD =

n∑
k=1

(c− Tk)+

ξ3,T = CDD =

n∑
k=1

(Tk − c)+

The typical value is c = 650 Fahrenheit degrees or 180 Celsius.
For concreteness we focus on a CAT index. To this end, for convenience, we
rewrite the CAT index as:

ξT =

n∑
k=1

(T0 +

k∑
j=1

∆Tj) = nT0 +

n∑
j=1

γj∆Tj

(16)

where daily changes in the temperature are considered, i.e. h = 1
365 . They

are independent random variables because of the underling Levy process
(Vt)t≥0. Here γj = n− j + 1.
A general payoff of the temperature weather derivative, consisting in a com-
bination of a European long put and a long call with different strikes, known
as strangle, is given by:

(17) h(ξT ) = d1(ξT −K1)+ + d2(K2 − ξT )+, dj > 0,K1 > K2 > 0 , j = 1, 2
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where d1 and d2 are the costs per unit of temperature below (resp. above)
the threshold K1 (resp. K2) known as tick sizes. Typically d1 = d2 = $ 20 .
The price of a temperature contract over the period [0, T ] is :

p = d1e
−rTEQ(ξT −K1)+ + d2e

−rTEQ(K2 − ξT )+

= d1e
−rT I1 + d2e

−rT I2

(18)

where fξT (x, θ) is the probability density function (p.d.f.) of the cumulated
temperature index under the EMM measure and

I1 =

∫
R

(x−K1)+fξT (x, θ) dx

I2 =

∫
R

(K2 − x)+fξT (x, θ) dx

In the same lines than in proposition 2 the characteristic function for the
increments of the process can be computed. Let’s denote the increments at
points ∆j by ∆Xj = X∆j−X∆(j−1) and Iθ1 (j−1, j, u) := Iθ1 (∆(j−1),∆j, u),
etc. Then, we have:

Theorem 5.

ϕθ∆Tj (u) = L1(j, u, α)C1(j − 1,−u(1− e−α∆), α)C2(j, θ)

exp[Iθ(0, j − 1,−u(1− e−α∆))] exp[Iθ(j − 1, j, u)]

(19)

ϕθξT (u) = exp[L1(θ) + iuL2(u, α) + L3(u, α) + +L4(u, α)]

(20)

where:

L1(j, u, α) = exp[iu(D1(j, α)− e−α∆D1(j − 1, α))]

v1(j, u, s) = uσse
−α∆j

Iθ(j − 1, j, u) =

∫ ∆j

∆(j−1)
lR(−iµ1v1(j, u, s)eαs + µ1θ +

1

2
(−iv1(j, u, s)eαs + θ)2)ds

Iθ(0, j − 1,−u(1− e−α∆)) =

∫ ∆(j−1)

0
lR(−iµ1v1(j,−u(1− e−α∆), s)eαs + µ1θ

+
1

2
(−iv1(j,−u(1− e−α∆), s)eαs + θ)2)ds
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and

L1(θ) = iunT0 −∆
n(n+ 1)

2
lR(µ1θ +

1

2
θ2)

L2(u, α) = −
n∑
j=1

γj(D1(j, α)−D1(j − 1, α))

L3(u, α) =

n∑
j=1

Iθ(0, j − 1,−γju(1− e−α∆))

L4(u, α) =

n∑
j=1

Iθ(j − 1, j, γju)

Proof. Let’s denote Wj = W∆j . From equation (3):

∆Tj := T∆j − T∆(j−1) = D1(j, α)−D1(j − 1, α) + e−α∆jWj − e−α∆(j−1)Wj−1

= D1(j, α)−D1(j − 1, α) + e−α∆j

∫ ∆j

0
σse

αsdVs − e−α∆(j−1)

∫ ∆(j−1)

0
σse

αsdVs

= D1(j, α)−D1(j − 1, α)− e−α∆(j−1)(1− e−α∆)

∫ ∆(j−1)

0
σse

αsdVs + e−α∆j

∫ ∆j

∆(j−1)
σse

αsdVs

Re-arranging the terms:

∆Tj = −(D1(j − 1, α) + (1− e−α∆)e−α∆(j−1)Wj−1) +D1(j, α) + e−α∆j

∫ ∆j

∆(j−1)
σse

αsdVs

= −(1− e−α∆)[(1− e−α∆)−1D1(j − 1, α) + e−α∆(j−1)Wj−1] +D1(j, α)

+ e−α∆j

∫ ∆j

∆(j−1)
σse

αsdVs

= −(1− e−α∆)[(1− e−α∆)−1D1(j − 1, α)−D1(j − 1, α) +D1(j − 1, α) + e−α∆(j−1)Wj−1]

+ D1(j, α) + e−α∆j

∫ ∆j

∆(j−1)
σse

αsdVs

Hence:

∆Tj = −(1− e−α∆)[(1− e−α∆)−1D1(j − 1, α)−D1(j − 1, α) + Tj−1]

+ D1(j, α) + e−α∆j

∫ ∆j

∆(j−1)
σse

αsdVs

= −e−α∆D1(j − 1, α)− (1− e−α∆)Tj−1 +D1(j, α) + e−α∆j

∫ ∆j

∆(j−1)
σse

αsdVs

Notice that the temperature increments splits into two independent terms
plus a constant. Therefore, combining equations (9) and again equation (5)
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we have, under the selected EMM and taking into account equation (9) that:

ϕθ∆Tj (u) = L1(j, u, α)ϕθTj−1
(−u(1− e−α∆)) exp(

∫ ∆j

∆(j−1)
lθV (−iv1(j, u, s)eαs)ds)

= L1(j, u, α)C1(j − 1,−u(1− e−α∆), α)C2(j − 1, θ) exp[Iθ(0, j − 1,−u(1− e−α∆))]

e−∆lV (θ) exp(

∫ ∆j

∆(j−1)
lV (−iv1(j, u, s)eαs + θ)ds)

= L1(j, u, α)C1(j − 1,−u(1− e−α∆), α)C2(j − 1, θ) exp[Iθ(0, j − 1,−u(1− e−α∆))]

e−∆lR(µ1θ+
1
2
θ2) exp(Iθ1 (j − 1, j, u))

It easily leads to equation (19).
Furthermore, from equation (16) and the result above:

ϕθξT (u) = ϕθnT0+
∑n
j=1 γj∆Tj

(u) = Eθ[e
iu(nT0+

∑n
j=1 γj∆Tj)] = eiunT0

n∏
j=1

ϕθ∆Tj (γju)

Replacing expression (19) into the last equation we have

ϕθξT (u) = eiunT0
n∏
j=1

ϕθ∆Tj (γju)

= eiunT0
n∏
j=1

L1(j, γju, α)

n∏
j=1

C1(j − 1,−γju(1− e−α∆), α)

n∏
j=1

C2(j, θ)

n∏
j=1

exp[Iθ1 (0, j − 1,−γju(1− e−α∆))]

n∏
j=1

exp(Iθ1 (j − 1, j, γju))

= eiunT0 exp[iu(

n∑
j=1

γj(D1(j, α)− e−α∆D1(j − 1, α)))] exp(−iu∆lR(θµ1 +
1

2
θ2)

n∑
j=1

j)

exp[−iu(1− e−α∆)
n∑
j=1

γjD1(j − 1, α)] exp[
n∑
j=1

Iθ(0, j − 1,−γju(1− e−α∆))]

exp[

n∑
j=1

Iθ(j − 1, j, γju)]

From which equation (20) follows. �

3.1. Pricing by cosine Fourier expansion. A Fourier expansion of the
p.d.f. fξT (x, θ) on an interval [b1, b2] is given by:

fξn(x, θ) =

+∞∑
k=0

Ak(θ)cos

(
kπ

x− b1
b2 − b1

)
(21)
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where the coefficients in the expansion, the first of them divided by two, are:

Ak(θ) =
2

b2 − b1
exp

(
−i kπb1
b2 − b1

)
ϕθξT

( kπ

b2 − b1

)
(22)

for b1 and b2 large enough.
It leads to the approximate calculations:

I1 ' b25 − b24
2(b5 − b3)

+ 2

N1∑
k=1

exp

(
−i kπb1
b5 − b3

)
ϕθξT

( kπ

b5 − b3

)
R1(k)

and

I2 ' b27 − b26
2(b8 − b7)

+ 2

N1∑
k=1

exp

(
−i kπb1
b8 − b7

)
ϕθξT

( kπ

b8 − b7

)
R2(k)

where b3 = b1 − K1, b4 = (b1 − K1, 0)+, b5 = b2 − K1, b6 = (K2 − b2)+,
b7 = K2 − b2 and b8 = K2 − b1.
Here:

R1(k) = − b4
kπ

sin

(
kπ
b4 − b3
b5 − b3

)
+
b5 − b3
k2π2

(
(−1)k − cos

(
kπ
b4 − b3
b5 − b3

))
R2(k) = − b6

kπ
sin

(
kπ
b6 − b8
b8 − b7

)
+
b8 − b7
k2π2

(
(−1)k − cos

(
kπ
b6 − b8
b8 − b7

))
Details in the calculations, which are adapted from Fang and Oosterlee
(2008) to this particular case are rather straightforward, have been left to
the appendix.
The delicate choice of the truncation values b1 and b2 as well as the number
of terms in the truncated expansion depends on the model considered. For
a discussion of the error analysis in the truncation and numerical errors
present in the Fourier Cosine method in the case of the exponential Levy
model class we refer the reader to the work of Fang and Oosterlee (2008).

3.2. Pricing by inverse Fourier transform. Assume there exist real val-
ues R1 > 1 and R2 < −1 such that EQ[eRVt ] < +∞. The values Rj , j = 1, 2
are damping factors to account for integrability. See Raible(2000).
Let’s denote the payoff functions by h1(x) = (x − K1)+ and h2(x) =
(K2−x)+ and hR,j(x) = e−Rjxhj(x) ∈ L1(R), j = 1, 2. Its Fourier transform

is ĥj(x).
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Hence:

pW = d1e
−rTEQ(ξT −K1)+ + d2e

−rTEQ(K2 − ξT )+

= d1e
−rT

∫
R
eR1yhR,1(y)fξT (y, θ) dy + d2e

−rT
∫
R
eR2yhR,2(y)fξT (y, θ) dy

=
1

2π
d1e
−rT

∫
R
eR1y

[∫
R
e−ixyĥR,1(x) dx

]
fξT (y, θ) dy

+
1

2π
d2e
−rT

∫
R
eR2y

[∫
R
e−ixyĥR,2(x) dx

]
fξT (y, θ) dy

=
1

2π
d1e
−rT

∫
R
ĥR,1(x)

[∫
R
eR1y−ixyfξT (y, θ) dy

]
dx

+
1

2π
d2e
−rT

∫
R
ĥR,2(x)

[∫
R
eR2y−ixyfξT (y, θ) dy

]
dx

=
1

2π
d1e
−rT

∫
R
ĥR,1(x)ϕθξT (−(iR1 + x)) dx+

1

2π
d2e
−rT

∫
R
ĥR,2(x)ϕθξT (−(iR2 + x)) dx

(23)

On the other hand:

ĥR,1(x) =

∫
R
eixyhR,1(y) dy =

∫
R
e(ix−R1)yh1(y) dy

=

∫ +∞

K1

e(ix−R1)y(y −K1) dy =

∫ +∞

K1

ye(ix−R1)y dy −K1

∫ +∞

K1

e(ix−R1)y dy

=
y

ix−R1
e(ix−R1)y|+∞K1

− 1

(ix−R1)2
e(ix−R1)y|+∞K1

− K1e
K1(ix−R1)

R1 − ix

=
eK1(ix−R1) (K1 (R1 − ix) + 1)

(R1 − ix)2 −K1
e−K1 (R1−ix)

R1 − ix

=
eK1(ix−R1)

(R1 − ix)2

Similarly:

ĥR,2(x) =

∫
R
eixyhR,2(y) dy =

∫
R
e(ix−R2)yh2(y) dy

=

∫ K2

−∞
e(ix−R2)y(K2 − y) dy = K2

∫ K2

−∞
e(ix−R2)y dy −

∫ K2

−∞
ye(ix−R2)y dy

= −K2
e−K2 (R2−ix)

R2 − ix
− e−K2(R2−ix) (K2 (R2 − ix) + 1)

(R2 − ix)2

= −e−K2 (R2−ix)

(R2 − ix)2
(2K2(R2 − ix) + 1)

The integrals in equation (23) can efficiently be calculated following a Fast
Fourier Transform approach.
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4. Numerical results

Daily temperature data (in Fahrenheit degrees) at the wetland Ever-
glades(near Big Cypress Reservation), Florida, US from January 1st, 2000 to
November 15th, 2017 have been collected from the NOAA National Center
for Environmental Information. The data gathered yield 6245 data points.
About 15% of the series values are missing, mostly around 2005. We re-
place them using a linear interpolation method. Observation points in the
dataset consist in the average between the daily maximum and minimum
temperatures.

Figure 1. Historic daily average temperature in the Ever-
glades, FL. US from 1/1/2000 to 15/11/2017

A preliminary statistical analysis of the temperature data shows the de-
scriptive statistics as in Table 1. As can be seen, the skewness of the data
is negative indicating a longer tail to the left or abrupt descents on tem-
peratures combined with more frequent but shorter increases. The kurtosis
slightly greater than three, indicating more frequent but modest movements
of temperature than would be expected under assumptions of a normal dis-
tribution.

Mean Minimum Maximum Std Dev Skewness Kurtosis
75.3271 38.5 88.5 7.9727 -0.9225 3.5578

Table 1. Statistical summary of the series of temperatures
in the Everglades, 2000-2017.

The seasonal component as described in equation (2) is adjusted via a
regression model in terms of sine and cosine periodic functions with annual
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Estimate SE t-Stat pValue
b0 73.979 0.11726 630.87 0
b1 0.15848 0.011918 13.297 8.4253e-40
b2 -5.343 0.083029 -64.351 0
b3 -6.818 0.082747 -82.397 0

Table 2. Harmonic regression fit for temperatures in the
Everglades. All coefficients are statistically significant at
95%.

periodicity. In addition we consider a linear term. The results are shown in
table 2.

All parameters in the regression analysis are statistically significantly.
The slope in linear term indicates a slowly but important positive increase
in temperature upon time. This is consistent with other climatic studies
signaling the past two decades as the warmest ones since temperature is
recorded. Figure 2(left) shows the harmonic fit while 2(right) reveals a
significant structure of the autocorrelation function for the residuals in the
regression.

(a) (b)

Figure 2. Left: Seasonal trend for Everglades daily mean
temperature. Right: Autocorrelation function of the residu-
als in the harmonic regression

In figure 3(left) the empirical p.d.f. of the CAT index during a three-
month period in summer time is compared with the p.d.f. of a standard
normal distribution with the same mean and variance. The p.d.f. of the
CAT index shows heavier tails than the Gaussian distribution, therefore
more oscillations in temperature than the expected with a normal distribu-
tion. Moreover, results of Kolmogorov-Smirnov and Anderson-Darling tests
show that the temperature data do not seem to follow any of the normal,
t-student, inverse Gaussian or GEV distributions distribution.
In figure 3(right) the characteristic function of the CAT index under the
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Esscher EMM and different values of the parameter θ is presented. The re-
maining of the parameters are kept according to table 3. Notice that the true
parameter θ can be computed from equation 12 following a Newton-Raphson
quadrature. In fact, it depends on the parameters of the subordinator and
the volatility.

(a) (b)

Figure 3. Left: Empirical p.d.f. of the CAT index during
a three-month period in summer time is compared with the
p.d.f. of a standard normal distribution with the same mean
and variance. Right: Characteristic function of the CAT
index under the Esscher EMM and different values of the
parameter θ

An alternative pricing approach is consider a Monte Carlo simulation of
the payoffs. To this end we simulate the model for temperatures introduced
above with a Gamma subordinator.

param. a = 10 b = 1 β0 = 73.979, β1 = 0.16 α = 1 σ = 5
β2 = −1.4595, β3 = −2.3897

Contract T = 3/12 d = [20, 20] K = [6300, 7200] r = 0.02
θ = 0 ndays = 90

Table 3. Simulation parameters for temperatures WD con-
tracts in Havana

The solution of equation (1) is obtained following an Euler-Maruyama
approach. It results in the following recursive equations:

Tj = Tj−1 + ∆sj + α(sj−1 − Tj−1)∆t+ σj−1∆Vj , j = 1, . . . , ndays

Three simulated trajectories of the temperature process during 90 summer
days, starting on May 1st, are shown in figure 4. The parameters in the
simulation appear in table 3. They have been chosen to match first and
second empirical moments of the temperature. The maturity in the contract
is three months starting May 1st, while the values dj = $20 reflects a cost of
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$20 per an increase(decrease) of one degree in the temperature above(below)
the strike prices. The values of d are standard in contracts traded at Chicago
Mercantile Exchange. On the other hand, the strike prices have been selected
accordingly to behaviors of the CAT index above and below an average
historical behavior of the temperatures in the region.

Figure 4. Three simulated trajectories of the temperature
process during 90 days, starting on May 1st.

5. Acknowledgments

The authors would like to thank the Institute of Environment in Florida
International University and the Natural Sciences and Engineering Research
Council of Canada for their support.

6. Conclusions

A mean-reverting time-changed Levy process with periodic mean-reverting
level and volatility offers a fair model for temperatures at Everglades wet-
land in Florida state.
For the pricing of weather derivative contracts based on temperatures im-
portant features of the model such as the Esscher parameter under a Gerber-
Shui EMM and the characteristic function of CAT indices are calculated and
a methodology based on Fourier expansions is outlined. This approach pro-
vides an efficient alternative to the costly Monte Carlo simulation approach
under a more realistic dynamic for the temperatures processes. In turn, the
correct valuation of temperature contracts adds another tool in managing
risks associated with extreme changes in climatic variables, temperatures in
the present case, in critical ecological environments.
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The pricing technique depends on the delicate choice of truncations in the
series and the integral that have been calculated via numerical algorithms,
as well as the accuracy in the estimation of the parameters. Due to the
existence of multiple parameters in the model the estimation is a challeng-
ing problem beyond the scope of the paper. Nonetheless, it can be pointed
out that the use of an Esscher transform in computing the EMM offers an
important practical advantage, as historic data can be used to the task. A
calibration based on the market price of the contracts results problematic
because of its liquidity and local dependence.

7. Appendix

A Fourier expansion of the p.d.f. fξT (x, θ) on an interval [b1, b2] is given
by:

fξn(x, θ) =
+∞∑
k=0

Ak(θ)cos

(
kπ

x− b1
b2 − b1

)
(24)

where the coefficients in the expansion, the first of them divided by two, are:

Ak(θ) =
2

b2 − b1

∫ b2

b1

fξT (y, θ)cos
(
kπ

y − b1
b2 − b1

)
dy

=
2

b2 − b1

∫ b2

b1

fξT (y, θ)Re
(
e
ikπ

y−b1
b2−b1

)
dy

=
2

b2 − b1
Re
(∫ b2

b1

fξT (y, θ)e
ikπ

y−b1
b2−b1 dy

)
' 2

b2 − b1
exp

(
−i kπb1
b2 − b1

)
ϕθξT

( kπ

b2 − b1

)
(25)

for b1 and b2 large enough.
Replacing (25) into (24), then (24) in (18) we have after truncating the series
at N1 terms and the change of variable y = x−K1:

I1 '
+∞∑
k=0

Ak(θ)

∫ b2

b1

(x−K1)+cos

(
kπ

x− b1
b2 − b1

)
dx

=
+∞∑
k=0

Ak(θ)

∫ b2−K1

b1−K1

y+cos

(
kπ
y − b1 +K1

b2 − b1

)
dy

'
N1∑
k=0

Ak(θ)

∫ b5

b4

y cos

(
kπ

y − b3
b5 − b3

)
dy
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Furthermore, for k > 0:∫ b5

b4

y cos

(
kπ

y − b3
b5 − b3

)
dy =

(b3 − b5)b4
kπ

sin

(
kπ
b4 − b3
b5 − b3

)
+

(
b5 − b3
kπ

)2(
(−1)k − cos

(
kπ
b4 − b3
b5 − b3

))
Then, separating the first term in the summation:

I1 =
b25 − b24

2(b5 − b3)
+ 2

N1∑
k=1

exp

(
−i kπb1
b5 − b3

)
ϕθξT

( kπ

b5 − b3

)
(
− b4
kπ

sin

(
kπ
b4 − b3
b5 − b3

)
+
b5 − b3
k2π2

(
(−1)k − cos

(
kπ
b4 − b3
b5 − b3

)))
In a similar analysis:∫ b7

b6

y cos

(
kπ

y − b8
b8 − b7

)
dy =

(b7 − b8)b6
kπ

sin

(
kπ
b6 − b8
b8 − b7

)
+

(
b8 − b7
kπ

)2(
(−1)k − cos

(
kπ
b6 − b8
b8 − b7

))
Hence:

I2 '
N1∑
k=0

Ak(θ)

∫ b2

b1

(K2 − x)+cos

(
kπ

x− b1
b2 − b1

)
dx

=

N1∑
k=0

Ak(θ)

∫ K2−b1

K2−b2
y+cos

(
kπ
K2 − y − b1
b2 − b1

)
dy

=
b27 − b26

2(b8 − b7)
+ 2

N1∑
k=1

exp

(
−i kπb1
b8 − b7

)
ϕθξT

( kπ

b8 − b7

)
(
− b6
kπ

sin

(
kπ
b6 − b8
b8 − b7

)
+

b8 − b7
k2π2

(
(−1)k − cos

(
kπ
b6 − b8
b8 − b7

)))
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