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Abstract: Coastal regions globally are experiencing rapid transformations due to climate change 1

and anthropogenic impacts, necessitating robust monitoring systems. Autonomous surface and 2

underwater robots (ASV and AUV) have emerged as important tools for high-resolution, large-scale 3

data collection on water properties. However, these robots often face challenges from faulty or 4

missing sensor data, affecting data accuracy and robot functionality. This paper explores the use of 5

machine learning techniques to estimate water property parameters, addressing the challenges of 6

missing or faulty data. By focusing on Biscayne Bay, Florida, this study uses linear regression, random 7

forest, support vector regression, and multilayer perceptron, to predict parameters like dissolved 8

oxygen, pH, and temperature. Initial results indicate the potential of these models to enhance data 9

consistency and offer new perspectives for sensor fusion approaches. 10

Keywords: machine learning; water parameter estimation; coastal monitoring 11

1. Introduction 12

In the face of climate change and anthropogenic impacts, coastal regions worldwide 13

are undergoing rapid transformations, posing significant challenges to their fragile ecosys- 14

tems [1]. These changes need robust and efficient monitoring systems to drive informed, 15

timely decision-making for the preservation and management of these crucial habitats. 16

Moreover, these changes may play a critical role in a country’s infrastructure and surveil- 17

lance [2]. Emerging technologies, such as autonomous surface and underwater robots (ASV 18

and AUV), have become pivotal in the effort to monitor coastal waters, providing high- 19

resolution, large-scale data on water property parameters, including total water column, 20

temperature, pH, and dissolved oxygen levels [3–8]. 21

However, these robotic systems often encounter challenges that may be caused by 22

faulty or missing sensor data, significantly impacting the data collection process and 23

potentially impairing the robot’s functioning. To add to this, some of these sensing devices 24

are expensive and sensitive, requiring regular maintenance to ensure accurate readings. 25

There have been several models proposed to address the issue of faulty sensor data, 26

such as detection mechanisms in IoT systems [9,10]. Missing data estimation using machine 27

learning is an important aspect of water quality research; however, the handling and 28

reporting of missing data in prediction model studies using machine learning methods 29

are often inadequate [11]. Many studies rely on deletion methods, such as complete-case 30

analysis, which can introduce bias and reduce analytical power. Therefore, it is crucial for 31

researchers to be aware of alternative methodologies to address missing data [11]. 32

A personalized diagnosis method was proposed in [12] to detect faults in a bearing 33

using acceleration sensors and finite element method (FEM) simulations. The method 34

involved three steps and aimed to improve fault detection results. Machine learning 35
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techniques have also been used for fault diagnosis in other domains, such as in a pressurized 36

water reactor (PWR) nuclear power plant [13]. Principal component analysis (PCA) models 37

were employed to detect and diagnose sensor faults in the pressurizer of the PWR and an 38

improved PCA-based method was proposed to successfully detect and isolate sensor faults, 39

even in the presence of minor failures. 40

In [14], the authors evaluated the potential of remote sensing using machine learn- 41

ing techniques for improving water quality estimation over the coastal waters of Hong 42

Kong. Concentrations of suspended solids (SS), chlorophyll-a (Chl-a), and turbidity were 43

estimated with several machine learning techniques including Artificial Neural Network 44

(ANN), Random Forest (RF), Cubist regression (CB), and Support Vector Regression (SVR). 45

The results showed that machine learning algorithms can effectively estimate water quality 46

parameters in inland lakes, with RF and SVR performing better than ANN. 47

Machine learning methods have shown promise in handling missing data and improv- 48

ing the estimation of water quality parameters. In [15], the authors proposed a novel water 49

quality prediction model for a South African aquaculture farm using machine learning 50

techniques that achieved accurate results with a low mean squared error. These methods 51

have demonstrated outstanding imputation performance and provided methodological 52

support for clinical decision-making in the presence of incomplete data [16]. The use of ma- 53

chine learning algorithms, such as RF, Support Vector Machine (SVM), and Artificial Neural 54

Network (ANN), can effectively estimate water quality parameters in various settings, 55

including inland lakes, rivers, and coastal waters. 56

Another study [17] focused on developing an efficient model using SVMs to predict 57

the water quality (especially dissolved oxygen (DO) levels) of the Langat River Basin. Their 58

proposed model analyzed data from six parameters of dual reservoirs in the catchment 59

area and the SVM model was found to be effective in identifying the water quality status 60

for the river catchment area. The study also discussed time-series predictive techniques for 61

water quality, which utilize preceding time series and other parameters to predict water 62

quality values. Various statistical analyses and AI-based modeling strategies have been 63

used in these techniques for water quality prediction and water resources management. 64

The models achieved high correlation coefficients and low prediction errors. Dual scenarios 65

were employed to forecast water quality trends, with Scenario 1 validating the DO pre- 66

diction scheme at each station and Scenario 2 validating the DO prediction scheme using 67

information from prior stations. The models have also been found to be useful for those 68

lacking sufficient monitoring stations for water quality parameters. 69

The application of machine learning techniques, combined with remote sensing data, 70

has advanced the field of water environment monitoring. These methods have facilitated 71

accurate water extraction and quantitative estimation of water quality and the integration 72

of remote sensing big data, cloud computing, and machine learning has opened up new 73

possibilities for monitoring and managing water resources [18]. 74

In [19] the authors developed advanced artificial intelligence (AI) algorithms to predict 75

water quality index (WQI) and water quality classification (WQC). The authors applied 76

machine learning approaches like artificial neural networks (ANN), radial-basis-function 77

(RBF), and regression to predict the chemical oxygen demand (COD) and water quality 78

index (WQI). 79

Other machine learning methods, such as logistic regression, random forest (RF), 80

Support Vector Machine, decision tree, k-nearest neighbor, XGBoost, gradient boosting, 81

and naive Bayes, have been used in [20] for the continuous collection of water parameters 82

data from sensors and the prediction of water quality. These machine learning models 83

are implemented and tested to predict water quality attributes such as pH, hardness, 84

solids, chloramines, sulfate, conductivity, organic carbon, trihalomethanes, turbidity, and 85

potability. 86

This project aims to address these challenges by leveraging machine learning tech- 87

niques to estimate water property parameters using available data from other parameters. 88

By creating models capable of predicting these parameters, we can ensure consistent and 89
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reliable data collection even in the face of sensor failure or absence, thereby enhancing the 90

autonomy of the marine robots. 91

In addition, by enabling more accurate and robust estimation of water property pa- 92

rameters, we aspire to facilitate better decision-making in the management of coastal 93

ecosystems, promote the use of autonomous surface and underwater robots for environ- 94

mental monitoring, and ultimately contribute to the sustainability of coastal regions and the 95

preservation of their ecosystems. Particularly, this research focuses on Biscayne Bay, Florida, 96

aiming to contribute to the ongoing efforts in environmental monitoring and protection of 97

this vital coastal region. 98

The following report outlines the methodology, findings, and implications of our study. 99

It details the data collection and preprocessing, the development and evaluation of various 100

machine learning models, and the robustness of these models in dealing with missing or 101

faulty sensor data. By sharing our research and findings, we hope to advance the field of 102

marine robotics and contribute to a more sustainable future for our coastal ecosystems. 103

2. Materials and Methods 104

In this section, we outline the data collection and data processing procedures, as well 105

as the step-by-step procedures employed to carry out the experiments. 106

2.1. Data Collection 107

Our study focused on a specific area within Biscayne Bay, specifically centered around 108

the BBC campus of Florida International University (FIU). This region was chosen as a prime 109

location of interest due to its proximity to FIU facilities. Moreover, it offers a convergence of 110

factors for comprehensive research, including its close proximity to the urban area, active 111

vessel traffic, and the presence of a thriving natural environment. Between September 2020 112

and November 2022, our research involved an extensive data collection initiative within 113

the designated region of interest that resulted in more than 30 datasets in different seasons 114

and months. To accomplish this, we employed the YSI Ecomapper [21], an autonomous 115

underwater vehicle (AUV) that provides high-resolution water quality data, side scan 116

sonar imaging, and bathymetric surveying. For every data collection mission, a variety of 117

trajectories were planned, each designed to be completed within a timeframe ranging from 118

7 to 10 minutes. The AUV employed for data collection not only captured water parameters 119

including temperature, pH, and dissolved oxygen, but also recorded vehicle parameters 120

such as speed, longitude, latitude, and heading, especially important for troubleshooting 121

and detailed analysis of missions. Data collected from each mission is then saved in CSV 122

files for further processing. 123

Figure 1 shows the region of interest and trajectories performed by the autonomous 124

data collection platform in different months in 2022, and Figure 2 shows the YSI Ecomapper 125

AUV. 126

(a) (b)
Figure 1. Region of interest and data collection trajectories in (a) October 2022 and (b) November
2022.
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Figure 2. YSI Ecomapper, an autonomous underwater vehicle for high-resolution water quality data
collection [21]

2.2. Data Processing 127

For each raw data sheet, we have organized the information into a dataframe consisting 128

of 68 columns. These columns encompass a wide range of data, from internal AUV 129

parameters and extending to various water parameters. To simplify and filter relevant 130

information, the resulting dataframe primarily includes the AUV’s position, indicated 131

by longitude and latitude coordinates, timestamps (hh:mm:ss), and water parameters, 132

including ODO (mg/L), Temperature (°C), pH, and Total Water Column (m). Table 1 shows 133

a snippet of the resulting dataframe from November 2022 data set, Figures 3 and 4 provide 134

the water parameter profiles, and Figure 5 shows the correlation between them. 135

Lat Lon Time ODO(mg/L) Temp.(°C) pH WaterColumn (m)
25.912771 -80.137886 12:00:32 4.21 28.400 8.27 0.60
25.912768 -80.137886 12:00:32 4.21 28.400 8.27 0.60
25.912767 -80.137883 12:00:33 4.20 28.400 8.27 0.61
25.912772 -80.137877 12:00:35 4.20 28.400 8.27 0.61
25.912766 -80.137879 12:00:35 4.20 28.400 8.27 0.58

...
...

...
...

...
...

...
Table 1. Snippet of the dataset from November 2022 data collection mission.
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Figure 3. Water parameter profiles for the data collection mission in October 2022
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Figure 4. Water parameter profiles for the data collection mission in November 2022
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Figure 5. Correlation heatmaps for water parameters found at the data collection missions. 5a October
2022; 5b November 2022.

2.3. Machine Learning Methods 136

We tested different machine learning (ML) algorithms to compare various approaches 137

and explore the relationship between water property parameters. We began with simple 138

linear relationships, which were captured by linear regressors. As we progressed, we scaled 139

up to more complex, non-linear relationships, captured by decision trees or non-linear 140

kernels found in Support Vector Machines (in their regression version). Finally, we utilized 141

Neural Networks as universal function approximators. 142

As mentioned earlier, we employed different approaches. Firstly, we used a linear 143

regression (LR) model, which attempts to fit a line relating the features to the predicted 144

value. Secondly, we utilized RFs, consisting of multiple decision trees that make predictions 145

by considering individual features and assigning them thresholds. Thirdly, we employed 146

Support Vector Machine (SVM) regressors (also known as SVR) with the kernel trick, 147

providing a wide range of options for non-linear relationships. One key distinction from 148

LR is that SVR allows for an error margin within which the predicted values are allowed 149
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to vary. Lastly, we employed Multi-layer Perceptron (MLP) architectures with varying 150

numbers of neurons and layers to construct deep neural networks. 151

2.4. Simulation Methodology 152

In the previous section, we have introduced various methods. To characterize these 153

methods comprehensively, we define a feature vector x ∈ X ⊆ R5, which includes both 154

the water parameters and their corresponding longitude and latitude values. Furthermore, 155

we introduce the target variable y ∈ Y ⊆ R, representing one of the given parameters as 156

shown in equation 1. 157

(x1, y1) = ((lat, lon, temp, pH, water column), DO)

(x2, y2) = ((lat, lon, DO, pH, water column), temp)

(x3, y3) = ((lat, lon, temp, DO, water column), pH)

(1)

Then, we split the dataset into training and testing datasets, allocating 20% of the data 158

for testing purposes. Additionally to the data preprocessing done before, we normalized 159

the data by taking each feature xi (xj = (x1, . . . , x5)) and subtracting its mean and dividing 160

it by its standard deviation in order to improve the ML training performance. 161

Hyperparameter tuning is known to be crucial for optimizing the performance of 162

machine learning models, although it can be computationally expensive. Typically, it 163

involves testing various parameter combinations to find the best ones (in the case of 164

discrete parameters) and retraining the model with different hyperparameters (in the case 165

of continuous parameters). 166

In our study, we selected a subset of hyperparameters to explore and performed an 167

extensive grid search over each combination for each model. Linear regression is a simple 168

model that does not have traditional hyperparameters. However, in some cases, the bias 169

value can be fitted or fixed. We experimented with both options for this model. 170

For the RF models, we investigated different numbers of trees (n) in the forest, specif- 171

ically n ∈ 100, 200, 300, and varied the maximum depth for each tree from no maximum 172

depth to a maximum of 10 levels. 173

When working with SVR (Support Vector Regression) models, we employed Ridge 174

parameter regularization based on the L2 norm. The regularization constant was selected 175

from the set 0.1, 1, 10 to prevent overfitting. Additionally, we experimented with different 176

kernel functions, including linear and radial-basis functions. 177

Regarding the MLP (Multilayer Perceptron) model, we explored different fully con- 178

nected architectures, considering 1, 2, and 3 layers with 100 neurons in each layer. Fur- 179

thermore, we tested various activation functions such as tanh, sigmoid, and relu. We also 180

experimented with different optimizers and learning rates, specifically 0.0001, 0.001, and 181

0.01. 182

3. Results and Discussion 183

In this section, we present empirical findings emanating from the application of four 184

distinct machine-learning paradigms to two discrete datasets, collected in October 2022 185

and November 2022, respectively. The outcomes of our computational experiments are 186

succinctly encapsulated within Figure 6 and Figure 7, providing a graphical overview of 187

predictive outcomes. To quantitatively assess our proposed models’ efficacy, we harnessed 188

quintessential performance metrics, encompassing Mean Squared Error (MSE), Root Mean 189

Squared Error (RMSE), Normalized Root Mean Squared Error (NRMSE), Mean Absolute 190

Error (MAE), and R-squared. These well-established metrics, esteemed within the realm of 191

Data Science, offer pivotal insights into the predictive precision and prowess of our models, 192

thereby establishing a foundation for well-informed data-driven decisions. The ensuing 193

tabular presentations meticulously encapsulate quantified outcomes, spotlighting each 194

model’s performance concerning specific water parameters. 195

Within the context of these findings, it becomes evident that predictive modeling 196

of water features is indeed feasible through strategic exploitation of interrelated feature 197
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dynamics, contingent upon the judicious selection of the appropriate ML algorithm. Ex- 198

emplifying this point, Support Vector Regression (SVR) exhibits comparable performance 199

to other algorithms in predicting dissolved oxygen levels when considering temperature, 200

pH, and sample collection depth. However, the investigation reveals SVR’s limitation in 201

estimating temperature and pH using their corresponding counterparts. This limitation 202

might stem from SVR’s design, which permits an error margin allowing for mispredictions. 203

Conversely, the absence of such a margin in LR could lead to the assignment of constant 204

values within it. In contrast, the RF algorithm consistently demonstrates reliable results 205

across all estimations, reflecting its capacity to capture latent relationships and perform 206

well for each water feature. 207

Figure 6 and Figure 7 synthesize the predictive proficiency of distinct algorithms 208

against actual values within the testing datasets. These figures align each algorithm with a 209

specific row and each column with an individual water parameter. 210

Further insights emerge from Tables 2 through 7, which detail metric evaluations 211

for dissolved oxygen, pH, and temperature estimations. Focusing on dissolved oxygen 212

estimation for both October 2022 (Table 2) and November 2022 (Table 5), RF and MLP 213

consistently excel across proposed metrics. Their precision, exemplified by lower MSE, 214

RMSE, NRMSE, MAE, and elevated R-squared values, underscores their competence in 215

capturing dissolved oxygen dynamics. 216

Analogously, in pH estimation, spanning October (Table 3) and November 2022 217

(Table 6), RF and MLP consistently demonstrate a superior grasp of underlying data 218

patterns. This efficacy is highlighted through their ability to maintain comparably low MSE, 219

RMSE, NRMSE, MAE, and high R-squared values, affirming their aptitude for decoding 220

pH fluctuations. 221

Regarding temperature estimation across October (Table 4) and November 2022 (Ta- 222

ble 7), the models – particularly RF and MLP – consistently exhibit heightened precision. 223

Their efficacy, as evidenced by their relatively lower MSE, RMSE, NRMSE, MAE, and 224

elevated R-squared values, solidifies their role in decoding temperature dynamics. 225

In conclusion, initial experiments have yielded promising results, unveiling new 226

avenues for sensor estimation and calibration techniques. These findings offer the potential 227

to estimate data by leveraging various water features, providing a valuable contrast to 228

measurements derived from raw data. This expansion of perspectives enriches the scope 229

of sensor fusion approaches, e.g. Extended Kalman Filters, as the outcomes indicate that 230

water features are not mutually orthogonal; rather, they exhibit interconnected relationships 231

that enhance the consistency of data collection and processing missions. Also, the data 232

analysis expands the understanding of the predictive potential inherent within diverse 233

machine-learning models for estimating water parameters. These insights significantly 234

contribute to unraveling the multifaceted implications of water parameter oscillations on 235

coastal ecosystems. 236
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Figure 6. Summarized results contrasting the predicted and real values on the testing set, each row
considers one ML algorithm; each column is a water feature. Data were collected in October 2022, see
Figure 1a.
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Figure 7. Summarized results contrasting the predicted and real values on the testing set, each row
considers one ML algorithm; each column is a water feature. Data were collected in November 2022,
see Figure 1b.

Dissolved Oxygen LR RF SVR MLP
MSE 1.921 0.044 0.616 0.065

RMSE 1.3860 0.210 0.785 0.256
NRMSE 25.525 3.884 14.463 4.716

MAE 1.101 0.105 0.341 0.132
R-squared 0.608 0.991 0.874 0.987

Table 2. Evaluation metrics for dissolved oxygen estimation for the data collected in October 2022,
see Figure 1a.

pH LR RF SVR MLP
MSE 0.0001 0.00002 0.0009 0.0001

RMSE 0.011 0.005 0.029 0.009
NRMSE 10.844 4.819 26.884 8.165

MAE 0.009 0.003 0.027 0.007
R-squared 0.727 0.946 -0.679 0.845

Table 3. Evaluation metrics for pH estimation for the data collected in October 2022, see Figure 1a.
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Temperature LR RF SVR MLP
MSE 0.076 0.006 0.014 0.016

RMSE 0.276 0.078 0.116 0.126
NRMSE 12.008 3.384 5.055 5.461

MAE 0.232 0.042 0.088 0.091
R-squared 0.838 0.987 0.971 0.966

Table 4. Evaluation metrics for temperature estimation for the data collected in October 2022, see
Figure 1a.

Dissolved Oxygen LR RF SVR MLP
MSE 0.041 0.20 0.011 0.005

RMSE 0.203 0.141 0.109 0.074
NRMSE 12.944 9.041 6.968 4.713

MAE 0.136 0.071 0.077 0.043
R-squared 0.666 0.837 0.903 0.955

Table 5. Evaluation metrics for dissolved oxygen estimation for the data collected in November 2022,
see Figure 1b.

pH LR RF SVR MLP
MSE 0.00003 0.00001 0.00036 0.00005

RMSE 0.005 0.004 0.019 0.007
NRMSE 11.298 8.302 38.408 15.352

MAE 0.004 0.002 0.017 0.005
R-squared 0.816 0.901 -1.115 0.662

Table 6. Evaluation metrics for pH estimation for the data collected in November 2022, see Figure 1b.

Temperature LR RF SVR MLP
MSE 0.099 0.037 0.031 0.010

RMSE 0.315 0.194 0.176 0.104
NRMSE 15.779 9.740 8.815 5.210

MAE 0.204 0.065 0.095 0.055
R-squared 0.478 0.801 0.837 0.943

Table 7. Evaluation metrics for temperature estimation for the data collected in November 2022, see
Figure 1b.

4. Conclusions 237

Our study explores the transformative potential of machine learning techniques in 238

enhancing coastal water monitoring, especially in the face of sensor data challenges. By 239

applying models such as LR, RF, and SVR, we achieved promising results in predicting 240

critical water parameters like dissolved oxygen, pH, and temperature. Particularly in 241

Biscayne Bay, Florida, these methodologies not only ensure data consistency but also pave 242

the way for more advanced sensor fusion approaches. As coastal regions continue to face 243

environmental challenges, such innovative solutions will be important in ensuring robust 244

and informed monitoring for the preservation of these vital ecosystems. Future work 245

should aim to augment the number of water features to be entangled and estimated by this 246

approach. Moreover, it should state and corroborate how necessary seasonal models are or 247

if on the other hand, spatio-temporal models are required to keep a meaningful estimation 248

giving rise to more accurate and interpretable models [5,22]. 249
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