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Abstract 

 
This study investigates the impact of extreme weather on Australia's economy using 

the Australian Actuaries Climate Index (AACI). Incorporating temperature, rainfall, 

drought, wind, and sea level, the AACI provides a comprehensive measure of extreme 

weather conditions. Employing a vector autoregression model, our findings reveal 

persistent negative effects of extreme weather shocks on gross domestic product 

(GDP). Initially, consumer prices decline, later transitioning to positive due to 

supply-side effects. Moreover, interest rates initially decrease, unemployment rates 

rise, and energy consumption increases in the aftermath of extreme weather shocks.  

This research unveils the intricate relationship between extreme weather and key 

economic indicators.  
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1. Introduction 
 

 Extreme weather plays an important role in understanding the impact of climate 

change on the economy. Different approaches have been used to measure extreme 

weather. Some studies use self-reported disaster counts and losses (Hsiang and Narita, 

2012; Kahn, 2005; Noy, 2009). This measure has been argued to have an issue as it 

might underestimate actual losses from disaster and it might be affected by endogenous 

problems as the quality and completeness of self-reported measures depend on the local 

economic and political conditions (Hsiang and Jina, 2014; Kahn, 2005; Kim et al., 

2022). Other measures are based on historical temperature and precipitation data 

(Acevedo et al., 2020; Dell et al., 2012). These measures might not capture other 

extreme weather events such as disasters from wind or drought. 

Recently the Actuaries Institute Australia introduced the Australian Actuaries 

Climate Index (AACI) to measure extreme weather conditions in Australia. This index 

is constructed by including high and low temperatures, rainfall, drought, strong wind, 

and sea level. It can improve the accuracy of estimating the frequency of extreme 

events that could not be identified from only temperature or precipitation data. Also, 

this index is less subject to endogeneity and quality issues. It provides a better 

understanding of how climate change affects the economy. The weather in Australia 

has warmed by over 1°c since 1910, which leads to an increase in the frequency of 

extreme heat events, and severity of drought conditions, and consequently associated 

with a reduction in Australia’s gross domestic product (GDP) by 1% annually (Bureau 

of Meteorology, 2018). The Actuaries Climate Index was first developed in the United 

States and Canada to provide the climate trend and potential impact of climate 

changes. It was only recently developed for Australia. Using this index, we examine 

the impact of extreme weather shocks on various economic indicators in the Australian 

economy, including the gross domestic product, consumer prices, interest rates, 

unemployment rates, and energy consumption. 
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Our finding shows that extreme weather shocks have a negative impact on GDP, 

interest rates, and consumer price index (CPI), while we observe a positive effect on 

energy consumption. We also provide an additional explanation by analyzing the 

following CPI components: core CPI, energy price, and food price. We find that energy 

and food prices increase after extreme weather shocks because of higher energy demand 

for cooling and heating and lower agriculture output. The increase in energy and food 

prices offsets the negative effect on CPI, causing the impact on core CPI to be more 

negative because energy and food prices are excluded in core CPI. In line with the 

economic growth decline, unemployment rate increases as extreme weather shocks lead 

to reducing output. In addition, energy consumption increases after extreme weather 

shocks because individuals demand more energy for cooling or heating during hostile 

weather conditions. 

The rest of this paper is structured as follows. Section 2 presents the literature 

review. Section 3 provides a description of the data while Section 4 describes the model. 

Section 5 discusses results. Section 6 concludes. 

2. Literature review 
 

One strand of literature on the impact of climate change on the economy focuses 

on the relationship between the weather condition and economic activity. Earlier 

studies mainly investigate the relationship between changes in temperature or rainfall 

and agricultural productivity, such as crop production (Key and Sneeringer, 2014; 

Lobell and Asner, 2003; Schlenker and Roberts, 2009). Schlenker and Roberts (2009) 

report that temperature increases up to a critical threshold of 29°C (i.e., 84°F) may 

benefit crop production such as corn. If temperature increases beyond that threshold, 

crop production deteriorates. In addition, McCarl et al. (2008) examine the impact of 

climate change on crop yields and find that higher climate variability results in lower 

average crop yields. The result is also confirmed by Mukherjee et al. (2013) and Lobell 

and Asner (2003). 
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Some recent studies examine the impact of changes in temperature on aggregate 

economic activity (Burke et al., 2015; Colacito et al., 2019; Dell et al., 2014; Palareti 

et al., 2019; Raddatz, 2007). For example, Dell et al. (2009) provide cross-sectional 

evidence of the relationship between climate change and income for 12 countries. Their 

result shows a negative temperature-income relationship, with 1°c increase in 

temperature leading to a 1.2-1.9% reduction in per capita income and the short-run 

effect is more impactful than the long-run. Dell et al. (2012) examine the impact of 

temperature and precipitation fluctuation on aggregate economic outcomes in 125 

countries in the world. They find that higher temperatures decrease economic growth 

in developing countries, particularly reducing the agricultural output, industrial 

output, and political stability. In addition, Donadelli et al. (2017) analyze the impact 

of temperature shocks on productivity for the US economy. Their results show that 

temperature shocks negatively impact total productivity, output, and labor 

productivity. Specifically, a one-standard deviation temperature shock decreases 

productivity growth by 1.4 percentage points. 

The existing literature mainly focuses on specific climate events, particularly on 

temperature variation and precipitation (Colacito et al., 2019; Mendelsohn et al., 1994), 

cyclones or hurricanes (Deryugina, 2017; Hsiang and Narita, 2012; Knutson et al., 2010; 

Strobl, 2011), earthquake (Cavallo et al., 2014), flooding (Kirshen et al., 2008; Rojas 

et al., 2013). For example, Hsiang (2010) examines the effect of cyclones and 

temperature on economic production in the Caribbean and Central America and finds 

that cyclone events have a negative effect on the production in the agriculture and 

tourism sector, while average temperatures have a negative relationship with total 

domestic output. Hsiang and Jina (2014) also investigate the effect of tropical cyclones 

on economic growth rate and show that GDP growth rate decreases by 3.6 percentage 

points due to cyclone events. Yang (2008) investigates the impact of hurricanes on 

international finance flows in developing countries and shows that the hurricanes lead 

to higher economic losses and larger international flows of foreign aid. Colacito et al. 

(2019) find that seasonal temperatures significantly affect the U.S. economy. They find 
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that average temperature increase reduces the U.S. economic growth. These findings 

are also supported by Dell et al. (2012) and Acevedo et al. (2020), who find that higher 

temperatures decrease economic growth rates. Overall, most studies conclude that the 

climate shock negatively impacts economic activities (Akter et al., 2023; Balvers et al., 

2017; Bansal and Ochoa, 2011; Campbell and Spencer, 2021; Colacito et al., 2019; Dell 

et al., 2009; Dunz et al., 2021). 

Another strand of literature focuses on how climate shocks influence energy 

consumption. Most studies focus on residential energy demand, where the impact of 

extreme temperature varies depending on season or location (Auffhammer and Mansur, 

2014; Sailor, 2001). Deschênes and Greenstone (2011) document the relationship 

between temperatures and annual residential energy consumption. They find that there 

is a proportionately higher increase in energy consumption when the temperature 

exceeds 90° F, suggesting a U-shaped response function where electricity consumption 

is higher on extremely cold and hot days. Auffhammer and Aroonruengsawat (2011) 

also support the finding that the relationship between household electricity 

consumption and temperature is U-shaped, but the electricity consumption response 

to temperature is different across climate zones. Ahmed et al. (2012) examine how 

climate change affects electricity demand in New South Wales, Australia by using 

cooling and heating degree days to measure the temperature variation and find that 

climate change leads to a surge in electricity demand, especially during the summer 

and spring seasons. Ruth and Lin (2006) analyze the impact of climate change on 

energy consumption in the state of Maryland, U.S., by using the historical monthly 

average temperature data as a proxy for climate change. They demonstrate a 

statistically significant relationship between electricity demand and climate change. 

Specifically, the commercial sector is more affected by climate-related increases in 

electricity demand than the residential sector. These effects are particularly noticeable 

in summer. 

Overall, previous studies of the impact of weather shocks on energy consumption 

predominantly use the temperature data or heating degree days (HDD) and cooling 
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degree days (CDD) to estimate the effect of weather shocks on energy consumption 

(Auffhammer and Aroonruengsawat, 2011; Deschênes and Greenstone, 2011; Eskeland 

and Mideksa, 2010; Pardo et al., 2002). Regarding the influence of weather shocks on 

the economy, the existing literature presents mixed results, as the economic 

repercussions of weather shocks are contingent upon several factors such as income 

levels, government expenditure, and financial conditions specific to each nation. 

(Acevedo et al., 2020; Noy, 2009). Moreover, the quality of extreme weather shock 

measures also leads to different results. Some studies employ self-reported disaster 

counts and losses from the Emergency Events Database (EM-DAT) to construct the 

weather events (Dell et al., 2014; Hsiang and Narita, 2012; Kahn, 2005; Loayza et al., 

2012; Noy, 2009). However, there are some issues associated with this self-reported 

data. Loayza et al. (2012) contend that accurately discerning whether reported 

statistics regarding incidents involving casualties, affected individuals, or economic 

losses are genuinely missing or merely recorded as zero poses a challenge. Measurement 

errors further compound this issue, stemming from erroneous data harmonization and 

compilation. Moreover, the self-reported measure is susceptible to underestimating true 

losses and influenced by endogenous factors linked to local economic and political 

circumstances (Hsiang and Jina, 2014; Kim et al., 2022; Kishore et al., 2018). Another 

climate change measure used in the literature is historical weather and precipitation 

data (Acevedo et al., 2020; Dell et al., 2012). This measure might not capture other 

extreme weather events, such as disasters from wind or drought. 

In this study, we aim to fill this gap by using the Actuaries Climate Index (ACI) 

to measure extreme weather conditions. This index is constructed by including high 

and low temperatures, rainfall, drought, strong wind, and sea level so it can more 

precisely reflect the frequency of extreme events which cannot be identified only from 

temperature data (Hsiang and Jina, 2014; Kim et al., 2022). The ACI was first 

developed in the U.S. and Canada and has been utilized in a few recent articles (Kim 

et al., 2022; Natoli, 2022; Pan et al., 2022). Kim et al. (2022) use the ACI to measure 

extreme weather shocks and examine their macroeconomic effect in the U.S. They find 
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that an increase in extreme weather causes a persistent decline in economic growth 

and inflation and an increase in the unemployment rate. Pan et al. (2022) also employ 

the ACI to estimate its effectiveness on predicting crop yields in the U.S. They show 

that the ACI has reasonable predictive power on corn yields and provides accurate 

information on extreme weather events when calculating and modelling climate-related 

insurance and financial risk. 

Since the ACI was first developed in North America, the existing literature 

mainly leverages this data in the U.S. and Canadian markets. In contrast, we 

investigate the recently developed ACI for Australia. To the best of our knowledge, 

our study is one of the first employing the ACI in Australia. 

3. Data 

3.1 Australian Actuaries Climate Index (AACI) 

 

The AACI is built on six individual components, i.e., high temperatures, low 

temperatures, precipitation, wind, consecutive dry days (CDD), and sea level. The high 

temperature component is defined as the change in frequency of daily maximum and 

minimum temperatures which exceed the 99th percentile in a month, while the low 

temperature component is defined as the change in frequency of daily maximum and 

minimum temperatures which exceed the 1st percentile in a month. The precipitation 

component is measured by the frequency of rainfall over five consecutive days, which 

exceeds the 99th percentile. This extreme precipitation could measure the flood risk or 

storm damage. Next, the wind component is defined as the monthly frequency of daily 

maximum wind gusts exceeding the 99th percentile. The highest wind gusts are likely 

to cause more danger and damage during extreme wind weather like storms and 

cyclones. The consecutive dry days (CDD) component measures the drought condition, 

which is defined as the annual maximum number of consecutive days with less than 

1mm of rain. The last component is the sea level, measured by the track movement in 

the monthly maximum observed sea level via tide gauges. It measures the risk for 

coastal inundation; however, it does not measure the land movements because the land 
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movements can be caused by a combination of climate-related and non-related factors 

such as tectonic movements. For each component, the data is collected from the Bureau 

of Meteorology (BoM)2. All data starts in 1981, except for wind data which starts in 

2002 in Australia. The summary statistics of each component are presented in Table 

1.  

The combination of all components aims to bring extreme conditions into a 

single index e.g., AACI. One of the challenges to aggregate all components into a single 

index is the fact that each component has different measurement units across weather 

variables. Therefore, the following standardization method is implemented to make 

these measures comparable. All standardized anomalies are based on the reference 

period from 1981-2010, which is calculated as follows: 

𝑋𝑖,𝑡
𝑠𝑡𝑑 =

𝑥𝑖,𝑡−𝜇𝑥,𝑖
1981−2010

𝜎𝑥,𝑖
1981−2010  ,     (1) 

where the 𝑋𝑡
𝑠𝑡𝑑 is the standardized anomaly of the weather variable 𝑥 at location 𝑖 and 

time 𝑡. 𝑥𝑖,𝑡 is the value of weather variable, 𝜇𝑥,𝑖
1981−2010 is the average of weather variable 

𝑥 at location 𝑖 for the same period during the reference period 1981-2010, 𝜎𝑥,𝑖
1981−2010 is 

the standard deviation of weather variable 𝑥 at location 𝑖 for the same period during 

the reference period 1981-2010. Following this standardization, all the standardized 

anomalies can be combined to create a single index.  

Next, since the extreme temperature, precipitation, and wind track the 

frequency of events above the 99th percentile thresholds, we calculate these thresholds 

based on the standardized anomaly we observed. For example, to calculate the 

threshold on 5th January for the high temperature variable, we use all daily maximum 

temperature values on January 5th between the period 1981 and 2010 (30 years). This 

gives us 30 observations. To increase the number of observations, we also collect the 

data five days before and after January 5th. This finally gives us 330 observations. 

 
2 The Bureau of Meteorology (BoM) is the Australia’s national weather, climate, and water agency. The 

Bureau provides the information related to natural environment, including tropical cyclones, drought, 

floods, fires, storms, and tsunami. 
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From this data, we determine the threshold of 99th percentile temperature to be the 

4th warmest of the 330 days. Thus, the index tracks the proportion of temperature 

values that are higher than the threshold. Calculations of weather variables are 

performed at each station level. Then, the average across all stations is taken within a 

region to aggregate to into the regional level. Next, we aggregate the index at station 

level to national level by taking the average across regions. Thus, this results in six 

aggregate time series of weather variables including standardized anomaly for high 

temperature (𝐻𝑖𝑔ℎ𝑇𝑒𝑚𝑝𝑡
𝑠𝑡𝑑), low temperatures (𝐿𝑜𝑤𝑇𝑒𝑚𝑝𝑡

𝑠𝑡𝑑), precipitation 

(𝑃𝑟𝑒𝑐𝑖𝑝𝑡
𝑠𝑡𝑑), wind (𝑊𝑖𝑛𝑑𝑖,𝑡

𝑠𝑡𝑑), consecutive dry days (𝐶𝐷𝐷𝑡
𝑠𝑡𝑑), and sea level 

(𝑆𝑒𝑎𝐿𝑒𝑣𝑒𝑙𝑡
𝑠𝑡𝑑). 

When aggregating these components into a composite index, the approach 

employed involves computing a simple average of each standardized component. 

However, the Actuaries Institute report (2018) mentions that the public AACI 

developed by the Australian Actuaries takes a simple average of only three individual 

component indices (high temperature, precipitation, and sea level). The reason for 

excluding other components is that the wind gust data is not available back to 1981 

(it only becomes available in 2002 in Australia), so it is excluded from the composite 

index. The consecutive dry days index is also excluded because it has a strong inverse 

relationship with the precipitation measure, while the low temperature component is 

excluded to ensure that the composite index does not overweigh temperature metrics. 

Thus, the composite AACI combines only three standardized components (high 

temperature, precipitation (rainfall), and sea level), which is constructed as follow: 

𝐴𝐴𝐶𝐼𝑡 = ( 𝐻𝑖𝑔ℎ𝑇𝑒𝑚𝑝𝑡
𝑠𝑡𝑑 + 𝑃𝑟𝑒𝑐𝑖𝑝𝑡

𝑠𝑡𝑑 + 𝑆𝑒𝑎𝐿𝑒𝑣𝑒𝑙𝑡
𝑠𝑡𝑑)/3.   (2) 

A positive index value represents an increase in relevant climate extremes relative to 

the 1981-2010 reference period. Since the value is in the form of a standardized 

anomaly, an index value of 0.5 indicates that a component making up the aggregate 

index has increased on average by 0.5 standard deviation. This composite index is the 
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main index we used in this study3. The data is available at quarterly frequency and 

covers the period from 1981:1 to 2021:4.  

Figure 1 illustrates the trend of AACI during the period 1981-2021. The bar 

plots the quarterly values of the index relative to the reference period of 1981-2010, 

with the green bar indicating the positive value while the red bar indicates the negative 

value. The solid black line presents the five-year moving average of AACI. The graph 

shows that after 2000, the index exhibits a high frequency of positive value. This 

suggests an increase of extreme climate events in Australia compared to the reference 

period. This pattern is more pronounced post 20104.  

The trend of each standardized component in the index is plotted in Figure 2. 

Among all components, the high temperature and sea level components exhibit the 

most significant extreme changes. These findings suggest that the factors contributing 

to an upsurge in the AACI predominantly originate from the components associated 

with elevated temperatures and sea levels. In contrast, the component related to 

rainfall exhibits greater consistency and relative stability compared to the other 

components during the same time frame. Overall, the graph shows that the AACI and 

all component indices significantly increased over the period of 1981-2021, confirming 

the surge in extreme climate instances. Notably, extreme climate risks related to higher 

temperatures and higher sea levels have increased. This leads to greater concern about 

climate change risk in Australia. 

3.2 Explanatory variables 

 

While analyzing the impact of extreme weather shocks on the economy, we 

employ the year-on-year growth rate of following variables in our analysis: the gross 

domestic production (GDP), consumer price index (CPI), core CPI, CPI energy, CPI 

food and the unemployment rate. All data is collected from Federal Reserve Bank of 

St. Louis’ Federal Reserve Economic Data (FRED) at a quarterly frequency.  

 
3Refer to the Actuaries Institute in Australia: https://actuaries.asn.au  
4 We also plot the trend of each AACI component in Appendix A. 

https://actuaries.asn.au/
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We also employ energy consumption to examine the impact of extreme weather 

on energy consumption. We use the energy consumption and energy production data 

from the International Energy Agency (IEA) energy database. The variables are 

measured as the year-on-year growth rate. 

Table 2 presents the summary statistics of variables used in our analysis. Panel 

A of Table 2 presents summary statistics of AACI and its components. The high 

temperature and sea level have the largest average value of extreme changes. This 

observation substantiates the findings depicted in Figure 2, which highlight that the 

ACCI is primarily influenced by the sea level and high temperature components, 

demonstrating the highest average values of 0.163 and 0.149, respectively. The 

standard deviation of the components varies approximately between 0.3 and 0.6, and 

the high temperature and sea level are still the most significant volatile components. 

Panel B of Table 2 shows the summary statistics of macroeconomic variables. All 

variables are expressed as the year-on-year growth rate. The average value of all 

consumer price growth rates is approximately 3% across our sample period. However, 

the growth rate of the consumer price index for the energy component is the highest 

of all at 5.3% on average. This is because Australia's energy price has increased by 

72% over the past ten years (ABS, 2021). 

4. Methodology 
 

To analyze the impact of extreme weather shocks on the economy, we employ 

the vector autoregressive (VAR) model with exogenous variables. Our model enables 

the integration of exogenous predictor variables and analysis of their effects on 

endogenous response variables. We incorporate the extreme weather index as the 

exogenous climate factor. The VAR model takes the following form: 

(
𝑦𝑡

𝑥𝑡
) = (

𝑎0

𝑐0
) + (

𝐴1 𝐵1

0 𝐶1
) (

𝑦𝑡−1

𝑥𝑡−1
) + ⋯ + (

𝐴𝑝 𝐵𝑝

0 𝐶𝑝
) (

𝑦𝑡−𝑝

𝑥𝑡−𝑝
) + (

𝑈𝑡

𝑉𝑡
),  (3) 



12 

 

where 𝑦𝑡 represents the (𝑘 × 1) vector of endogenous variables and 𝑝 is the number of 

lags included in the model. 𝑥𝑡 represents the (𝑚 × 1) vector of exogenous variables 

and: 

(
𝑈𝑡

𝑉𝑡
) ~𝑖. 𝑖. 𝑑 𝑁𝑘+𝑚 [(

0
0

) , (
∈11 ∈12

∈21 ∈22
)]. 

The vector of endogenous variable (𝑦𝑡) includes the GDP growth rate, CPI growth 

rate, the change in the interest rate (INT), and the change in the unemployment rate 

(UEM). It can be written in the vector form as: 𝑦𝑡 =

[∆𝐺𝐷𝑃𝑡 ∆𝐶𝑃𝐼𝑡 ∆𝐼𝑁𝑇𝑡 ∆𝑈𝐸𝑀𝑡]′. The exogenous variable (𝑥𝑡) is the extreme weather 

shock, which is the Australian Actuaries Climate Index (AACI) as described in Section 

3.1. 

We can rewrite equation (3) in the lag operation notation (𝐿) as: 

𝛽(𝐿)𝑌𝑡 = Φ(𝐿)𝑋𝑡 + 𝑈𝑡 ,     (4) 

where:  

𝛽(𝐿)  = 𝐼𝑘 − 𝛽1𝐿−. . . −𝛽𝑃𝐿𝑝 ,    (5) 

and: 

Φ(𝐿)  = Φ0 − Φ1𝐿−. . . −Φ𝑗𝐿𝑗 .    (6) 

To assess the effect of a change in exogenous variable on the endogenous variables, we 

multiply equation (4) by 𝛽(𝐿)−1: 

𝛽(𝐿)−1𝛽(𝐿)𝑌𝑡 = 𝛽(𝐿)−1Φ(𝐿)𝑋𝑡 + 𝛽(𝐿)−1𝑊𝑡 ,   (7) 

𝑌𝑡 = 𝛽(𝐿)−1Φ(𝐿)𝑋𝑡 + 𝛽(𝐿)−1𝑊𝑡 .    (8) 

We set D(𝐿) = 𝛽(𝐿)−1Φ(𝐿) and rewrite the equation (8) as: 

𝑌𝑡 = D(𝐿)𝑋𝑡 + 𝛽(𝐿)−1𝑊𝑡      (9) 
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The term D(𝐿) measures the effect that changes in exogenous variables have on 

endogenous variables. Thus, the impact of extreme weather shocks on economic 

variables can be captured by D(𝐿) = 𝛽(𝐿)−1Φ(𝐿). 

5. Results 

 

5.1 Unit root test  

 

Before estimating the VAR model, we first conduct the unit root testing to 

ensure that the variables in the model are stationary to avoid the spurious regression 

problem. We apply the standard Augmented Dickey–Fuller (ADF) and Phillips Perron 

(PP) test to perform unit root test in this study. The null hypothesis of both 

methodologies is that the unit root exists in the series. 

We also analyze the unit root test with and without time trend in the regression. 

For all variables, we reject the null hypothesis at 1% significant level for both the 

Augmented Dicky Fuller and Phillips–Perron tests and both unit root test with trend 

and without trend. This suggests that all variables are stationary and can be included 

in the VAR model. 

5.2 Economic indicator response to extreme weather shocks 

 

In this section, we estimate the VAR model as specified in equation (3). We use 

6 lags of VAR based on the Akaike Information criterion (AIC). We then plot the 

dynamic multiplier function, which is used to measure the impact of a unit increase in 

an exogenous variable on the endogenous variable. This allows us to estimate the 

impact of extreme weather shocks on economic variables.  

Figure 3 illustrates the dynamic response of economic variables to one standard 

deviation of extreme weather shock. The solid line shows the median response while 

the dash line represents a 90% confidence interval. We find that the GDP growth rate 

responds negatively to extreme weather shocks. An increase of extreme weather shock 

by one standard deviation decreases the GDP growth rate by 0.7 percentage point 
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contemporaneously and the impact is continuously negative over time for almost 10 

quarters, although it gradually converges to zero. This suggests that the effect is quite 

persistent. Our finding is consistent with the literature, which finds that the GDP 

growth rate steadily decreases in the long term after cyclone events and temperature 

shocks (Burke et al., 2015; Dell et al., 2012; Hsiang and Jina, 2014; Natoli, 2022). 

However, our result also shows a gradually rising GDP growth rate, suggesting a 

recovery in the economy. This is because subsequent government spendings, such as 

financial aid activities, investment, and reconstruction works, help the economy to 

recover from such extreme weather shock (Mohan et al., 2019; Rasmussen, 2006). 

The CPI growth rate results demonstrate that extreme weather shocks have a 

contemporaneous negative impact of approximately 0.3 percentage points immediately 

after the initial shock, but the impact gradually increases in the next quarter and 

reverses to a positive impact within 8 quarters after the shock. The initial decrease in 

the CPI growth rate can be attributed to the dual impact of extreme weather shocks 

on both supply and demand sides, resulting in a significant reduction in aggregate 

demand within the Australian economy, surpassing the supply-side (Natoli, 2022; 

Parker, 2018). Post the weather shock, constrained spending patterns and a focus on 

essential items may contribute to an initial decrease in overall pricing inflation. 

However, beyond the initial quarter, the supply-side impact of extreme weather shock 

leads to output (Faccia et al., 2021; Fomby et al., 2013; Noy, 2009; Strobl, 2011) and 

labor supply (Cachon et al., 2012; Graff Zivin and Neidell, 2014; Somanathan et al., 

2021) shortages, resulting in an upward pressure on the consumer price index (Cavallo 

et al., 2014; Keen and Pakko, 2011).  

Following a weather shock, interest rates exhibit a decline for five quarters, 

subsequently transitioning to a positive trajectory after nine quarters. The decrease 

amounts to approximately 4 percentage points within the initial five quarters. This 

decline aligns with the reduction in the consumer price index (inflation) during the 

onset of weather shocks. Consequently, an expansionary monetary policy response is 
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observed, whereby interest rates are lowered and the money supply is increased, aiming 

to address the declining inflation and uphold economic stability. Subsequently, nine 

quarters after the weather shock, interest rates exhibit a positive trend, rising by 

approximately 2% in response to a one-standard-deviation increase in extreme weather 

shock. This suggests the implementation of a contractionary monetary policy, wherein 

interest rates are increased to mitigate inflationary pressures by reducing the money 

supply, economic growth, and consumer spending. Our findings align with Natoli 

(2022) indicating a decline in interest rates following weather shocks, followed by a 

gradual increase in the medium term. This supports the notion that an effective 

monetary policy response is crucial to address inflation dynamics and sustain economic 

stability (Keen and Pakko, 2011). 

Furthermore, extreme weather shocks have a positive impact on the 

unemployment rate, with a one-standard-deviation increase in shocks associated with 

a 2-percentage-point rise. This effect remains positive before gradually declining over 

4 quarters following the shock. This outcome is consistent with the observed decrease 

in economic growth, indicating reductions in output and total factor productivity, 

leading to a decrease in hours worked and an increasing unemployment rate (Babiker 

and Eckaus, 2007; Graff Zivin and Neidell, 2014). Subsequently, our findings indicate 

a decrease in the unemployment rate following extreme weather shocks, turning 

negative within 10 quarters, implying a recovery effect. This observation aligns with 

the trajectory of gross domestic product (GDP) growth, which exhibits an increasing 

or recovering trend within the same 10-quarter period after extreme weather shocks. 

5.3 The price impact of extreme weather shocks 

 

To gain further insight into the price impact, we augment our analysis by 

employing the core consumer price index (Core CPI) as an alternative to the overall 

CPI in our model. The Core CPI excludes energy and food prices. Subsequently, we 

re-estimate the VAR model and present the dynamic response function in Figure 4, 

providing a comprehensive understanding of the price dynamics. The graphical 
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representation reveals that the Core CPI is negatively impacted by extreme weather 

shocks, with a larger impact observed at the onset of the shock period compared to the 

CPI results shown in Figure 3. This disparity in findings can be attributed to the 

exclusion of energy and food prices in the Core CPI, emphasizing the significance of 

energy and food price dynamics in shaping the observed impact.  

To further explore the impact of extreme weather shocks on specific components 

of the CPI, namely energy prices and food prices, we conduct a separate analysis. The 

dynamic response function, illustrated in Figure 5, demonstrates that the response of 

energy prices to extreme weather shocks is positive. A one-standard-deviation positive 

shock corresponds to an increase of approximately 0.4 percentage points in energy 

prices, which further amplifies to around 0.9 percentage points within a year. 

Subsequently, the energy price gradually decreases and dissipates over time. This 

observation indicates that extreme weather shocks lead to increased energy demand, 

as individuals require more energy for heating purposes. Simultaneously, the 

productivity of energy infrastructure can diminish due to the impact of extreme 

weather shocks, affecting energy supply. Consequently, higher energy prices arise 

because of reduced supply and heightened demand for energy (Cashin et al., 2017; 

Mukherjee and Ouattara, 2021). 

Similarly, the analysis reveals a positive impact of extreme weather shocks on 

food prices. Specifically, a one-standard-deviation increase in extreme weather shock 

corresponds to an approximate 0.2 percentage point increase in food prices. 

Subsequently, the impact gradually diminishes to zero and transitions into a negative 

effect, resulting in a decline of 0.4 percentage points within six quarters following the 

shock. This finding aligns with the understanding that extreme weather shocks lead to 

reduced agricultural output and productivity, as climatic conditions significantly 

influence agricultural productivity. Extreme weather conditions can disrupt 

agricultural systems by altering the prevalence of pests and diseases and diminishing 

the availability of land, soil moisture, and water supply. These changes pose significant 
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challenges and expenses to the agricultural sector and the production of food 

commodities (Adams et al., 1998; Aydinalp and Cresser, 2008). Such disruptions in 

agricultural systems have the potential to contribute to food scarcity issues. As the 

demand for food surpasses the available supply, a situation of excess demand can arise, 

leading to longer-term increases in food prices. (Acevedo et al., 2020; Mukherjee and 

Ouattara, 2021; Wang and McPhail, 2014).  

In summary, our findings indicate that extreme weather shocks have a larger 

negative impact on the core CPI compared to the overall CPI. This disparity can be 

attributed to the subsequent increase in energy and food prices following extreme 

weather events, which are excluded from the Core CPI calculation. The rising energy 

and food prices counterbalance the negative impact, resulting in a smaller effect on the 

overall CPI. Nevertheless, both CPI and Core CPI exhibit negative responses to 

extreme weather shocks, suggesting that these shocks primarily reduce aggregate 

demand rather than supply. 

5.4 Extreme weather and energy consumption 

 

In this section, we examine the effects of extreme weather shocks on energy 

consumption by incorporating it as an additional variable in our VAR model. We 

present the dynamic response function in Figure 6, which demonstrates the response 

of energy consumption to a one-standard-deviation increase in extreme weather shock. 

The depicted graph illustrates that energy consumption exhibits a positive 

response to extreme weather shocks. Following the shock, energy consumption 

experiences a gradual increase, peaking at 0.8 percentage points in the initial quarter 

and reaching 0.4 percentage points immediately after the shock. Subsequently, energy 

consumption gradually declines as the intensity of the extreme weather shock increases 

by one standard deviation. These findings indicate that extreme weather conditions 

stimulate higher energy consumption as individuals require increased energy for 

heating or cooling during such events (Akhmat et al., 2014; Auffhammer and Mansur, 

2014). Nevertheless, individuals may learn to adapt their energy consumption patterns 
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over the long run, potentially through the adoption of more efficient technologies. This 

could involve the purchase of energy-saving equipment, resulting in reduced energy 

consumption. This observation aligns with our findings, indicating a gradual decrease 

in energy consumption in the medium and long term. These results are in line with the 

findings presented in Figure 5, which demonstrate an increase in energy prices due to 

heightened energy demand. 

5.5 The impact of each component of AACI on energy consumption 

 

To gain further insights into the impact of extreme weather events on energy 

consumption, we analyze the individual components of the AACI, namely high 

temperature, precipitation, and sea level. Additionally, we extend our analysis to 

include low temperature, drought, and wind indices, which are not encompassed in the 

main AACI. By incorporating each specific component into separate VAR models, we 

assess the unique effects of these weather events on energy consumption. 

The dynamic response function in Figure 7 depicts the impact of extreme 

weather shocks on energy consumption, focusing on the components of high 

temperature and low temperature. Our analysis reveals a positive influence of both 

high and low temperatures on energy consumption, with an average increase of 5 

percentage points. The impact follows a similar pattern for both temperature extremes, 

gradually returning to zero within 7 quarters after the shocks. This finding aligns with 

previous literature examining the relationship between climate change, temperature, 

and electricity consumption, suggesting that climate change is likely to contribute to 

higher electricity consumption (Mansur et al., 2008; Sailor and Muñoz, 1997). 

In addition to temperature, we also analyze the impact of other components of 

the AACI on energy consumption. Our findings indicate that precipitation (rainfall) 

has a small and insignificant positive effect on energy consumption, which diminishes 

within 8 quarters. Similarly, the sea level component initially increases energy 

consumption by 2 percentage points, followed by a gradual decline and return to zero 

within 8 quarters. However, the consecutive dry days and wind index have negligible 
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effects on energy consumption, with an impact magnitude of approximately 0.2 

percentage points. These results suggest that temperature fluctuations have a more 

substantial influence on energy consumption compared to other weather factors. 

Overall, our analysis indicates that temperature and sea level are the primary 

components of extreme weather that significantly impact energy consumption. These 

factors exhibit the most substantial magnitude of impact, while precipitation, drought, 

and wind have a relatively smaller contribution to the effect on energy consumption. 

Understanding the relative importance of each weather component can help 

policymakers and energy planners prioritize their efforts in mitigating the impact of 

extreme weather events on energy consumption and developing appropriate adaptation 

strategies. 

6. Conclusion 
 

This study investigates the impact of extreme weather on Australia's economy 

using the Australian Actuaries Climate Index (AACI), a comprehensive measure that 

incorporates high and low temperatures, rainfall, drought, strong wind, and sea level. 

By including multiple weather components, the AACI improves the accuracy of 

capturing the frequency of extreme events and their potential effects on the economy. 

Utilizing a VAR model, we analyze the influence of extreme weather shocks on key 

economic indicators, such as the gross domestic product, interest rate, consumer prices, 

unemployment rate, and energy consumption. This approach allows us to assess the 

broader implications of extreme weather on Australia's economic performance. 

Our study reveals that extreme weather shocks have a lasting negative impact 

on gross domestic product (GDP) in Australia. Furthermore, we observe an initial 

negative effect on the consumer price index, reflecting a decrease in aggregate demand 

following the weather shock. However, over the medium term, the impact shifts to a 

positive effect, indicating the supply side consequences of extreme weather events, such 

as output and labor supply shortages. These findings emphasize the complex dynamics 

and interplay between weather shocks, economic activity, and price levels. 
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Additionally, we analyze the components of the consumer price index (CPI) to 

gain further insights. Specifically, we decompose the CPI into Core CPI, energy price 

index, and food price index, and assess the impact of extreme weather shocks on each 

component. Our findings reveal that both CPI and Core CPI experience negative 

effects, but the impact on Core CPI is more pronounced compared to CPI. This 

disparity can be attributed to the increase in energy and food prices, which offset the 

negative impact on CPI. Extreme weather shocks drive higher energy demand, leading 

to increased energy prices, while agricultural output decline contributes to elevated 

food prices. 

Furthermore, our analysis reveals a decrease in the interest rate in response to 

extreme weather shocks, indicating an expansionary monetary policy that aims to 

address declining inflation. Consistent with the decrease in economic growth, the 

unemployment rate rises due to reduced output and fewer hours worked. Interestingly, 

we observe an increase in energy consumption following extreme weather shocks, driven 

by the heightened demand for cooling or heating during adverse weather conditions.  
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Table 1: AACI Component index 

This table presents the description and data sources of Australian Actuaries Climate Index (AACI) and 

its components. The AACI consists of six components: high temperature, low temperature, precipitation, 

wind, consecutive dry days, and sea level. 

 

Component Detail Source 

High 

Temperature 

Frequency of daily maximum and 

minimum temperatures which exceed the 

99th percentile 

112 ACORN-SAT BoM weather 

stations across Australia 

Low 

Temperature 

Frequency of daily maximum and 

minimum temperatures which exceed the 

1st percentile 

112 ACORN-SAT BoM weather 

stations across Australia 

Precipitation 

Frequency of rainfall over the five 

consecutive days exceed the 99th 

percentile 

Approximately 2,000 BoM 

weather stations that collect 

rainfall data across Australia  

Wind 
Frequency of daily wind speed exceed the 

99th percentile 

38 BoM weather stations that 

provide the most reliable wind 

data 

Consecutive 

Dry Days 
Seasonal maximum consecutive dry days 

Approximately 2,000 BoM 

weather stations that collect 

rainfall data across Australia  

Sea Level Seasonal maximum sea level 

16 tide gauges across Australia 

and BoM's Baseline Sea Level 

Monitoring Project 
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Table 2: Descriptive statistics 

This table presents the summary statistics of variables included in our analysis. Panel A presents the 

summary statistics of the Australian Actuaries Climate Index (AACI) and its six components 

constructed as described in Section 3.1. Panel B shows the summary statistics of macroeconomic 

variables, collected from Federal Reserve Bank of St. Louis’ Federal Reserve Economic Data (FRED). 

All data is based on the quarterly frequency from 1981-2021. 
 

  Mean S.D. Median Min Max 

Variables (1) (2) (3) (4) (5) 

Panel A: AACI Index and components         

AACI 0.111 0.317 0.100 -0.630 1.000 

High Temperature 0.149 0.492 0.050 -0.530 2.520 

Low Temperature 0.058 0.293 0.140 -0.810 0.520 

Rainfall 0.021 0.280 0.000 -0.420 1.360 

Sea Level 0.163 0.592 0.190 -1.250 1.920 

CDD -0.002 0.383 -0.035 -0.870 1.190 

Wind -0.044 0.323 -0.035 -0.770 1.070 

Panel B: Macroeconomic variables (Ch. in %)      
CPI 0.029 0.019 0.024 -0.003 0.085 

Core CPI 0.037 0.031 0.024 -0.011 0.131 

CPI-Energy 0.053 0.073 0.057 -0.135 0.259 

CPI-Food 0.040 0.036 0.032 -0.060 0.133 

GDP  0.069 0.039 0.067 -0.061 0.167 

Interest Rate -0.059 0.290 -0.042 -0.978 0.696 

Unemployment Rate 0.006 0.154 -0.040 -0.346 0.559 

Energy Consumption 0.025 0.021 0.024 -0.032 0.063 
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Figure 1: Trend of the Australian Actuaries Climate Index (AACI) 

This figure illustrates the trend of the Australian Actuaries Climate Index (AACI) during the period 

1981-2021. The AACI is constructed as described in Section 3.1. The bar plots the quarterly values of 

index relative to the reference period of 1981-2010, with the green bar indicating the positive value while 

the red bar indicates the negative value. The black solid line presents the five-year moving average of 

the AACI.  
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Figure 2: Trend of each Australian Actuaries Climate Index (AACI) component 

This figure illustrates the trend of Australian Actuaries Climate Index (AACI) components during the 

period 1981-2021. The AACI consists of six components: high temperature, low temperature, 

precipitation, wind, consecutive dry days, and sea level. Index values are standardized. 
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Figure 3: Response of economic variables to extreme weather shock 

Figure 3 presents the estimated dynamic response functions of key economic variables, including gross 

domestic product (GDP), consumer price index (CPI), interest rate, and unemployment rate, to extreme 

weather shocks. The responses are derived from a vector autoregression (VAR) model using data at a 

quarterly frequency from 1981 to 2021. Extreme weather shocks are constructed based on the Australian 

Actuaries Climate Index (AACI), as detailed in Section 3.1. The solid line represents the median 

response, while the dashed lines depict the 90% confidence intervals. 
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Figure 4: Response of Core CPI to extreme weather shock 

Figure 4 illustrates the dynamic response function of Core CPI to extreme weather shocks. The 

response function is estimated using a vector autoregression (VAR) model. The model incorporates the 

Australian Actuaries Climate Index (AACI) to construct extreme weather shocks, as explained in 

Section 3.1. Data at a quarterly frequency from 1981 to 2021 are employed for the regressions. The 

solid line represents the median response, while the dashed lines indicate the 90% confidence intervals. 

The analysis focuses on gross domestic product (GDP), Core CPI, interest rate, and unemployment 

rate. 
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Figure 5: Response of energy and food prices to extreme weather shock 

Figure 5 displays the dynamic response function of energy price and food price to extreme weather 

shocks. The response function is estimated using a vector autoregression (VAR) model, with extreme 

weather shocks constructed from the Australian Actuaries Climate Index (AACI) as explained in Section 

3.1. The analysis is based on quarterly data from 1981 to 2021. The solid line represents the median 

response, while the dashed lines indicate the 90% confidence intervals. 
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Figure 6: Response of energy consumption to extreme weather shock 

Figure 6 illustrates the dynamic response function of energy consumption to extreme weather shocks. 

The response function is estimated using a vector autoregression (VAR) model, with extreme weather 

shocks constructed from the Australian Actuaries Climate Index (AACI) as outlined in Section 3.1. The 

analysis utilizes quarterly data from 1981 to 2021. The solid line depicts the median response, while the 

dashed lines represent the 90% confidence intervals. 
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Figure 7: Response of energy consumption to each component of extreme weather 

shock 

Figure 7 presents the dynamic response function of energy consumption to each component index of 

extreme weather shocks, including high temperature, low temperature, rainfall, sea level, consecutive 

dry days (CDD), and wind. The response function is estimated using a vector autoregression (VAR) 

model, with each component index constructed as described in Section 3.1. The analysis utilizes 

quarterly data from 1981 to 2021, except for the wind index which is based on data from 2002 to 2021. 

The solid line represents the median response, while the dashed lines indicate the 90% confidence 

intervals. 
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Appendix A 
 

Figure A.1: Trend of the Australian Actuaries Climate Index (AACI) components 

This figure illustrates the trend of each AACI component during the period 1981-2021. The index is 

constructed as described in Section 3.1. It shows six components: high temperature, low temperature, 

precipitation, wind, consecutive dry days, and sea level. The value of each index is standardized. The 

bar plots the quarterly values of the index relative to the reference period of 1981-2010, with the green 

bar indicating the positive value while the red bar indicates the negative value. The black solid line 

presents the five-year moving average of AACI.  
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Figure A.2: Actuaries Climate Index for the U.S., Canada, and Australia 

This figure illustrates the trend of the Actuaries Climate Index (ACI) for U.S., Canada, and Australia 

during the period 1981-2021. The ACI is the index for U.S. and Canada market, which is the green line 

and the AACI is the Australian index, which is red line. Index values are standardized. 

 

 

 
 


