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Abstract. In this paper we study the pricing of exchange options when under-
lying assets have stochastic volatility and stochastic correlation. An approx-

imated closed-form formula based on a Taylor expansion of the conditional

Margrabe price is proposed. The problem is illustrated within the framework
of the exchange between two different types of oil commodities.

Keywords. exchange options, stochastic correlation, Taylor expansion, Ornstein–

Uhlenbek process.

1. Introduction

In this paper we study the pricing of exchange options when the underlying assets
have stochastic volatility and correlation. Its main contribution is the proposal of
an approximated closed-form methodology for the price of the contract, providing
an accurate valuation under a more realistic model within a reasonable computing
time. The results provide some comparison with the classic Margrabe setting in
terms of sensitivities with respect ot different risk factors.
The pricing of exchange contracts has been first considered in [10] under a stan-
dard bivariate Black-Scholes model, where a closed-form formula for the pricing is
provided. Unfortunately, once outside the classic setting there is not closed-form
expression to valuate the price. In [6] the pricing of single-asset option contract un-
der stochastic volatility is studied. The idea is extended in [8, 17, 18] to exchanges
in the case of stochastic volatilities while the pricing in models with stochastic
correlation and constant volatilities is covered in [1] for a related spread option
contract. Using some approximations and ad-hoc methods the pricing have been
considered in [3, 4] in the case of a jump-diffusion model, and in [2] for the pricing
of stochastic interest rates.
An exchange between two assets impacted with climate change, e.g. companies with
positive and negative exposure to environmental risk, allows to hedge against catas-
trophe risk. For the pricing of exchange options in catastrophe risk management,
see for example [20]. Exchange option contracts can be used within the framework
of real options analysis by considering the exchange between two different projects
that could possibly undertaken, one sustainable and the other not, whose future
returns are subject to uncertainty, see [16]. Exchanges in the context of credit risk
have been studied in [5] and [15].
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In the current paper we specifically consider the pricing of the exchange under a
model whose volatilities follow correlated Ornstein-Ulenbeck models and a mean-
reverting stochastic dynamic for the correlation. In [19] a model with stochastic
covariance is taken into account.
In [7] a pricing method based on a Taylor expansion has been considered for Eu-
ropean single-asset derivatives, whereas the same approach but for spread options
have been studied in [9, 11, 13, 12, 19] under different dynamic models and con-
tracts.
The organization of the paper is the following:
In section 2 the model is introduced, the approximated pricing formula is discussed
and the first and second order moments of the squered volatilities and correlation
between assets are computed. Their proofs are deferred to the appendix. In sec-
tion 3 we discuss the numerical results for the pricing of exchange options between
two different types of oil commodities. Finally, a discussion of the results and
recommendations is presented in the conclusion section.

2. Pricing exchange options in models with stochastic correlation

Let (Ω,F , (Ft)t≥0, P ) be a filtered probability space. We denote by Q a risk-
neutral equivalent martingale measure(EMM) and EQ the expected value with
respect to the measure Q.
For a stochastic process (Xt)t≥0, the integrated model associated with it is denoted
by (X+

t )t≥0 and defined as:

X+
t =

∫ t

0

Xs ds

The functions fX(x) and fX/Y (x/y) are respectively the probability density func-
tion (p.d.f.) of the random vector X and the conditional p.d.f. of X on another
random vector Y .
A two-dimensional adapted stochastic process (St)t≥0 = (S

(1)
t , S

(2)
t )t≥0, where their

components are prices of certain underlying assets, is defined on the filtered prob-
ability space above.
We assume that the process of prices has a dynamic under Q given by:

dS
(1)
t = r S

(1)
t dt+ σ

(1)
t S

(1)
t dZ

(1)
t

dS
(2)
t = r S

(2)
t dt+ σ

(2)
t

√
1− ρ2t S

(2)
t dZ

(2)
t + σ

(2)
t ρt S

(2)
t dZ

(1)
t

where (σt)t≥0 = (σ
(1)
t , σ

(2)
t )t≥0 is the bivariate volatility process, Vt = (V

(1)
t , V

(2)
t )t≥0,

with V
(j)
t = (σ

(j)
t )2, j = 1, 2 is the process of squared volatilities of the underlying

assets and ρt is the linear correlation coefficient between the assets at time t, whose
dynamic is given by:

dρt = γ̄ (Γ̄L − ρt) dt+ ᾱ
√
1− ρ2t dW̄t(1)

while Γ̄L and γ̄ are the mean-reverting and reverting rate parameters respectively.

The value r > 0 is the interest rate and Z
(j)
t and W̄t are Brownian background

noises.
The payoff of a European exchange option with maturity at time T > 0 is:

h(ST ) = (S
(1)
T − S

(2)
T )+ := max(S

(1)
T − S

(2)
T , 0)
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On the other hand the price of an exchange contract with payoff above at time t,
0 ≤ t ≤ T and maturity at T is given by:

(2) Ct = e−r(T−t)EQ[h(ST )]

Its terminal value is CT = h(ST ).
The price of the exchange contract at time t, t < T , depends on the behavior of
(Vs, ρs)t≤s≤T summarized by the corresponding integrated processes on the interval
[t, T ]. It also depends on the spot prices, volatilities and correlation during the
time interval to maturity. For simplicity in the notations we explicitly drop this
last dependence. For the same reason, we analyze only the case t = 0.
Hence:

C0 = e−rT

∫
R2×Ω

h(x′)fST ,V +
T ,ρ+

T
(x′, x′′) dx

= e−rT

∫
Ω

[∫
R2

CT (x
′)fST /V +

T ,ρ+
T
(x′/x′′)

]
fV +

T ,ρ+
T
(x′′) dx′′

=

∫
Ω

CM (x′′)fV +
T ,ρ+

T
(x′′) dx′′

(3)

where Ω = R2
+ × (−1, 1) and (x′, x′′) ∈ R2 × Ω.

The function CM (x′′) = e−rT
∫
R2 CT (x

′)fST /V +
T ,ρ+

T
(x′/x′′) dx′ is the classic Mar-

grabe price conditionally on x′′ = (V +
T , ρ+T ). After conditioning it equals the Mar-

grabe price as obtained in [10]. A closed-form for the latter is given by:

(4) CM (V +
T , ρ+T ) = e−rTS

(1)
0 N(d1(v

+
T ))− e−rTS

(2)
0 N(d2(v

+
T ))

with:

d1(v
+
T ) =

log

(
S

(1)
0

S
(2)
0

)
+ 1

2v
+
T√

v+T

d2(v
+
T ) =

log

(
S

(1)
0

S
(2)
0

)
− 1

2v
+
T√

v+T

= d1(v
+
T )−

√
v+T

where:

v+T = V 1,+
T + V 2,+

T − 2

√
V 1,+
T V 2,+

T ρ+T

and (V +
t )t≥0 = (V 1,+

t , V 2,+
t )t≥0. The function N(.) represents the cumulative dis-

tribution function of a standard normal random variable.
Next, to approximate the price in equation (2) we consider a second order Tay-
lor expansion of the conditional Margrabe price CM (x), x ∈ Ω around the average
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volatilities and correlation values. It leads to:

ĈM (x) = CM (x0) +
∂CM (x0)

∂x1
(x1 − x0,1) +

∂CM (x0)

∂x2
(x2 − x0,2) +

∂CM (x0)

∂x3
(x3 − x0,3)

+
1

2

∂2CM (x0)

∂x2
1

(x1 − x0,1)
2 +

1

2

∂2CM (x0)

∂x2
2

(x2 − x0,2)
2

+
1

2

∂2CM (x0)

∂x2
3

(x3 − x0,3)
2 +

∂2CM (x0)

∂x1x2
(x1 − x0,1)(x2 − x0,2)

+
∂2CM (x0)

∂x1x3
(x1 − x0,1)(x3 − x0,3) +

∂2CM

∂x2x3
(x0)(x2 − x0,2)(x3 − x0,3)

(5)

where x0 := (x0,1, x0,2, x0,3) = (EQ(V
1,+
T ), EQ(V

2,+
T ), EQ(ρ

+
T )) Hereby we assume

the existence of the joint probability density function of the triplet integrated pro-
cess (St, V

+
T , ρ+T ), denoted by fSt,V

+
T ,ρ+

T
. Combining equations (3) and (5) we have

that the price C0 is approximated by:

Ĉ0 = CM (x0) +
1

2

∂2CM (x0)

∂x2
1

V arQ(V
1,+
T ) +

1

2

∂2CM (x0)

∂x2
2

V arQ(V
2,+
T )

+
1

2

∂2CM (x0)

∂x2
3

V arQ(ρ
+
T ) +

∂2CM (x0)

∂x1x2
covQ(V

1,+
T , V 2,+

T )

(6)

Notice that the Margrabe price CM (x′′) ∈ C∞(Ω), i.e. it has derivatives of any
order on the set Ω.
Equation (5) is obtained substituting equation (5) into (3), taking into account
that:∫

R3

(x1 − x0,1)fV +
T ,ρ+

T
(x) dx =

∫
R
(x1 − x0,1)

[∫
R2

fV +
T ,ρ+

T
(x) dx2 x3

]
x1 dx1

= EQ(V
1,+
T − EQ(V

1,+
T )) = 0∫

R3

(x2 − x0,2)fV +
T ,ρ+

T
(x) dx =

∫
R
(x2 − x0,2)

[∫
R2

fV +
T ,ρ+

T
(x) dx1 x3

]
dx2

= EQ(V
2,+
T − EQ(V

2,+
T )) = 0∫

R3

(x3 − x0,3)fV +
T ,ρ+

T
(x) dx =

∫
R
(x3 − x0,3)

[∫
R2

fV +
T ,ρ+

T
(x) dx1 x2

]
dx3

= EQ(ρ
+
T − EQ(ρ

+
T )) = 0

The last result after assuming independence between volatility and correlation back-
ground noises.

Remark 2.1. Sensitivities with respect to the parameters in the contract can be
computed in a similar way. For example, an approximation of the deltas in the
exchange contract are obtaining by differentiating equation (6) with respect to the
initial price of the underlying assets.

Computing derivatives of the Margrabe price with respect to the volatilities and
correlation is straightforward. This issue is addressed in details in appendix B.
In order to estimate the option pricing function above we need to compute the
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moments of (V 1,+
T , V 2,+

T , ρ+T ). To this end we introduce the following notations:

mrj(t) = EQ[ρ
j
t ], mr+j (t) = EQ[(ρ

+
t )

j ], j = 1, 2

mvj,k(t) = EQ[(V
(k)
t )j ], mv+j,k(t) = EQ[(V

k,+
t )j ] j, k = 1, 2

mv12(t) = EQ[V
(1)
t V

(2)
t ], mv+12(t) = EQ[V

1,+
t V 2,+

t ]

Specific results are given below under a dynamic of an Ornstein-Ulenbeck process
for volatilities. The latter are modeled as the Ornstein-Ulenbeck processes:

(7) dσ
(j)
t = −αjσ

(j)
t dt+ βjdW

(j)
t , j = 1, 2

where the Brownian motions (W
(1)
t )t≥0 and (W

(2)
t )t≥0 have instantaneous correla-

tion ρV .
By Ito formula:

dV
(j)
t = cj(V

(j)
L − V

(j)
t ) dt+ ξjσ

(j)
t dW

(j)
t , j = 1, 2(8)

The parameters VL = (V
(1)
L , V

(2)
L ) and cj > 0 are respectively the mean-reverting

level and rate of the squared volatility processes.

The two components of the Brownian motion (Zt)t≥0 = (Z
(1)
t , Z

(2)
t )t≥0 are assumed

to be independent of the second set of Brownian motions (Wt)t≥0 = (W
(1)
t , W

(2)
t )t≥0

and W̄t. The Brownian motions of volatilities and correlation are also assumed to
be independent.

Remark 2.2. Parameters in models the (7) and (8) are related by cj = 2αj,

V
(j)
L =

β2
j

2αj
and ξj = 2βj.

Results regarding the moments on the integrated processes are given in the
propositions below, while proofs are deferred to appendix A.

Proposition 2.3. Let the correlation process (ρt)t≥0 satisfy equation (1). Then:

mr+1 (t) := EQ(ρ
+
t ) = Γ̄Lt+

(
ρ0 − Γ̄L

γ̄

)
(1− e−γ̄t)

(9)

mr+2 (t) := EQ[(ρ
+
t )

2] = b0 + b1t+ b2t
2 + b3te

−γ̄t + b4e
−(2γ̄+ᾱ2)t − (b0 + b4)ce

−γ̄t

(10)

V arQ(ρ
+
t ) = mr+2 (t)− (mr+1 (t))

2

(11)
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where:

a1 =
2γ̄Γ̄2

L + ᾱ2

2γ̄ + ᾱ2
, a2 =

2γ̄Γ̄L(ρ0 − Γ̄L)

γ̄ + ᾱ2

b0 =
1

γ̄2

(
−a1 + ρ20 + 2Γ̄L(2− ρ)− a2α

2

γ̄
− α2(ρ20 − a1 − a2)

(2γ̄ + ᾱ2)

)
b1 =

1

γ̄

(
2Γ̄L(ρ− 1) +

ᾱ2(1− a1)

γ̄

)
b2 = Γ2

L, b3 =
a2
γ̄

(
ᾱ2

γ̄
− 1

)
b4 =

ρ20 − a1 − a2
γ̄(γ̄ + ᾱ2)

(
1− ᾱ2

2γ̄ + ᾱ2

)
Second order moments and covariance of the integrated squared volatility are

given in the propositions below. Previously we introduce the following constants:

d0,j = (2cjV
(j)
L + ξ2j )

V
(j)
L

2cj

d1,j = (2cj + ξ2j )
(V

(j)
0 − V

(j)
L )

cj

g0,j =
1

c2j

[
(V

(j)
0 − V

(j)
L )2 + (V

(j)
L )2 −

ξ2jV
(j)
L

cj
− d0

]

g1,j =
2

cj

(
V

(j)
L (V

(j)
0 − V

(j)
L )

)
+

ξ2jV
(j)
L

c2j

g2,j = (V
(j)
L )2, g3,j = − 1

c2j

[
d0,j + d1,j − (V

(j)
0 )2

]
g4,j = −

ξ2j
c2j

(
V

(j)
0 − V

(j)
L

)
Hence:

Proposition 2.4. Let the process (Vt)t≥0 satisfy equations (8). Then:

mv+1,j(t) = V
(j)
L t+

V
(j)
0 − V

(j)
L

cj
(1− e−cjt), j = 1, 2

(12)

mv+2,j(t) = P1,j(t)− (g0,j + g3,j +
d1
cj

)e−cjt + g3,je
−2cjt + g4,jte

−cjt, j = 1, 2

(13)

V arQ[V
+,j
t ] = mv+2,j(t)− [mv+1,j(t)]

2, j = 1, 2

with:

P1,j(t) = g0,j + g1,jt+ g2,jt
2

Proposition 2.5. Let the process (Vt)t≥0 satisfy equation (8). Then:

cov(V +,1
t , V +,2

t ) = mv+12 −mv+1,1(t)mv+1,2(t)
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where:

mv+12(t) = EQ[V
+,1
t V +,2

t ] =
1

c1c2

[
P2(t)− (V

(1)
0 + c1V

(1)
L t)mv1,2(t)− (V

(2)
0 + c2V

(2)
L t)mv1,1(t)

+ ms12(t)− ξ1ξ2ρV (e
−c1tB1(t) + e−c2tB2(t)) + ξ1ξ2ρV A(t)

]
where:

P2(t) = V
(1)
0 V

(2)
0 + (c2V

(1)
0 V

(2)
L + c1V

(2)
0 V

(1)
L )t+ c1c2V

(1)
L V

(2)
L t2

A(t) =
ξ1ξ2ρV

2(c1 + c2)

(
t− 2

c1 + c2
(1− e−

1
2 (c1+c2)t)

)
+

2σ
(1)
0 σ

(2)
0

c1 + c2

(
1− e−

1
2 (c1+c2)t

)
Bj(t) =

ξ1ξ2ρV
2(c1 + c2)

[
1

cj
(ecjt − 1)− 2(−1)j

c2 − c1
(e

1
2 (−1)j(c2−c1)t − 1)

]
+ σ

(1)
0 σ

(2)
0

2(−1)j

c2 − c1

(
e

1
2 (−1)j(c2−c1)t − 1

)
, c1 ̸= c2

Bj(t) =
ξ1ξ2ρV
4cj

(
1

cj
(ecjt − 1)− 1

)
+ σ

(1)
0 σ

(2)
0 t, c1 = c2

The functions m+
1,j(t) are given by equation (12) while:

ms12(t) =
ξ1ξ2ρV

2(c1 + c2)

(
1− e−

1
2 (c1+c2)t

)
+ σ

(1)
0 σ

(2)
0 e−

1
2 (c1+c2)t

m1,j(t) = V
(j)
L + (V

(j)
0 − V

(j)
L )e−cjt

3. Numerical pricing results

We consider an exchange contract between futures of West Intermediate Texas(WTI)
and Brent oil types traded at NYSE. Both commodities exhibit similar patterns of
behavior. Firstly, as is expected, they are highly correlated. The overall linear
correlation of the series of daily future prices during the period of Dec 2013 and
Jan 2019 is equal to 98%, while the correlation of the daily log-returns is 3.81%.
On the other hand, when the correlation is rolled over sliding windows of 50 days it
exhibits notable random variations with an apparent mean-reverting factor. This
empirical fact suggests the presence of a random time-dependent correlation instead
of a constant one, as classic models assume. See figures 1(a) and (b) for the linear
correlation on prices and log-returns respectively.

A summary of the first four moments of the log-return series is shown in ta-
ble 1. A high kurtosis indicates the presence of heavy-tailed distribution in both
commodities.

Asset Mean Standard deviation Skewness Kurtosis
WTI -0.0003 0.0211 0.1089 6.0696
Brent -0.0004 0.0201 0.1473 5.9818
Table 1. First four moments of log-returns WTI and Brent

To illustrate the behavior of the elements in the model we consider a set of
parameters as shown in table 2. As initial prices for both assets the values S

(1)
0 =

100, S
(2)
0 = 96 in US dollars are considered. Initial squared volatilities are V0 =
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(a) (b)

Figure 1. Left: Fifty days moving window correlation coefficient
between WTI and Brent daily future prices . Right: Same window
for the log-returns

(a) (b)

Figure 2. Simulated one-year length series of prices of both com-
modities(left) generated by a Monte Carlo method from the model
with stochastic correlation and the corresponding realizations of
their squared volatilities(right)

(0.1, 0.1) or about 31,6 % of volatility in both assets. Notice from table 1 that
both WTI and Brent commodities present similar standard deviations. The initial
correlation is ρ0 = −0.3. The parameters in the model for the squared volatilities
in equation (8) are related, see remark (2.2). As a consequence we have that

V
(j)
L =

ξ2j
4cj

.

The correlation between the Brownian motions driving the volatilities dynamic
is ρv = 0.80, reflecting a high joint fluctuation as suggested by the data. The
mean-reverting levels and rates of the volatility processes are VL = (1/8, 1/8) and
c = (1, 1) respectively. The later indicates 6 months of reverting rate. Analogous
parameters in the correlation processes are Γ̄ = 0.8 and γ̄ = 0.8. The annual
interest rate is r = 4%, and the maturity time is one year.
Parameters have been chosen for illustrative proposes in a way that the simulated
oil prices fall within the range of those observed in the data. For a discussion about
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parameter estimation based on a Generalized Method of Moments on a related
model having for underlying commodities oil and gasoline within the context of
spread pricing see [14].

Asset WTI sqr. vol. Brent sqr. vol. Correlation
Component

MR level V
(1)
L = 1

8 V
(2)
L = 1

8 Γ̄L = 0.8
MR rate c1 = 1 c2 = 1 γ̄ = 0.8

vol. ξ1 = 0.5 ξ2 = 0.5 ᾱ = 1

Initial values V
(1)
0 = 0.1 V

(2)
0 = 0.1 ρ0 = −0.3, ρV = 0.8

Table 2. Parametric set for the squared volatilities and correla-
tion models

The trajectories of the two processes from a Monte Carlo simulation are shown
in figure 2. Figure 2(a) represents the series of prices while figure 2(b) shows a
realization of the squared volatilities. Simulation has been coded in MATLAB
computer language with an Intel(R) Core(TM) i7-10510U CPU after implementing
an Euler-Maruyama scheme on the corresponding stochastic differential equations.
A second Taylor approach took an average of 2.9078× 10−4 seconds while an alter-
native Monte Carlo method with 104 repetitions necessitated 118.050411 seconds.
Sensitivities, popularly known as greeks, in the exchange contract value with re-

spect to the initial prices of the underlying commodities, given in figure 3(a), the
time to maturity, in figure 3(b) and the initial correlation between underlying assets
in figure 3(c) are shown. All the parameters in the model and contract in table
2 have been kept constant except the one considered in this empirical sensitivity
analysis. In the three figures the blue curve represents the Margrabe price under
the model with stochastic correlation and volatilities while the red curve signals the
Margrabe price in the classic setting. All prices have been computed using a second
order Taylor expansion. Thus, in figure 3(a) the initial price of one of the under-
lying commodities is moved within an interval of 100-200 dollars while the other
is kept constant at 96$. The value of the exchange increases under both models
with the increments in the difference between the starting underlying prices, but
in the model with stochastic correlation the rate of the increments is higher. No-
tice also that when the contract is on-the-money the value of the classic exchange
contract outperforms the one with stochastic correlation, while when the contract
is out-the-money the situation reverses. It illustrates a possible overvaluation or
undervaluation of exchange contracts as a result of neglecting random variations in
the correlation and volatilities.
In figure 3(b) the price of the contract when maturity time ranges between six
months and one year is shown. It is observed that the price under the stochastic
correlation model stabilizes as maturity increases indicating a possible Law of Large
Number or ergodic effect, i.e. random variations in the correlation are compensated
in the long run. In the classic Margrabe model the price slowly decreases with ma-
turity time.
In figure 3(c) the price of the exchange is shown as function of different initial

correlations. As expected, the price decreases with higher volatilities. Moreover,
a negative correlation tends to favor the separation of the underlying commodity
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(a) (b)

(c)

Figure 3. Figure (a) shows the influence in the prices of an ex-
change contract with respect to initial prices. Figure (b) exhibits
the behavior of the price as function of the time to maturity with
figure (c) reflects the sensitivities regarding the initial correlation
between underlying assets

prices at maturity under both models. Again, the classic Margrabe model overes-
timates the price.
On the other hand, figure 4 shows the price as function of the squared volatilities of
both assets in the case of the model with stochastic correlations. The price increases
as volatilities increases as expected. Figure 5(a) shows a comparison between the
conditional Margrabe price as function of the squared volatility of the first com-
modity(red line) for a selected interval around the average squared volatility and
the first(blue line) and second Taylor(dotted yellow line) approximations. As it can
be observed a second order Taylor approximation offers a suitable approximation
of the Margrabe price.
In figure 5(b) the difference between Margrabe price and a second Taylor approxi-
mation for a set of squared volatilities in the first and second commodities is shown.
Again, the numerical results show a reasonable approximation except at volatilities
near the origin, which are not expected in most realistic situations.

4. Conclusions

A second Taylor approximation offers a suitable method to price exchange con-
tracts beyond the Margrabe’s classic framework when stochastic volatilities and
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Figure 4. A change in the prices of an exchange contract with
respect to squared volatilities

(a) (b)

Figure 5. Conditional Margrabe price vs Taylor approximations
of first and second order in figure (a). The difference between
conditional Margrabe price as function of both volatilities is shown
in figure (b).

correlation between them are taken into account. In the parametric set consid-
ered it produces accurate results with significant less computational effort than a
standard Monte Carlo approach. In comes with the caveat that the Taylor approx-
imation is fairly accurate around the mean values of volatilities and correlation,
which in practical situations need to be priory assessed.
The sensitivity analysis produces an interesting insight about risk factors affecting
the price of the exchange, while the comparison with the classic Margrabe set-
ting shows a possible overestimation of the price of the exchange when stochastic
correlation and volatilities are not taken into account.
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6. Appendix

6.1. Appendix A: Moments of the volatility and correlation. Proof of
proposition 2.3

Proof. For the first moment notice that:

(14) ρt = ρ0 + γ̄ Γ̄Lt− γ̄

∫ t

0

ρs ds+ ᾱ

∫ t

0

√
1− ρ2s dW̄s

Taking expected value on both sides:

mr1(t) := EQ(ρt) = ρ0 + γ̄ Γ̄Lt− γ̄

∫ t

0

mr1(s) ds

Differentiating we get:

mr′1(t) = γ̄Γ̄L − γ̄mr1(t)

whose solution is:

mr1(t) = Γ̄L + (ρ0 − Γ̄L)e
−γ̄t

Hence, for the integrated process:

EQ(ρ
+
t ) =

∫ t

0

Γ̄L + (ρ0 − Γ̄L)e
−γ̄s ds

= Γ̄Lt+

(
ρ0 − Γ̄L

γ̄

)
(1− e−γ̄t)

To compute the second moment we first apply Ito formula to f(x) = x2 and the
correlation process. Hence:

ρ2t = ρ20 + 2

∫ t

0

ρsdρs+ < ρt >

= ρ20 + 2γ̄Γ̄L

∫ t

0

ρs ds− 2γ̄

∫ t

0

ρ2s ds+ 2ᾱ

∫ t

0

ρs
√
1− ρ2s dW̄s

+ ᾱ2

∫ t

0

(1− ρ2s) ds

= ρ20 + ᾱ2t+ 2γ̄Γ̄L

∫ t

0

ρs ds− (ᾱ2 + 2γ̄)

∫ t

0

ρ2s ds

+ 2ᾱ

∫ t

0

ρs
√
1− ρ2s dW̄s

Taking expected value:

EQ(ρ
2
t ) = ρ20 + ᾱ2t+ 2γ̄Γ̄L

∫ t

0

EQ(ρs) ds− (2γ̄ + ᾱ2)

∫ t

0

EQ(ρ
2
s) ds
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After differentiating:

mr′2(t) + (2γ̄ + ᾱ2)mr2(t) = 2γ̄Γ̄Lmr1(t) + ᾱ2

mr2(0) = ρ20

The solution of the equation above is:

mr2(t) = a1 + a2e
−γ̄t + (ρ20 − a1 − a2)e

−(2γ̄+ᾱ2)t(15)

where the constants a1 and a2 have been defined in proposition 2.3.
Next, notice that we have:

dmr+2
dt

= 2EQ[ρ
+
t ρt]

From equation (14):

EQ(ρt + γ̄ρ+t )
2 = EQ(ρ0 + γ̄ Γ̄Lt+ ᾱ

∫ t

0

√
1− ρ2s dW̄s)

2

Expanding both sides in the equation above we have:

LHS = EQ(ρt + γ̄ρ+t )
2 = EQ(ρ

2
t ) + 2γ̄EQ(ρtρ

+
t ) + γ̄2EQ(ρ

+
t )

2

= mr2(t) + γ̄
dmr+2
dt

+ γ̄2mr+2 (t)

and

RHS = (ρ0 + γ̄ Γ̄Lt)
2 + 2(ρ0 + 2γ̄ Γ̄Lt)ᾱEQ(

∫ t

0

√
1− ρ2s dW̄s)

+ ᾱ2EQ

(∫ t

0

√
1− ρ2s dW̄s

)2

= (ρ0 + γ̄ Γ̄Lt)
2 + ᾱ2EQ(

∫ t

0

√
1− ρ2s dW̄s)

2

= (ρ0 + γ̄ Γ̄Lt)
2 + ᾱ2EQ(

∫ t

0

(1− ρ2s) ds)

= (ρ0 + γ̄ Γ̄Lt)
2 + ᾱ2(t−

∫ t

0

mr2(s) ds)

From equation (15):∫ t

0

mr2(s) ds =

∫ t

0

(a1 + a2e
−γ̄s + (ρ20 − a1 − a2)e

−(2γ̄+ᾱ2)s) ds

= a1t+
a2
γ̄
(1− e−γ̄t) +

ρ20 − a1 − a2
2γ̄ + ᾱ2

(1− e−(2γ̄+ᾱ2)t)

Hence,

dmr+2
dt

+ γ̄mr+2 (t) = b(t)
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where:

b(t) =
1

γ̄

(
−mr2(t) + (ρ0 + γ̄ Γ̄Lt)

2 + ᾱ2t− ᾱ2

γ̄

∫ t

0

mr2(s) ds

)
=

1

γ̄

(
−mr2(t) + (ρ0 + γ̄ Γ̄Lt)

2 + ᾱ2t
)

− 1

γ̄

(
a1t+

a2
γ̄
(1− e−γ̄t) +

ρ20 − a1 − a2
2γ̄ + ᾱ2

(1− e−(2γ̄+ᾱ2)t)

)
and initial condition mr+2 (0) = 0.
Using the integrating factor eγ̄t we find that its solution is:

mr+2 (t) = e−γ̄t

∫
eγ̄tb(t) dt+ ce−γ̄t(16)

But:∫
eγ̄tb(t) dt =

1

γ̄

∫
eγ̄t
(
−mr2(t) + (ρ0 + γ̄ Γ̄Lt)

2 + ᾱ2t
)
dt

− 1

γ̄

∫
eγ̄t
(
a1t+

a2
γ̄
(1− e−γ̄t) +

ρ20 − a1 − a2
2γ̄ + ᾱ2

(1− e−(2γ̄+ᾱ2)t)

)
dt

Moreover, from equation (15):∫
eγ̄tmr2(t) dt =

∫
eγ̄t(a1 + a2e

−γ̄t + (ρ20 − a1 − a2)e
−(2γ̄+ᾱ2)t) dt

=
a1
γ̄
eγ̄t + a2t−

ρ20 − a1 − a2
γ̄ + ᾱ2

e−(γ̄+ᾱ2)t∫
(ρ0 + γ̄ Γ̄Lt)

2eγ̄t dt =
ρ20
γ̄
eγ̄t + 2γ̄Γ̄Lρ0(

1

γ̄
teγ̄t − 1

γ̄2
eγ̄t)

+ γ̄2Γ̄2
L(

1

γ̄
t2eγ̄t − 2

γ̄2
teγ̄t +

2

γ̄3
eγ̄t)

=

[
ρ20 + 2γ̄Γ̄Lρ0(t−

1

γ̄
) + γ̄2Γ̄2

L(t
2 − 2

γ̄
t+

2

γ̄2
)

]
1

γ̄
eγ̄t∫

teγ̄t dt =
1

γ̄

(
t− 1

γ̄

)
eγ̄t

Hence:∫
eγ̄tb(t) dt = − 1

γ̄2
a1e

γ̄t − a2t

γ̄
+

(
ρ20 − a1 − a2
γ̄(γ̄ + ᾱ2)

)
e−(γ̄+ᾱ2)t

+
1

γ̄2

[
ρ20 + 2γ̄Γ̄Lρ0(t−

1

γ̄
) + γ̄2Γ̄2

L(t
2 − 2

γ̄
t+

2

γ̄2
)

]
eγ̄t

+
ᾱ2

γ̄2

(
t− 1

γ̄

)
eγ̄t

− ᾱ2

γ̄

[
a1
γ̄
(t− 1

γ̄2
)eγ̄t +

a2
γ̄2

eγ̄t − a2
γ̄
t

+
ρ20 − a1 − a2
γ̄(2γ̄ + ᾱ2)

eγ̄t +
ρ20 − a1 − a2

(2γ̄ + ᾱ2)(γ̄ + ᾱ2)
e−(γ̄+ᾱ2)t

]
Combining the expressions above into equation (16) we have (9-10).
On the other hand from the initial conditions c = −b0 − b4.
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From the first and second moments of ρ+t we obtain the expression for the variance.
□

Proof of proposition 2.4

Proof. To compute the first and second moments we proceed similarly to the proof
of proposition 2.3. Notice equations for squared volatilities are of mean-reverting
square root type s.d.e’s as well.
Hence:

mv1,j(t) = V
(j)
L + (V

(j)
0 − V

(j)
L )e−cjt

mv+1,j(t) = EQ[V
+,j
t ] = V

(j)
L t+

V
(j)
0 − V

(j)
L

cj
(1− e−cjt)

Moreover,

(V
(j)
t )2 = (V

(j)
0 )2 + 2

∫ t

0

V (j)
s dV (j)

s + < V
(j)
t >

= (V
(j)
0 )2 + 2cjV

(j)
L V j,+

t − 2cj

∫ t

0

(V (j)
s )2 ds+ 2ξj

∫ t

0

V (j)
s σ(j)

s dW (j)
s

+ ξ2jV
j,+
t

= (V
(j)
0 )2 + (2cjV

(j)
L + ξ2j )V

j,+
t − 2cj

∫ t

0

(V (j)
s )2 ds

+ 2ξj

∫ t

0

V (j)
s σ(j)

s dW (j)
s

Taking expected value on both sides:

mv2,j(t) = (V
(j)
0 )2 + (2cjV

(j)
L + ξ2j )

∫ t

0

mv1,j(s) ds− 2cj

∫ t

0

mv2,j(s) ds

or

mv′2,j(t) + 2cjmv2,j(t) = (2cjV
(j)
L + ξ2j )mv1,j(t)

mv2,j(0) = (V
(j)
0 )2

Denoting by c(t) = (2cjV
(j)
L + ξ2j )mv1,j(t) the solution of the ODE above is:

mv2,j(t) = e−2cjt

∫
e2cjtc(t) dt+ d2e

−2cjt

But: ∫
e2cjtc(t) dt = (2cjV

(j)
L + ξ2j )

∫
e2cjtmv1,j(t) dt

= (2cjV
(j)
L + ξ2j )

∫
e2cjt(V

(j)
L + (V

(j)
0 − V

(j)
L )e−cjt) dt

= (2cjV
(j)
L + ξ2j )

(
V

(j)
L

2cj
e2cjt +

V
(j)
0 − V

(j)
L

cj
ecjt

)
Then:

mv2,j(t) = d0 + d1e
−cjt + d2e

−2cjt
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where:

d2 = (V
(j)
0 )2 − d0 − d1

Next, notice that we have:

dmv+2,j
dt

= 2EQ[V
(j,+)
t V

(j)
t ](17)

Now:

EQ(V
(j)
t + cjV

j,+
t )2 = EQ[V

(j)
0 + cj V

(j)
L t+ ξj

∫ t

0

σ(j)
s dW (j)

s ]2

= (V
(j)
0 + cj V

(j)
L t)2 + 2(V

(j)
0 + cjV

(j)
L t)ξjEQ

(∫ t

0

σ(j)
s dW (j)

s

)
+ ξ2jEQ

(∫ t

0

σ(j)
s dW (j)

s

)2

= (V
(j)
0 + cj V

(j)
L t)2 + ξ2j

∫ t

0

mv1,j(s) ds(18)

On the other hand, after taking into account equation (17):

EQ(V
(j)
t + cjV

j,+
t )2 = mv2,j(t) + cj

dmv+2,j
dt

+ c2jmv+2,j(19)

Hence, equating equations (18) and (19) we have that mv+2,j satisfies:

dmv+2,j
dt

+ cjmv+2,j(t) = d(t)(20)

mv+2,j(0) = 0

with:

d(t) =
(V

(j)
0 + cj V

(j)
L t)2

cj
+

ξ2j
cj

∫ t

0

mv1,j(s) ds−
1

cj
mv2,j(t)

=
(V

(j)
0 + cj V

(j)
L t)2

cj
+

ξ2j
cj

∫ t

0

[V
(j)
L + (V

(j)
0 − V

(j)
L )e−cjt] ds

− 1

cj
(d0 + d1e

−cjt + d2e
−2cjt)

=
(V

(j)
0 + cj V

(j)
L t)2

cj
+

ξ2j
cj

V
(j)
L t−

ξ2j
c2j

(V
(j)
0 − V

(j)
L )e−cjt

− 1

cj
(d0 + d1e

−cjt + d2e
−2cjt)
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The solution of equation (20) is:

mv+2,j(t) = e−cjt

∫
ecjtd(t) dt+ ce−cjt

= e−cjt

∫
ecjt

[
(V

(j)
0 + cj V

(j)
L t)2

cj
+

ξ2j
cj

V
(j)
L t−

ξ2j
c2j

(V
(j)
0 − V

(j)
L )e−cjt

− 1

cj
(d0 + d1e

−cjt + d2e
−2cjt)

]
dt+ ce−cjt

=
e−cjt

cj

∫
ecjt

[
(V

(j)
0 + cj V

(j)
L t)2 + ξ2jV

(j)
L t−

ξ2j
cj

(V
(j)
0 − V

(j)
L )e−cjt

− (d0 + d1e
−cjt + d2e

−2cjt)
]
dt+ ce−cjt

(21)

Moreover:∫
ecjt(V

(j)
0 + cj V

(j)
L t)2 dt =

(V
(j)
0 )2

cj
ecjt + 2cj V

(j)
L

∫
tecjt dt+ c2j (V

(j)
L )2

∫
t2ecjt dt

=
(V

(j)
0 )2

cj
ecjt + 2cjV

(j)
0 V

(j)
L

(
t

cj
ecjt − 1

c2j
ecjt

)
+ c2j (V

(j)
L )2

(
t2

cj
ecjt − 2t

c2j
ecjt +

2

c3j
ecjt

)

=
ecjt

cj

[
c2j (V

(j)
L )2t2 + 2(cjV

(j)
0 V

(j)
L − cj(V

(j)
L )2)t+ (V

(j)
0 )2 − 2V

(j)
0 V

(j)
L + 2(V

(j)
L )2

]
=

ecjt

cj

[
c2j (V

(j)
L )2t2 + 2cj(V

(j)
0 V

(j)
L − (V

(j)
L )2)t+ (V

(j)
0 − V

(j)
L )2 + (V

(j)
L )2

]
and ∫

tecjtξ2jV
(j)
L dt =

ξ2jV
(j)
L

cj
(t− 1

cj
)ecjt∫

ecjt
ξ2j
cj

(V
(j)
0 − V

(j)
L )e−cjt dt =

ξ2j
cj

(V
(j)
0 − V

(j)
L )t∫

ecjt(d0 + d1e
−cjt + d2e

−2cjt) dt =
d0
cj

ecjt + d1t−
d2
cj

e−cjt

=
ecjt

cj
[d0 + d1cje

−cjt − d2e
−2cjt]

=
ecjt

cj
[d0(1 + e−2cjt) + d1e

−cjt(cj + e−cjt)− (V
(j)
0 )2e−2cjt]

From the initial conditions:

c = −(g0,j + g3,j + g4,j)

Therefore, substituting in equation (21) we obtain (13). □

Proof of proposition 2.5

Proof. To compute the covariance of the integrated squared volatilities we start

noticing that < σ
(1)
t , σ

(2)
t >= β1β2ρV t. Therefore, by Ito integration by parts
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formula:

σ
(1)
t σ

(2)
t = σ

(1)
0 σ

(2)
0 +

∫ t

0

σ(1)
s dσ(2)

s +

∫ t

0

σ(2)
s dσ

(1)
t + < σ

(1)
t , σ

(2)
t >

= σ
(1)
0 σ

(2)
0 − α2

∫ t

0

σ(1)
s σ(2)

s ds+ β2

∫ t

0

σ(1)
s dW

(2)
t

− α1

∫ t

0

σ(1)
s σ(2)

s ds+ β1

∫ t

0

σ(2)
s dW

(1)
t + β1β2ρV t

Taking expected value on both sides:

EQ[σ
(1)
t σ

(2)
t ] = σ

(1)
0 σ

(2)
0 − (α1 + α2)

∫ t

0

EQ[σ
(1)
s σ(2)

s ] ds+ β1β2ρV t

The expression above leads to the differential equation:

ms′12(t) + (α1 + α2)ms12(t)− β1β2ρV = 0

with ms12(t) = EQ[σ
(1)
t σ

(2)
t ] and ms12(0) = σ

(1)
0 σ

(2)
0 .

Its solution is:

ms12(t) =
β1β2ρV
α1 + α2

(
1− e−(α1+α2)t

)
+ σ

(1)
0 σ

(2)
0 e−(α1+α2)t

With the reparametrization in remark 2.2 it becomes:

(22) ms12(t) =
ξ1ξ2ρV

2(c1 + c2)

(
1− e−

1
2 (c1+c2))

)
+ σ

(1)
0 σ

(2)
0 e−

1
2 (c1+c2)t

Moreover, from equation (8) and Ito formula:

V
(1)
t V

(2)
t = V

(1)
0 V

(2)
0 +

∫ t

0

V (1)
s dV (2)

s +

∫ t

0

V (2)
s dV (1)

s + < V
(1)
t , V

(2)
t >

= V
(1)
0 V

(2)
0 + c2V

(2)
L t− c2

∫ t

0

V (1)
s V (2)

s ds+ ξ2

∫ t

0

V (1)
s σ(2)

s dW
(2)
t

+ c1V
(1)
L t− c1

∫ t

0

V (2)
s V (1)

s ds+ ξ1

∫ t

0

V (2)
s σ(1)

s dW
(1)
t + ξ1ξ2ρV

∫ t

0

σ(1)
s σ(2)

s ds

Again, taking expected value on both sides of the equation above and differentiating:

mv′12(t) = c1V
(1)
L + c2V

(2)
L − (c1 + c2)mv12(t) + ξ1ξ2ρV ms12(t)
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whose solution is given by:

mv12(t) = ξ1ξ2ρV e
−(c1+c2)t

∫ t

0

e(c1+c2)sms12(s) ds+ ce−(c1+c2)t

=
(ξ1ξ2ρV )

2

2(c1 + c2)
e−(c1+c2)t

∫ t

0

e(c1+c2)s
(
1− e−

1
2 (c1+c2)s

)
ds

+ σ
(1)
0 σ

(2)
0 ξ1ξ2ρV e

−(c1+c2)t

∫ t

0

e(c1+c2)se−
1
2 (c1+c2)s ds+ ce−(c1+c2)t

=
(ξ1ξ2ρV )

2

2(c1 + c2)
e−(c1+c2)t

∫ t

0

e(c1+c2)s ds− (ξ1ξ2ρV )
2

2(c1 + c2)
e−(c1+c2)t

∫ t

0

e
1
2 (c1+c2)s ds

+ σ
(1)
0 σ

(2)
0 ξ1ξ2ρV e

−(c1+c2)t

∫ t

0

e
1
2 (c1+c2)s ds+ ce−(c1+c2)t

=
(ξ1ξ2ρV )

2

2(c1 + c2)2
− (ξ1ξ2ρV )

2

(c1 + c2)2
e−

1
2 (c1+c2)t +

2σ
(1)
0 σ

(2)
0 ξ1ξ2ρV

c1 + c2
e−

1
2 (c1+c2)t + ce−(c1+c2)t

From the initial condition mv12(0) = V
(1)
0 V

(2)
0 we have that:

c = V
(1)
0 V

(2)
0 +

1

2

(ξ1ξ2ρV )
2

(c1 + c2)2
− 2σ

(1)
0 σ

(2)
0 ξ1ξ2ρV

c1 + c2

On the other hand, from equation (8):

V j,+
t =

1

cj
[V

(j)
0 + c1V

(j)
L t− V

(j)
t + ξj

∫ t

0

σ
(j)
t dW

(j)
t ]

V
(j)
t = V

(j)
0 e−cjt + V

(j)
L (1− e−cjt) + ξje

−cjt

∫ t

0

ecjsσ(j)
s dW

(j)
t

Hence:

mv+12(t) := EQ[V
1,+
t V 2,+

t ]

=
1

c1c2
EQ[(V

(1)
0 + c1V

(1)
L t− V

(1)
t + ξ1

∫ t

0

σ(1)
s dW (1)

s )(V
(2)
0 + c2V

(2)
L t− V

(2)
t + ξ2

∫ t

0

σ(2)
s dW (2)

s )]

=
1

c1c2

[
V

(1)
0 V

(2)
0 + c2V

(1)
0 V

(2)
L t− V

(1)
0 EQ[V

(2)
t ] + ξ2V

(1)
0 EQ[

∫ t

0

σ(2)
s dW (2)

s ]

+ c1V
(2)
0 V

(1)
L t+ c1c2V

(1)
L V

(2)
L t2 − c1V

(1)
L tEQ[V

(2)
t ] + c1ξ2V

(1)
L tEQ[

∫ t

0

σ(2)
s dW (2)

s ]

− V
(2)
0 EQ[V

(1)
t ]− c2V

(2)
L tEQ[V

(1)
t ] + EQ[V

(1)
t V

(2)
t ]− ξ2EQ[V

(1)
t

∫ t

0

σ(2)
s dW (2)

s ]

+ ξ1V
(2)
0 EQ[

∫ t

0

σ(1)
s dW (1)

s ] + c2ξ1V
(2)
L tEQ[

∫ t

0

σ(1)
s dW (1)

s ]

− ξ1EQ[V
(2)
t

∫ t

0

σ(1)
s dW (1)

s ] + ξ1ξ2EQ[

∫ t

0

σ(1)
s dW (1)

s

∫ t

0

σ(2)
s dW (2)

s ]

]
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Now, we have:

EQ[

∫ t

0

σ(j)
s dW (j)

s ] = 0, j = 1, 2

EQ[

∫ t

0

σ(1)
s dW (1)

s

∫ t

0

σ(2)
s dW (2)

s ] = EQ⟨
∫ t

0

σ(1)
s dW (1)

s

∫ t

0

σ(2)
s dW (2)

s ⟩ = ρV

∫ t

0

ms12(s) ds

EQ[V
(1)
t

∫ t

0

σ(2)
s dW (2)

s ] = EQ[(V
(1)
0 e−c1t + V

(1)
L (1− e−c1t)

+ ξ1e
−c1t

∫ t

0

ec1sσ(1)
s dW (1)

s )

∫ t

0

σ(2)
s dW (2)

s ]

= (V
(1)
0 e−c1t + V

(1)
L (1− e−c1t))EQ[

∫ t

0

σ(2)
s dW (2)

s ]

+ ξ1e
−c1tEQ[

∫ t

0

ec1sσ(1)
s dW

(1)
t

∫ t

0

σ(2)
s dW (2)

s ]

= ξ1e
−c1tEQ⟨

∫ t

0

ec1sσ(1)
s dW (1)

s ,

∫ t

0

σ(2)
s dW (2)

s ⟩

= ξ1ρV e
−c1t

∫ t

0

ec1sms12(s) ds

Similarly:

EQ[V
(2)
t

∫ t

0

σ(1)
s dW (1)

s ] = ξ2ρV e
−c2t

∫ t

0

ec2sms12(s) ds

Therefore:

mv+12(t) :=
1

c1c2

[
P2(t)− (V

(1)
0 + c1V

(1)
L t)mv1,2(t)− (V

(2)
0 + c2V

(2)
L t)mv1,1(t)

+ ms12(t)− ξ1ξ2ρV e
−c1tB1(t)− ξ1ξ2ρV e

−c2tB2(t) + ξ1ξ2ρV A(t)
]

Moreover, from equation (22):

A(t) :=

∫ t

0

ms12(s) ds =
ξ1ξ2ρV

2(c1 + c2)

(
t−

∫ t

0

e−
1
2 (c1+c2)s ds

)
+ σ

(1)
0 σ

(2)
0

∫ t

0

e−
1
2 (c1+c2)s ds

=
ξ1ξ2ρV

2(c1 + c2)

(
t− 2

c1 + c2
(1− e−

1
2 (c1+c2)t)

)
+

2σ
(1)
0 σ

(2)
0

c1 + c2

(
1− e−

1
2 (c1+c2)t

)
Bj(t) =

∫ t

0

ecjsms12(s) ds =
ξ1ξ2ρV

2(c1 + c2)

(
1

cj
(ecjt − 1)−

∫ t

0

ecj−
1
2 (c1+c2)s ds

)
+ σ

(1)
0 σ

(2)
0

∫ t

0

ecj−
1
2 (c1+c2)s ds

=
ξ1ξ2ρV

2(c1 + c2)

[
1

cj
(ecjt − 1)− 2(−1)j

c2 − c1
(e

1
2 (−1)j(c2−c1)t − 1)

]
+ σ

(1)
0 σ

(2)
0

2(−1)j

c2 − c1

(
e

1
2 (−1)j(c2−c1)t − 1

)
for c1 ̸= c2 and

Bj(t) =
ξ1ξ2ρV
4c1

ξ1(
1

c1
(ec1t − 1)− 1) + σ

(1)
0 σ

(2)
0 T, c1 = c2

for c1 = c2. □
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6.2. Appendix B: Derivatives of the Margrabe price. Derivatives of the Mar-
grabe price are computed by elementary differentiation. Indeed, for the function:

M4(x) = x1 + x2 − 2
√
x1x2x3

We see that:

∂M4(x)

∂x1
= 1−

√
x2 x3√
x1

,
∂M4(x)

∂x2
= 1−

√
x1 x3√
x2

∂M4(x)

∂x3
= −2

√
x1x2

The second derivatives of M4(x) are:

∂2M4(x)

∂x2
1

=

√
x2 x3

2x1
3/2

,
∂2M4(x)

∂x1∂x2
= 1− x3

2
√
x1x2

∂2M4(x)

∂x1∂x3
= −

√
x2√
x1

,
∂2M4(x)

∂2x2
=

√
x1 x3

2x2
3/2

∂2M4(x)

∂x2∂x3
= −

√
x1√
x2

,
∂2M4(x)

∂x2
3

= 0

We denote M3 = log

(
S

(1)
0

S
(2)
0

)
and introduce the function:

d1(x) = M3M
− 1

2
4 (x) +

1

2
M

1
2
4 (x)

The first and second derivatives of d1(x) are:

∂d1(x)

∂xj
= −1

2
M3M

− 3
2

4 (x)
∂M4(x)

∂xj
+

1

4
M

− 1
2

4 (x)
∂M4(x)

∂xj
, j = 1, 2, 3

∂2d1(x)

∂xj∂xk
=

3

4
M3M

− 5
2

4 (x)
∂M4(x)

∂xj

∂M4(x)

∂xk
− 1

2
M3M

− 3
2

4 (x)
∂2M4(x)

∂xj∂xk

− 1

8
M

− 3
2

4 (x)
∂M4(x)

∂xj

∂M4(x)

∂xk
+

1

4
M

− 1
2

4 (x)
∂2M4(x)

∂xj∂xk
, j, k = 1, 2, 3

Moreover:

d2(x) = d1(x)−M
1
2
4 (x)

∂d2(x)

∂xj
=

∂d1(x)

∂xj
− 1

2
M

− 1
2

4 (x)
∂M4(x)

∂xj

∂2d2(x)

∂xj∂xk
=

∂2d1(x)

∂xj∂xk
+

1

4
M

− 3
2

4 (x)
∂M4(x)

∂xj

∂M4(x)

∂xk

− 1

2
M

− 1
2

4 (x)
∂2M4(x)

∂xj∂xk
, j, k = 1, 2, 3
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Finally:

∂CM (x)

∂xj
= M1fZ(d1(x))

∂d1(x)

∂xj
−M2fZ(d2(x))

∂d2(x)

∂xj
, j = 1, 2, 3

∂2CM (x)

∂xj∂xk
= M1

(
∂fZ(d1(x))

∂xk

∂d1(x)

∂xj
+ fZ(d1(x))

∂2d1(x)

∂xj∂xk

)
− M2

(
∂fZ(d2(x))

∂xk

∂d2(x)

∂xj
+ fZ(d2(x))

∂2d2(x)

∂xj∂xk

)
= M1

(
−d1(x)fZ(d1(x))

∂d1(x)

∂xj

∂d1(x)

∂xk
+ fZ(d1(x))

∂2d1(x)

∂xj∂xk

)
− M2

(
−d2(x)fZ(d2(x))

∂d2(x)

∂xj

∂d2(x)

∂xk
+ fZ(d2(x))

∂2d2(x)

∂xj∂xk

)
where fZ is the probability density function of a standard normal distribution and

Mj = e−rTS
(j)
0 , j = 1, 2.
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