CHARACTERISTIC FUNCTION AND ESSCHER TRANSFORM
OF A SWITCHING LEVY MODEL FOR THE TEMPERATURE
DYNAMIC

ROFEIDE JABBARI AND PABLO OLIVARES

ABSTRACT. In this paper we extend the models in [1, 9, 10] for the dynamic
of the temperatures by considering random switchings between Levy noises
instead of Brownian motions, with a mean-reverting movement towards a sea-
sonal periodic function. The use of Levy noises allows for jumps, capturing,
together with the regime changes, sudden and relatively persistent oscillations
in the weather. An approximated close-form expression for the characteristic
function of the temperature process under an Esscher transform is given.

1. INTRODUCTION

In [1, 9, 10] switching models for temperatures have been proposed. In such mod-
els the temperature evolves between mean-reverting stochastic differential equations
whose background noises switch at random times between Brownian motions with
different volatilities. We extend these models by considering random switchings
between Levy noises with a mean-reverting movement towards a seasonal periodic
function. The use of Levy noises and regime-switching models allow random jumps
in the underlying temperature process, capturing sudden and relatively persistent
oscillations in temperatures and the weather in general.

With a view in the pricing weather derivatives we find the characteristic function of
integrals with respect to Levy switching processes by conditioning on the number
of switches over a given time interval and investigate the choice of an equivalent
martingale measure(EMM) to create a risk-neutral setting with the use of the Ess-
cher transformation, see [5]. We implement the findings in two time-changed Levy
models driven by inverse Gaussian and Gamma subordinators.
In the context of discrete-time regime switching models have been successfully con-
sidered since the pioneer work of [4]. Continuous-time switching Levy models have
been recently introduced in [3] in connection with the modeling of oil prices.
The organization of the paper is the following:
In section 2 we present the switching Levy model for temperature and compute
the characteristic function of the temperatures under the historic measure. In sec-
tion 3 we find the characteristic function of the temperatures under the measure
generate by an Esscher transform, as long as the selection of the parameter in the
Esscher transform to obtain an EMM risk-neutral measure. In section 4 we dis-
cuss the cases of time-changed Levy models with inverse Gaussian and Gamma
subordinators while in section 5 we conclude.
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2. A SWITCHING LEVY MODEL FOR TEMPERATURE

Let (Q, A, (Ft)t>0, P) be a filtered probability space verifying the usual condi-
tions. For a stochastic process (X¢):>0 defined on the space filtered space above the
functions ¢y, and lx,(u) = log px, (—iu) represent its characteristic function and
the log-cumulant generating function respectively. When the process has stationary
and independent increments the later does not depend on ¢.

The class 05 () as the o-algebra generated by the random variables {7y, T7s41,..., 7t}
In particular, we write o4 (7) := 09 +(7).

The discounted process (Xt)tzo is defined as X; = e "*X,, where r > 0 is a con-
stant interest rate.

Furthermore, M (a, b, z) denotes the Kummer’s confluent hypergeometric function:

F(b) 1ezuua71 —u b—a—1 u
e =7, (L=w)d

Also, v(a, z) is the incomplete Gamma function:

M(a,b,z) =

v(a,z) = / 22 e % dx, a >0
0

Let (T3)¢>0 be a stochastic process where T} is the temperature of certain region at
time t. The dynamic of the temperature follows a switching between two regimes.
The regimes are driven by a stationary Markov process {r};>¢ with values in the
space F, = {1,2}.

Moreover, under regime j the temperature process (Tf )i>0 verifies the mean-reverting
stochastic differential equation:

(1) AT} = ds; + o (sy — T))dt + o7 dV}

where the temperature reverts to the deterministic seasonal process (s;);>0 given
by:

. 2 27
(2) St = 60 + 5115 + BQ s (365t> + 53 COs <365t>
The parameters o/ > 0 are the mean-reversion rates under regimes j = 1,2 while
o7 are their respective volatilities or standard deviations. The parameters in the
seasonal function may also depend on the regime. For simplicity we consider the
case of constant coefficients.
On the other hand, the dynamic of the regime-switching Markov process is given
by the following transition probabilities:

Plrizn=34/re =k} = XNigh+o(h), j#k
Plrign =j/re =3} = —Xjjh+o(h)

Without loss of generality we assume the initial conditions rg = 1, i.e. the process
starts under regime 1. The analysis of a process starting under regime 2 or at a
random initial value is similar.

Let N, be the number of transitions between regimes in the interval [0, ).

Let (7,)nen be an increasing sequence of stopping times representing the instants
where the system changes of regime. Notice that 7p = 0 and 7n, < t. Set also
v; = Tj; — Tj—1 as the times between two consecutive changes of regime.
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Remark 1. Because of the Markovian nature of the switching process the random
variables v; are independent such that v; ~ exp(A12) if the transition occurs from
regime 1 to regime 2 and v; ~ exp(A21) otherwise.

The solution of equation (1) is given in the next elementary result. It follows
from Ito lemma.

Lemma 2. The solution of equation (1) is:

(3) T, = Ci(t,a)+oe W,

with
Ne ) t

(4) Wy = Z/ ea“qu”(J)Jr/ eaudV:(Nt+1)
j=1v7i—-1 TN,

where v(j) = w and C1(t,a) = s + e (T — so)

A result about the probability distribution of the instants and the number of
regime changes in [0,t) is given in the next two lemmas. To this end we introduce
the following quantities:

m
D(m,n,l) = 12_1>1
A3 (1)
D(m,n,0) = 0, C(m,n,0)=1
(l)(l _ @)l (’m+l71)(1 _ )\#)l
m ) ! )
Clm,n0) - = won e 7

where a¥) is defined as the Pochhammer symbol or raising factorial, a(® = 1,a® =
ala+1)...(a+1-1).
Hence:

Lemma 3. Let 7; be the time of the I-th regime change, f;, and F’, the respective
probability density function (p.d.f.) and cumulative distribution function(c.d.f.).
Then:

+oo
Fr(t) = D(k,k,2k) > C(k,2k,1)y(2k + 1, Aont), k> 1
=0
+oo
Frpir(t) = D(k+1,k+1,2k+1)Y C(k+1,2k+1,0)7(2k + 1+ 1, Aa1t)
=0

Proof. First, define the independent random variables:

k k
X, = E U211, X2:E Vg
=1 =1

Notice that 7o, = X1 + Xo, where Xy ~ Erlang(k, A12) and Xy ~ Erlang(k, A21).
The probability distribution of the sum of two independent Erlang random variables
with different shape and rate parameters, or equivalently the sum of independent
exponential random variables with different rates, has been found in [7] or in [6]
for example. Adapting their results, specifically corollary 6.3 in [6], to our case we
have:

fron(@) = D(k,—k,2k)M(k, 2k, (Aa1 — Mi2)x)z? 7 Le ™27 2 >0, Ag1 > Aio



4 ROFEIDE JABBARI AND PABLO OLIVARES

On the other hand, the confluent hypergeometric function can be expanded as:
+oo

a®
M(a,b,z) = ZWZ
1=0 ’

See [8] for definition and property of the function above.
Therefore for ¢ > 0:

t
F, (1) = D(k,k,2k)/0 e T N (K 2k, (Mg — Ai2)z) d

+o00 ¢
D(ka k72k) ZC(k,Qk,l)/ pehtl=lo=Anz g,
=0 0
+o00
D(k, k,2k) > Ck, 2k, 1)(2k + 1, Aaxt)
=0

Similarly 79511 = Y1 + Y3, where Y7 ~ Erlang(k + 1, M\12) and Yy ~ Erlang(k, A21)
and independent random variables. Then:

frona (@) = D(k+1,—k,2k + 1)M(k + 1,2k + 1, (A1 — Aj2)x)z?Fe 21"
which leads to:

t
Frpoi(t) = D(k+1,k+1,2k+ 1)/O e AN (k4 1,2k + 1, Moy — A\i2)z) do
+oo
= D(k+1,k2k+1)> C(k+1,2k+1,1)y(2k + 1 + 1, Aa1t)
=0
0

Lemma 4. Let N; be the number of transitions between regimes in the interval
[0,%). Then, for k € N:

(5) P(Ny=k) = Fp(t)—Fr,,(t)

Proof. We have:

P(Ny =2k) = P(ror <t,Topq1 > 1) = P(rop <t) — P(mopy1 <t) = Fp,, (t) — Fr,pp, (2)
Similarly:

P(Nt =2k+ 1) = F‘rzk+1 (t) - F7'2k+2 (t)
O
We compute the characteristic function of some integrals of the background noise
process given by the switching Levy process (V;);>0. To this end we will extend

a well-known result about functional of a Levy process (& )¢>0 with o = 0 and a
measurable function f, see for example [2]. Namely:

(6) Blexp(i / £(s) dX.)] = exp( / Ix(—if(s)) ds)

where (X;);>0 is a Levy process with Xy = 0 and f is a measurable function.
The main result in the section is given below.
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Theorem 5. Let (§;):>0 be a two-regime switching Levy process starting at regime
one, with log-cumulant generating function l¢; when the process is at regime ! = 1, 2.
Then,

E[emp(i/o f(s) d&y)] (Z M (k = 2k) + A2 JF P(N; = 2k + 1)])

+oo
(Z Js(t, k)P(Ny = 2k) + Y Ja(t, k) P(Ny = 2k + 1))
k=0 k=0

where:
+oo
J = / elt@e=2e gy 1=1,2
0
“+oo
Js(t.k) = D(k,—k,2k)>  C(k,2k,1)G1 (¢, 2k + )X}
=0
“+oo
Ja(t,k) = D(k+1,-k,2k+1)> C(k+1,2k+1,1)Ga(t, 2k + 1 + 1)X,
=0
t
G;(t,m) = / elilt=2)ym=le=Anz g, 519
0
Mi(k) = NASJYJS
and

0)= [ le(-if(s) ds, j=1.2
0
Expressions for P(N; = 2k) and P(N; = 2k + 1) are given in the previous lemma.
Proof. For a measurable function f we write:

T

®) =S 7 s+ / Fu)dvy

j=1vTi-1

Now, let 0¢(7) be the o-algebra generated by the random variables (7, )nen, n < Tn, -
Notice that between times of regime changes the process (&;):>0 is a Levy process.
Hence, equation (6) applies.

Conditioning on N; = 2k and o4(7) we have, from the independence and the sta-
tionarity of the increments of a Levy process, that:

™ 2k '
Eleap(i Z 5) d€9 [N, = 2k, 04(r))] = Eleap(iy_ [ f(s) d&D [oy(7))]

= exp(i ) d€*D) Ja,(1))] = exnli s) deD o, (r
1L #eer /lefUdés fort) = T Blenti [ 1) s )

2%, 2k
= cnl} [ e (-ir(9) dsfou(r)] = epld L (0)
j=1"0 j=1
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and

Elexp(i / F(5)d€L /N, = 2k, 04(7))] = Eleap(i / J(s) d€l ()]
= Eleap(i / T f(s) det)Jou(r)

— eap| /O e (—if(s) ds] = eaplIy(t — 73]

By similar analysis, conditioning on [Ny = 2k + 1], we have:

Ni oy ‘ 2k+1 ‘
Bleap(iy_ [ £(5) det) /Ny =2h+ Lon(r)) = Bleap(i Y [ 1(5) dZ fou(r)
j=17Tj-1 =1 i
2k+1 ™ ,
= 1 Bleasti [ 1(6) 2 /o)
QJk_—i-l

= I Fleart; / 7 1(s) der9 Joy (7))

2k+1

_ exp[; / Nlewior (—if(s)) ds/oy(7)]

2k+1

= exp| Z L,y (vy)]

t

Eleap(i | )A€l /Ny =2k L)) = Eleap | f(5) d€d)/ou(r)

T2k+1

— Bleapli [ £ dD/ou(r)

— el [ o (-if(o) s = caplia(t - )

If there are 2k changes of regime on the interval [0,¢) there will be & subintervals
where the process is at regime 1 and another k£ where the process is at regime 2.
The remaining time on [0, ¢), i.e. during the interval [ty,,t), the process is at regime
1.

In a similar analysis, if there are 2k + 1 changes of regime on the interval [0, ¢) there
will be k4 1 subintervals where the process is at regime 1 and another k£ where the
process is at regime 2. The process remains in regime 2 during [ry,,t).

On the other hand, we have:

Firy, (@) =Py, 2t —2)=1-F (t—z), <t
Then, conditionally on the event [IN; = 2k] we have respectively:
fer (@) = fro(t —x) = D(k, —k, 2k)(t — 2)2 " Le 22 C=2) M (k, 2k, (Ay1 — Ai2)(t — )
Then, conditionally on [Ny = 2k + 1]:

ft—7'2k+1 (:L’) = fT2k+1 (t - :ﬂ) = D(k + 17 *ka 2k + 1)(t - x)2keiA21(t7w)M(k + 1, 2k + 1, ()\21 - )\12)(75 - CC))
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for 0 < z <t and zero otherwise.
Furthermore:

Ny Tj )
Bleap(iy / £(s) der@)) foy(7)]
j=177

Tj—1

+oo Ny T )
= N Bleapi Y / F(s) de* D)) /N, = 2k, oy(r)] P(N: = 2K)
k=0 j=177i

T]71

+o00 Ny Tj )
+ S Bleapli Z/ F(5) de"OY) N, = 2k + 1, 00 (1) P(Ny = 2k + 1)
k=0 =177

Tj—1

“+o0 2k

= Y eap]y L) w)|P(N, = 2k)
k=0 j=1
“+oo 2k-+1

+ Zexp[ Z L,y (v)]|P(Ny = 2k + 1)
k=0

Jj=1

and

Eleapli / £()d€D) o ()]
+o00 t t

= Y Bleap(i / F($)AEV) /N, = 2k, oy (1)] P(N, = 2k)
k=0 TNy

+o0 t
+ ZE[exp(i/ f(s)de?) /Ny = 2k + 1, 04(7)|P(N; = 2k + 1)
k=0 TN

“+oo
= Y eaplli(t — 7or)|P(N; = 2k)
k=0
+oo
+ Y eaplla(t — Tapy1)|P(Ny = 2k + 1)
k=0
Hence:

Ne  or; _ Ny  or; )
Bleapiy_ [ 7(5) deZ)] = ElBleap Y [ 1(5) dgZ) /()

400 2k
= > 11 Bleap(L) () P(N, = 2k)
k=0j=1
+oo 2k+1
+ > TI Elewp(L ) () P(Ny = 2k + 1)
k=0 j=1
+oo
= Y (Elexp(y(v)])*(Elexp(I(v*)))F P(N; = 2k)
k=0
+oo
+ Y (Elexp(Ii(v))* T (Elexp(I2(v*)])* P(N; = 2k + 1)
k=0
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where v ~ exp(A12) is the time between changes from regime 1 to regime 2 and
vk ~ exp(Aqg1) is the time between changes from regime 2 to regime 1. Also,

Eleap(i / f(s)de,)) = E|Blexp(i / F(s)d&;)/ou(7)]]
+oo ’

= Z Elexp(I1(t — Tax))|P(N;, = 2k)

k=0
+o0
+ Y Eleap(Io(t — Tar41)) ] P(N; = 2k + 1)
k=0
Moreover:
+oo
E[e"®™)] = )\12/ eh@ =22 go . o gy
0
+oo
E[eh(v*)] = )\21/ el2(@) =21 g — N5
0
On the other hand:
t
Elelt-m1)] = / e (z) da
0

t
= D(k, —k,2k)/ el @) (¢ — )2 lem A U=2) N r(f 2k (Ag1 — Ai2)(t — 2)) da
0

The previous equation, after the change of variable z =t — x,dz = —dz reads:

t
= D(k,—k,?k)/ el1(t=2) 2k =1 =212 V(e 9k (N1 — A12)2) dz
0

+oo
KD (A2 — A2)t (7
= D(k,—k72k)z((22kl)(l)l'12)/ ol1(t=2) 2k+i=1 X212 g,
: 0

1=0
—+oo
= D(k,—k,2k) Y C(k, 2k, 1)G1(t, 2k + )X} := Js(t, k)
=0
Similarly:
t
Bl men] = [ @) da
0

t
D(k+1,—k, 2k +1) / 2@ (¢ — )R A= N (| 41,2k + 1, (A1 — A12)(t — ) da
0

+oo 1) l t

(k+ 1D (A1 — Aia) Iy(t—2) J2k+1 ,— a1 2

D(k+1,—k,2k+1) E (2]{4»1)(”[' ; el2(t=2) e~ A21% ],
=0

+oo
D(k+1,-k, 2k +1) Y C(k+ 1,2k + 1,1)Ga(t, 2k + 1 + 1)A} := Ju(t, k)
=0
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Finally by the independence of the process on non-overlapping intervals:

N. .
t Tj

Elexpl(i /0 f(s) d&,)] = Eleap(i y f£(s) dgZ9)] Eleap(i / f(s)ded)]
+oo

j=1vTi-1

k=0

= (Z(E[exp(fl ()" (Elexp(I2(v*))])* P(Ny = 2k)
+ Z [exp(I1(v)])* (Elexp(I2(v*))FP(N, = 2k + 1))

+00 g
(Z Eleap(Ty(t - ra))IP(N: = 26) + 3 Bleap(Ta(t - rae1))|P(V: = 2k + 1>)

k=0 k=0

from which equation (7) immediately follows. O

The following result describes the characteristic function of the temperature
process under the historic measure P.

Proposition 6. For the model described by equations (1), (2) and (12) the char-
acteristic function of T; under the probability P is:

or,(u) = exp(iuCi(t,a))pw, (uoe™*")

(9)

where the characteristic function of Wi, denoted by @w, (u), is given by equation
(7) in Theorem 5 applied to & = V!, f(s) = uoe=**=*) and

Li(x) == I;(z,u) / L (—iupd o™= — 2u202e_2°‘(t Nds, j=1,2
Proof. First, notice that:
pyi(w) = E[Elexp(i(uVy)/R])]] = Elexp(iup] R}) Elexp(iuBp; / R} )]
= Blesp(iund B]) exp(~3 Bju)] = Blesp(i(up] + 5iu) R])]
= oy + Si?)

2
Hence:
(10) by () = L gt + 50), 5= 1,2
By Lemma 1 and equation (6):
or,(u) = E[e™"] = exp(iuCy(t, o)) Elexp(iuce™ “"W,;)]

t
= exp(iuC’l(t,oz))E[exp(iuaeiO‘t/ e®*dVy)] = exp(iuCi (t, o)) pw, (uoe ™)
0

O
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3. SWITCHING MODEL UNDER AN ESSCHER TRANSFORMATION

In order to select the EMM for pricing purposes we consider an Esscher transform
of the historic measure P. See [5] for a rationale in terms of a utility-maximization
wealth criterion.

Thus, for a stochastic process (X;)¢>o we consider the change of probability:

9y

(11) 5 = ep(0X, — 1x,(0). 0 € R

where P; and Qf are the respective restrictions of P and Q? to the o-algebra
Fi. By ¢%, (u) and 1% (u) are defined respectively as the characteristic function
and cumulant generating function of a process (X;):>0 under the probability QY
obtained by an Esscher transformation as given in equation (11).

For consistency we denote gogft = x, and I% = lx.

By analogy with the case of financial underlying assets the risk-neutral measure Q°
making the discounted temperatures process (Tt)tzo a martingale. The expected
value under QY is denoted Fjy. ‘

Consider switching subordinator processes (R} );>o corresponding to regime j, for
j = 1,2 and time-changed processes (V}!);>¢ introduced as:

(12) V/ = Bpi+ulRi, j=1,2

Here u{ € R,j = 1,2. is a parameter in the model and (B;);>o is a standard
Brownian motion. It is assumed both subordinators to have finite moments of
some convenient order depending of the specific process chosen.

Under an Esscher transform of parameter € the probabilities of the number of
changes are:

e@kp(]\]t = k)

(13) PY(N,=k) = My (0)

where My, (0) = E[e?Nt] its moment generating function(m.g.f.) of N;.
The next result provides an expression for the characteristic function under an
Esscher transformation of parameter 6.

Theorem 7. Under the probability QY defined by the Esscher transform in equa-
tion (11) and the condition A1z, Aa; < 6 the characteristic function of the temper-
ature process is given by:

+oo
o (u) = exp(iuCi(t,a)) (ZCQ(U,H,k)Cg(u,O,k)> my(u, )

k=0
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where
too
J(u) = / el (o) g=(N=0z go 1 =1 2
0
+oo
JY(u.k) = D(k,k,2k) Y C(k,2k, )G (u,t,2k + D)X,
1=0
—+oo
J{(uk) = D(k+1,k2k+1)Y C(k+1,2k+1,0)G)(u,t,2k + 1+ 1)}
1=0
+oo +oo
my(u,0) = > J{(u,k)Py(Ny = 2k) + Y J{ (u, k)Py(Ny = 2k + 1)
k=0 k=0
t
G’?(u,m) = / el7 (wt=2) ym—1,—(A2=0)2 dz, j=1,2
0
Co(u,0,k) = (M2 —0)" (a1 — 0)*(J7 (w))*(J5 (w))*
Cs(u,0,k) = Po(N, = 2k) + (M2 — 0)J? (u)Py(N; = 2k + 1)
1 |
I]‘?(u x) / Lps (—iupd oe™ =) 4 109 4+ — ( iuoe™ %) 1 0)2) ds — s (426 + 592))33

Proof. Notice that from the change of probability defined by the Esscher transform:
lu‘/ﬂ 66th 7lvtj (9) SDth (’LL - 19)

@?ftj (u) = E(G ) = vaj (_29)

and 1f,; (v) = lys (u+0) — lys (6).
Theorem 5 is applied with & = V!, f(s) = uoe=*(*=%) to get equation (14).
Moreover:

Ig(u,az) = / 19 (—iuoce=*=%)) ds = / Ly (—iuoe™ =) 4 0) ds — Iy (0)x
0

= / Lps (—iupd oe™ =) 4 179 4 — ( iuoe” %) 19)?) ds

— (0 + 592)33

The m.g.f. of the number of regime changes on [0,¢) under the Esscher transform
becomes:

+oo too
My, (0) = Y e™"P(N,=k) = e*P(N, )+ Z 02k+1) p(N, = 2k 4 1)
k=0 k=0
- Z e?* (P(N; = 2k) + e’ P(Ny = 2k + 1))

2k0 )\1 )\}fH@e
= Bi(t,k) + ———— By(t, k
Z AT (2K) 1, )+>\’§+1F(2k+1) 2(t,k)

+o0o 0
A19€
= § 20D (k. —k. 2k) ( B + 2122 B
e (k, —k, 2k) 1(t, k) o 2E 1) 5 (t, k)

k=0
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Furthermore, under the measure QY the times between two consecutive regime
changes v; ~ exp(A; — ) for 6 < \;, independently each other.

Consequently, the p.d.f. and the c.d.f. of 7, under Q%, denoted respectively f,, (x, )
and Fy, (x,0) are given by:

fro(z,0) = e%f (z), 2>00 <Xy keN
O

The result below specifies the value of 6 under the Esscher transform to obtain
an EMM. For practical proposes with restrain the EMM condition the case s = 0
and any t > 0. Hence the condition reads E[T;] = Tp. The general case follows in
a similar way.

We first introduce the following quantities:

+oo
Ca(u,0) = > Colu,0,k)Cs(u,0, k)
k=0
+o0 oo
Cs(u,0) = > J§(u,k)Py(Ny = 2k) + Y J{ (u, k) Py(Ny = 2k + 1)
k=0 k=0
) Li(0,a,0) L3(0,a,0)
9 _ 1 _ k 1 9 9 1 9 9
Co(w.9) ' a[()\lz—a—@ ()\21—04—9)}
C [(k+ 1LY, a,0) L3(0,a,0)
Cr(u,0) = —
(w,0) ’0‘[ Cz—a—0  (ai—a—0)
) 3  aromidlri 1
Li(0.0,0) = (a0)7 (0 + puf)e” P2 (10 + S6°)

and the functions If(u, x),Jf(u),G?(u,t,m), Js(u,t, k,0) and Jy(u,t, k,0) are de-
fined as in Theorem 7.

Theorem 8. Let (1}):>0 be the temperature process defined by equations (1), (2)
and (12) starting at regime one. Then, the Esscher measure Q% is an EMM if for
any t > 0 the parameter 6 verifies under the conditions 6 < min(A\ — «,0), A2 <
A1l =1,2:

(15) R(t,0) = o~ et Ty — e " Oy (¢, )
where:
[dCy(uoc=te "t 0, k) dCs(uocte™"t 0, k)
R(t,0) = -— w=0C5(0,0, k u—
(t,0) v du lu=0C5( ) + du lu=0
The expressions dC4(w_;j_M’0’k) lu=0, 405 (uo” e " 0.k) lu=0 and C5 are given respec-

tively by equations (16), (17) and (18).
Proof. From Lemma 2 the discounted temperature process (Tt)tzo verifies:
T, = Cy(t, ) + oe W,
Then the EMM condition for s = 0 translates into:
Eo(Ty) = To
& Eyle ™)) = Egle " Cy(t, o) + oe~ Tt
= e Ot ) + oe” TIEY W] = Ty
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or equivalently the parameter 6 solves:
EgWy] = o teltUTy — e O (L, a))

We call Theorem 7 to compute the moment via its characteristic function. To this
end notice that

Wy = o e+ T, — e O (1, )

Consequently:
Auts) = el ot e
= exp(—iuo"te ™ exp(iu “Cy(uo e, 0)Cs(uote™", 0)
= Cy(ucte™,0)Cs(ucte™" 0)
where:
—+oo
Cy(uote ™ 0) = ZC’g(uole_rt,@,k)C’g(uole_”,G,k)
k=0
Cs(ucte™™,0) = ZJ?’ ucte™" k) Py (N, +ZJ4 ucte™" k) Py(N, = 2k + 1)

Notice that C3(0,6,k) =1 and C3(0,0,k) = Py(N; = 2k) + Py(Ny = 2k + 1).

The computation of the derivatives of the intermediate functions If(m z), Jf (u), Gf» (u,t,m),
J3(u,t, k, 6), Jy(u,t,k,0),Ca(u,d) and Cs(u,0) is straightforward. They are left to

the Appendix.

Then,
@(ua_le_rt 0) = Jio d—CQ(uo_le_’"t 0,k)Cs(uc™te " 6, k)
du ’ - — d’ll, sy Uy 3 , 0,
+ Lcé(ua_le_ﬁje, k_)cQ(ua_—le—rt7 9’ k‘):|
du
dC4 - PR +oo ng L
W(uo e 0)u=0 = o e Z E(uo e "0, k)|u=0C5(0,0, k)
dC
0K
+oo 1 5
. Li(0,a,0) L(Qaa)]
= —ZkO{ 1\Y ™ + 1\Ys &y PN:Q]C +PN:2k+1
,;[ [mzae) ot — o= ) | [P (N = 20) + Po(N, )
all(0,a,0)
PN, =2%) —i—1\""") p (N, —9% + 1
" [9( ! ) Z()\lg—a_e) 9( t + )]:|
+o00
= Z Cs(u, 0)Py(Ny = 2k) + Cr(u,0)Py(Ny = 2k + 1)]
k=0
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and
dCs . | _ a0
Tj(ua le Tty@) = Z Tj(ug le rt,k)Pa(Nt _ Qk’)
k=0
+o00o 0
d
+ di( —1 7rt k)PG(Nt—2k+1)
k=0 u
dC: too d.Jje ,
du5 (ua e 0, k) u=o = TS(UU_le_Tt7k)‘u:OP9(Nt = 2k)
k=0
+ Y o e B umo Po(Ny = 2k + 1)
k=0
(17)
Notice that:
t
G?(O,m) = / m—lg—(Ra=0)z g, _ o= 9)71F(m7 (A2 — 0)t)
0

+oo
J9(0,k) = D(k,k,2k) > C(k, 2k, 1)GY(0, 2k + )X,

=0

“+oo
Jo(0,k) = D(k+1,k 2k+1) ZC(k + 1,2k + l,l)Gf(O, 2k +1+ 1))\,
1=0
C5(0,0,k) = 1
C5(0,0,k) = Py(N, = 2k) + Pp(N, =2k + 1)
Leading to:
“+o0
C4(0,0) = Y C5(0,0,k)C5(0,0,k) = choak
k=0
+oo
= ) (Po(Ne =2k) + Pp(Ny = 2k + 1)) =
k=0
o] +oo
C5(0,0) = > J9(0,k)Py(Ny = 2k) + Y JJ(0,k)Py(Ny = 2k + 1)
= k=0
(18)
dewo (uo=tet) dCy(uoc=te ™" 0, k) dCs(uo=te™" 0, k)
du |u:0 - du |u:005(0797k) + du |u:004(0707k)
dcC. “le=rt 0.k dCs(uocte™", 0,k
_ e e TOR)) cs0,0,8) + ST TOR)
du du

d

4. CASE OF GAMMA AND INVERSE (GAUSSIAN SUBORDINATORS

We analyze in details the calculation of the characteristic function and the Es-
scher parameter in the case of the model (1) with Gamma and Inverse Gaussian
subordinators.
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As no closed-form formulas exist, numerical approximations are required. It in-
volves truncations in the probability distribution of the changes of regimes on [0, t],
as well as in other intermediate related series. Also, numerical integration, fol-
lowing trapezoidal rule, is necessary in repeated occasions. Generally speaking the
order of calculation followed to obtain the characteristic function under the Esscher
transform is the following:

D, C\T, Bj, My(k), Po(k), Uy I}, J, GI, J} (u, k), Co, G, 7,
Example 9. Gamma subordinator Consider the subordinators (R{ )i>0 are Gamma

processes with parameters a; > 0,b; > 0,7 = 1,2 with respective characteristic
function and Laplace exponent:

. —a,t
eri(u) = (1—$> ,a; >0,b;>0
j
ZRJ(U) = —aj log (1 — u) , U< bj
b
and
ihs 0 —ajt
ot = (1= 020 s 0,50
j
h; 0
1%,(u) = —ajlog (1 — J(ub,s,)> ,u < b
j
where:
A S
hj(u,s,0) = uploe*e* + 16 + i(uae_“te‘” +0)%, j=1,2.
Therefore:
¥ ; 1
Ig(u, x) = /0 lpihj(u,s,0) ds — lgi(u]6 + 592)x
v hy(u, 5,0 10+ 107
= —a. log 1_M ds — log 1_('[”4_72) P
j ) ,
0 b; b;
—+oo
poy = [t
0
104 362\ T e g hy(u, s,0
S I / exp(—aj/ log (1 — J(U’S’)> ds — (N — 0)x) dx
b 0 0 b;
t
Golu,m) = / eli (wi=2) ym—1e=(a=0)z g, 5 —1 9
0

- —ajt
N 116 + 162
b;
/t VL UAS AN
0 bj

t—z h. 0
exp(—aj/ IOg <1 _ ](L;)’S’)) ds)szle*()\gfmz dz
0 J
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We compute the Gerber-Shiu parameter 6 from the martingale condition given by
equation (15). First,

lej j 1 2 a;
0+ -0 = — J
j j dlpi , 1
Li(#.a,0) = (a0) (0 +pf)e” @ (440 4 67)

a;(a0) (0 + pf)e o201
b; — pi6 — 367
The previous calculations allow to find Cg, C7, Cy and C5 and its derivatives leading
to R(t,0) in equation (15).

Example 10. Switching Inverse Gaussian subordinator

vri(u) = exp(—a ,/—22u+b2—b)
le (U) = —CLJ‘W/—Q’U,—F b? — bj

exp(—a; \/—22'11]-(u7 5,0) + b3 —b;)

and

S
:_UQ}
Il

lhi(u) = —a \/—%j (u,s,0) + b2 — b
If(u,x) = /lm i(u,8,0)) ds — Lps (1160 + 92)

; 1
l/ \/ 2hj(u, s,0) + b3 ds — (b; —|—\/ (u{9+§92)+b§)x

+oo @ ; 1
J(u) = /0 exp(—aj(/o \/—Zhj(u, 5,0) 4 b7 ds)exp(—(b; + \/—2(/1319 + 592) + b3\ — 0)z) da

t
Ge-(u,m) = /eff(u,t—z)zm—1e_(,\2_9)z d=
0

J
= exp(— / —2h;(u, s, ) +b2 ds
A v

—a;(b; + \/—2(/;{9 + 592) +b3)(t - 2))zm gm0z gy

o1
= <bj + \/—z(uie + 592) + b§> t

t
; 1
/ exp(— [/ \/ 2h(u, s,0) + b3 ds + (b + \/—2(;&9 + 592) +b3)z )2 lem(he=0)z g
0

5. CONCLUSIONS

A switching mean-reverting model for temperatures when the latter oscillates
between two stochastic differential equations with time-changed Levy noises has
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been investigated. The characteristic function and Esscher parameter to produce
an Equivalent Martingale Measure have been found via an approximate closed-
form expression. Calculations require some rather complex but feasible numerical
approximations involving numerical calculations of double integrals, truncated se-
ries and root solving.

This theoretical framework paves the way to price weather financial contracts based
on temperature indices such as cumulative average temperatures, cooling and heat-
ing days.
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7. APPENDIX

To compute the derivatives of the characteristic function we first find the deriva-

tives of the intermediate functions IJQ (u, ), Jf (u), G? (u, t,m), JE (u, t, k,0), J¢ (u,t,k,0),

Cy(u, 0, k) and Cs(u, 0, k).
To this end we denote by:

- o
gi(uc™re ™ 5,0) = —iuple (T 410 4 ~(—iue” (@ 1 9)2 5 =1,2.

2
we have:
. —1,—rt .
dg; (uo dz ,5,0) = —iple(@Fteas _jem(atnteas(_jye=(atniteas gy 5 =1 2.
Then:
dIe(uafle’”,x) 1 z lej 1 —r dg'(UU_le_Tta S, 9)
J - lu=o = o ‘e ’"t/o T (gj(uo™ e ", 5,0))|umo—2 o
= ig ot etz [TAR g Lgayeas g
- o lul 0 du /’Ll 2
_ —iail(g—I—,u,j)ei(ajL%)t@(uj@-|—192) /x ™ ds
! du "t 2 0
= —il1(0,a,0)(e* —1)
Hence:

6 -1 _— 0 —1_—r
dG(uo~"e ’"t,t,m)/t dIf(uo~te "t — z)
du 0 du

0
dG5(u,t,m)

t
S o = —iLa(0,,0) / O (072 1) tem G0 g
0

t t
— *Zle (07 a, o, t) |:/ GI;} (O,tfz)szlef(Am*9)Z+a(t7z) dz — / melef(/\mfG)z dZ:|
0 0

t t
= *Z‘le-(&o“o') |:6at/ Zm7167(>\21*0+0é)2 dz 7/ Zm71€7(,\2179)z d2’:|
0 0

|u:0 ds

00, —1 —rt , 1 — _
te(ua e "t z)Zm 1e (A21—0)z dz
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‘ r ¢ ¢
= —il{(0,a,0) eo‘t/ 2" lexp(—(N\oy — 0+ a)z / 2" Lexp(— (N2 — 0)2) d ]
L 0 0
' r ¢ ¢
= —il{(0,a,0) eo‘t/ 2" exp(—( Mg — 0+ a)z2) dz — | 2™ Lexp(—(\ —0)z) dz]
L 0 0
_ r ¢
= —il{(0,a,0) eo‘t/ 2™ Leap(—(a+ Aoy — 0)2) dz — szlezp(f()\gl —0)z) dz]
L 0 0

= —iL}(0,a,0) [e*(a+ N1 — 0)T'T(m,a + Aoy — 0) — (Aa1 — 0) "' T(m, Aoy — 0)]

Moreover for j =1, 2:

dJle(’LLU*le*Tt) _ /+o<> dI{’(uafle’Tt,x) efzo(ua_le_rt@)ef(hz*@w o
du 0 du
dJf (uo—te”™) [T dI (uo e ) 19(0,2) — (M —0)a
— du lu=0 = lu=o0€ e dx
U 0 du

, +oo
= —iLI(6, a,cr)/ (e®” —1)e~ M= gy
0

) too
= —iL{(#, a,a)/ (ev® —1)e~ M= gy
0

+oo +o00
= —Z'le.(e,a,o‘) |:/ eawe—(kl—e)x dx _/ e—(Al—Q)m dI:|
0 0

= —iL{(e,a,a)[ ! - }

Al—a—ﬂ )\1—9
_ i’ (0, a,0)
()\l — 9)()\1 - — 9)

(19)

under the condition 0 < maz (A — «,0).
On the other hand:

6 uo_flefrt k(710 uo.flefrt k 6 uo_flefrt k
Ay T Vi T
(% uo.—le—rt k
+ d(J2( o )) (Jle(uo_—le—rt))k

1 ke 1 g @I (uo e
L T e YT P i S CL i

du
+ k(Jg(uafle*”))k*l(Jf(uafle*”a*le*”))k—d‘]g(“;lwt)
Hence:
d(Jf(UU*l@th))dlzjze(Wf*l@*ﬁ))k|u:O _ 07164%((]10(0))1@71(Jg(o))kdjf(uz;leirt)|u:0
ot o T
= wotop gy [P

dJ8 (uo—te ) o
v ) o0
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But, taking into account that:

r : 1 ; 1
Il(g(()?,’t) = / lR](qu9+§92) dS—le(M‘{e—f— 592))3;':0
0
0 e (A—6) 1
J7 (0) /0 e dx N0
we have:
d(J7 (u))* (4 (u))* | _ k
du 0T g — 0)F T (Agy — 0)F 1
[ —iall(0,a,0) B ial3(0,a,0,t) }
()\12 — 9)()\12 — O — 9)(/\21 — 9) (/\21 — 0)(/\21 — Qo — 9)()\12 — 9)
_ ka [ Li(0,a,0) N L2(0,a,0) ]
()\12 — Q)k()\gl — H)k (/\12 — Qo — 9) (/\21 — o — 9)
(20)
Moreover:
dJs(uotert), k, 0) B = acé, . .
du ‘u:O - D(k,k,Qk);C(k,%,l)%(ua e 72k+l)|u:0)‘2
dJy(uo=te "t k. 0) B = & V- l
o o = D(k+1,k2k+1)> C(k+1,2k+ L)~ 2 (o™ e ™", 2k + 1+ 1u=o s

=0
(21)

Then, taking into account equations (19),(21) and (20) we have:

P — k R A(J] (uo™ e ™)) (JG (uo e )"
7(,”’0 e " 303 k) = (>‘12 - 9) ()‘21 - 0)
du du
dCy 1 4 . Li(8,a,0) L3(0,a,0)
— "0, k) u= = -—ik
o0 )0 B e —a—0  Dar—a—0)
and
. 0
Cil—c:(uo_le_”, 0,k) = Pp(Ny=2k)+ (A2 — 9)%P9(Nt =2k+1)
d d 0 —1,—rt
I 1 0. = B = 28) + (oo — )T py (v, = 2k 1)
Coll(0, 0,0
= Py(N, =2k) — Z(/\l;(_a_e))Pg(Nt =2k+1)
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