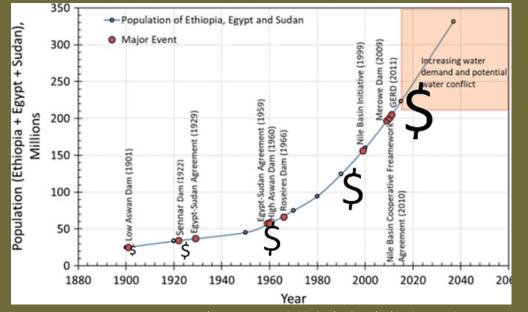


Downstream Upstream Relationship and The Grand Ethiopian Renaissance Dam (GERD) Filling and Operation Agreement Flexibility

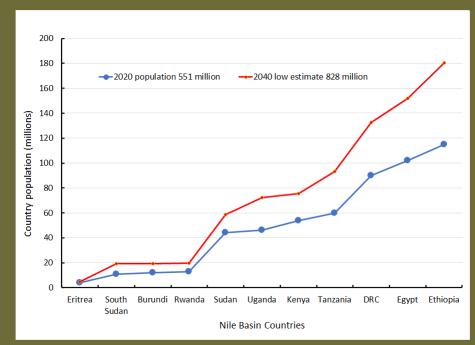
Wossenu Abtew, Ph.D., P.E., DWRE, Principal Civil Engineer, Water and Environment Consulting LLC, wabtew@gmail.com

Nile Talk Forum Global Webinar Series FIU January 28, 2021

Water and Environment Consulting LLC <u>https://waterandenvironmental.com</u>

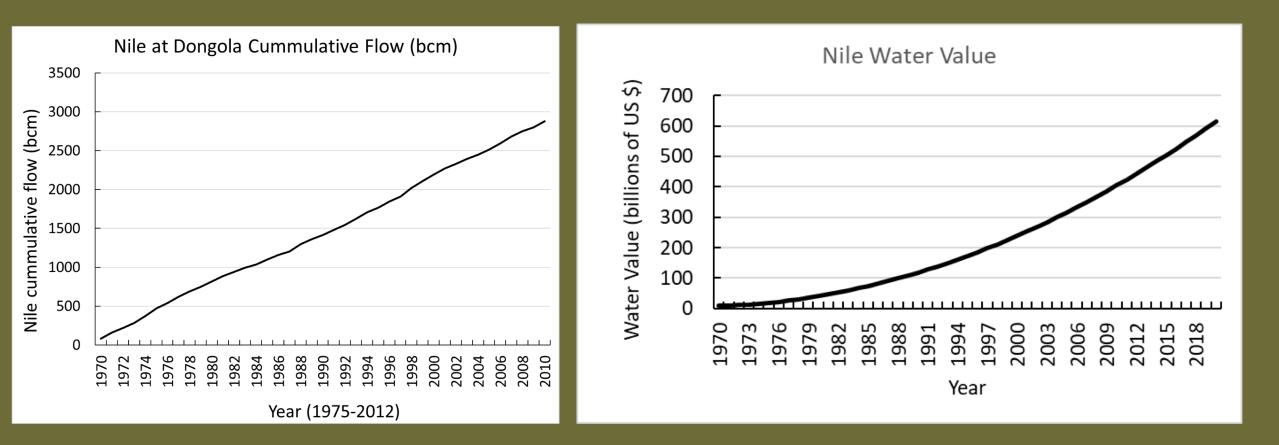

Outline of Talk

- Global Freshwater Impending Shortage and the Nile Basin
- GERD Negotiations Washington DC Proposal
- Dam Operation Flexibility and Climate Prediction
- The Future of GERD Negotiations


Eastern Nile Population Growth, Water Value and Water Conflict

The Price of Nile water has increased inviting and global freshwater deficit is projected (40% deficit by 2030)

- 1. Out of basin water transfer/sale (direct or indirect)
- 2. Political and economic bartering of water and internationalizing Nile water conflict
- 3. It is drawing speculators attention as now water is a commodity ((NQH2O) on the Nasdaq Veles California Water Index)
- 4. Domestic political value of water keeps on increasing
- 5. Land and water grab are part of water trading Sudan with the highest potential
- 6. The Nile flow will decrease due to upstream abstraction



Eastern Nile Countries

Nile Countries

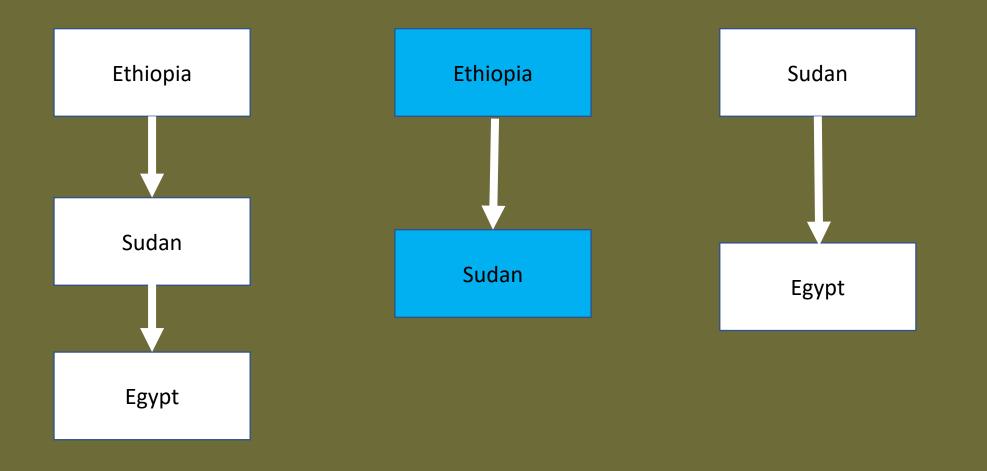
Abtew, W, Dessu S. 2018. The Grand Ethiopian Renaissance Dam on the Blue Nile River. Springer (<u>https://www.springer.com/la/book/9783319970936</u>) Water Has Become a Market Commodity and Worth Fighting for -Upstream view it as issue of Water Sharing but downstream and International Capital view it as \$

1 to 27cents for a cubic meter of Nile water From 1970 to 2020

GERD Filling and Operation Plan Negotiations

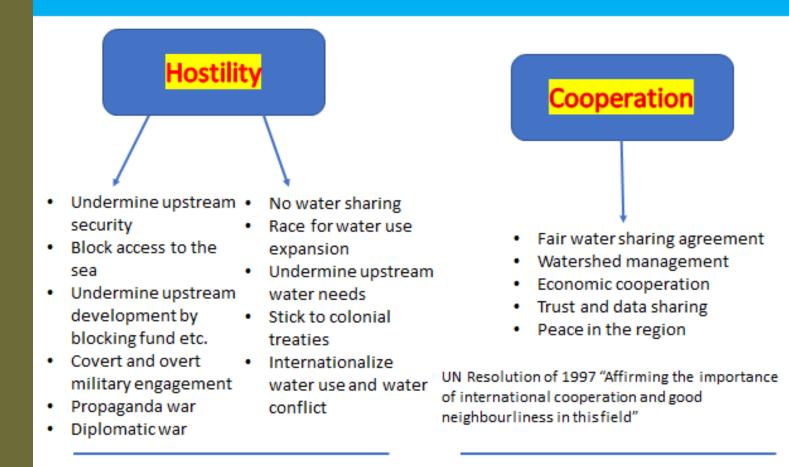
• Who sets the agenda?

The Washington D.C. GERD Negotiation (Nov 2019 – Feb 2020) A Lesson in Water Negotiations

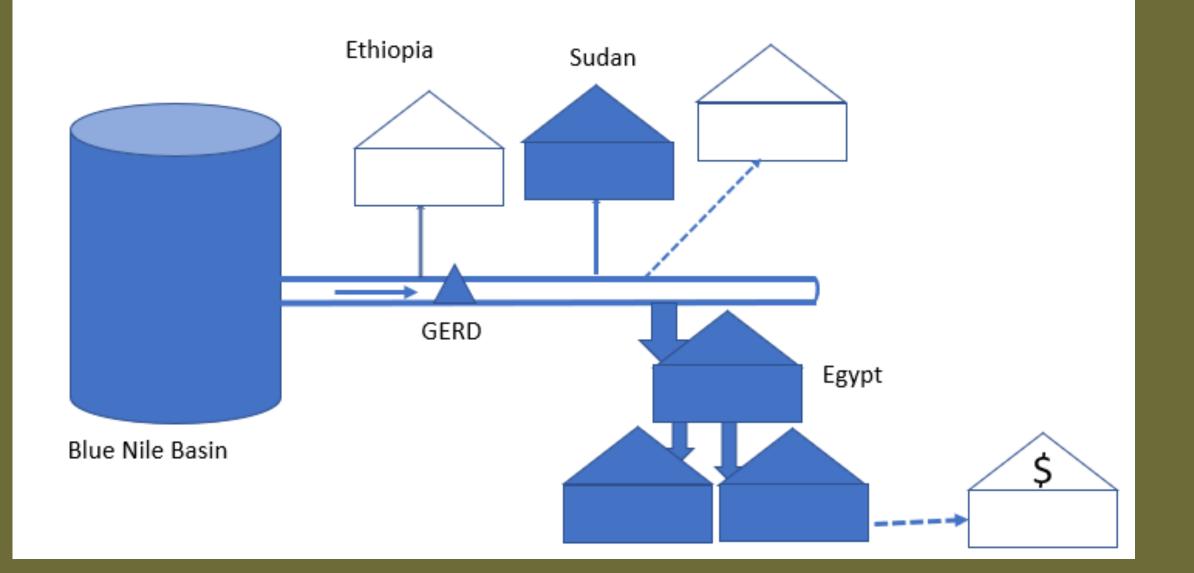

- Guaranteed flow, dam filling and dam operation plan
- Annex A, B, C, D
- Reference Egypt's 19 June 2020 Letter to UNSC

(https://www.securitycouncilreport.org/atf/cf/%7B65BFCF9B-6D27-4E9C-8CD3-CF6E4FF96FF9%7D/S_2020_566%20Egypt%20letter%20of%2019%20June.pdf)

Nile Basin Countries – Hydrologic Status

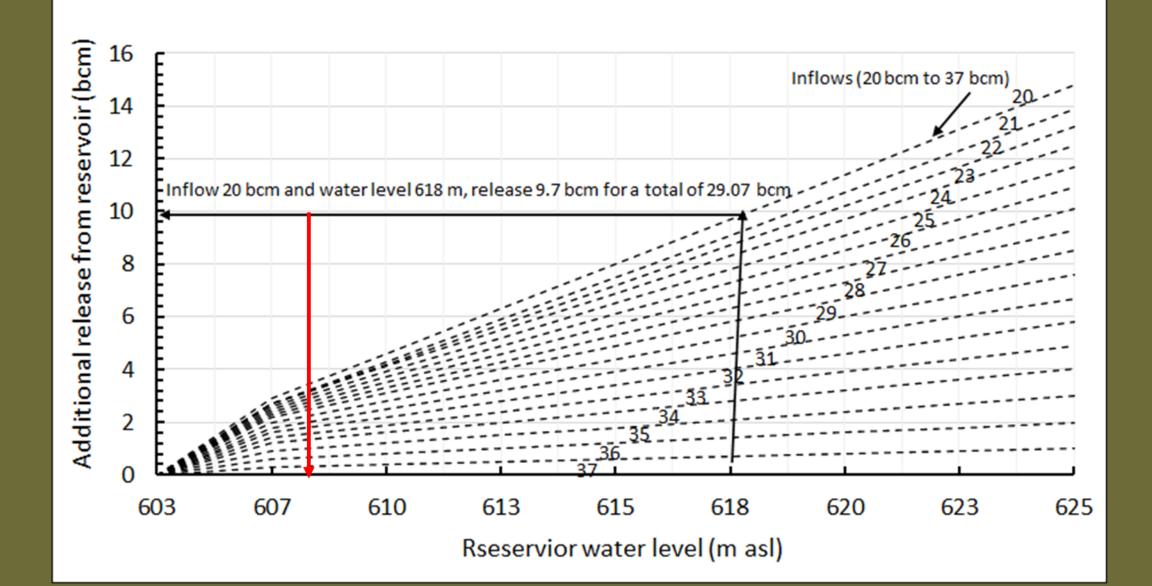

Country	Relative Location in Basin	Percentage of Country Area in Nile Basin (FAO 2000)
Burundi	Upstream	46
Democratic Republic of Congo	Upstream	1
Egypt	Downstream	33
Eritrea	Upstream	21
Ethiopia	Upstream	32
Kenya	Upstream	9
Rwanda	Upstream	83
South Sudan	Upstream/Downstream	
Sudan	Upstream/Downstream	78
Tanzania	Upstream	13
Uganda	Upstream Water and Environment Consultin	98

Eastern Nile Countries Transboundary River Relationship



Downstream Upstream or Upstream Downstream Relationship Models for Transboundary Basins

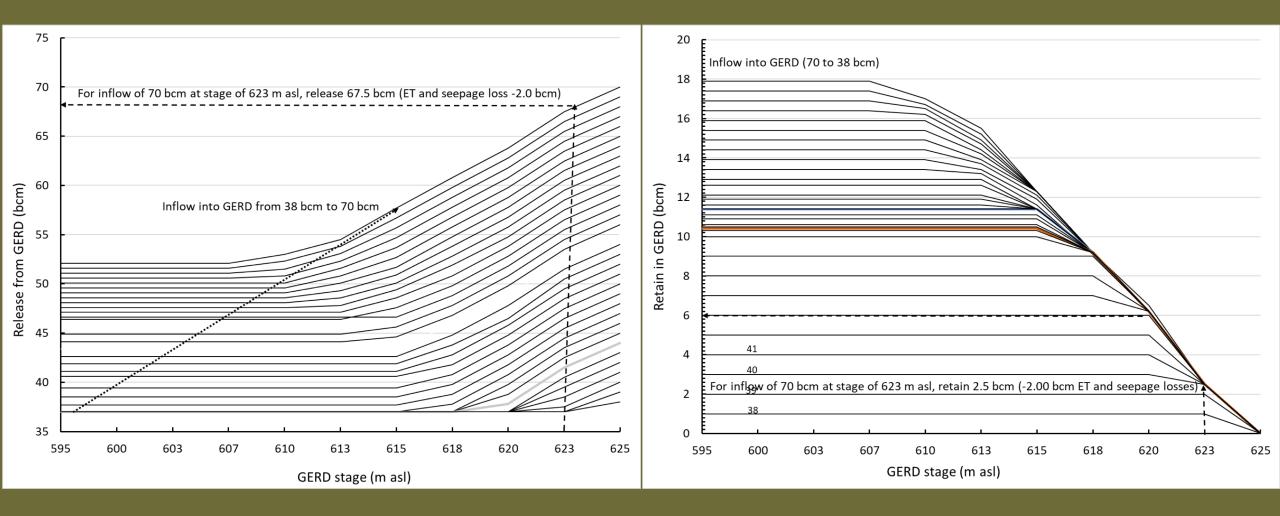
Downstream Upstream Relationship Models


Finite Volume of Water and Expanding Allocation in the Nile Basin Drought Definition and Water Use/Water Policy and Water Shortage

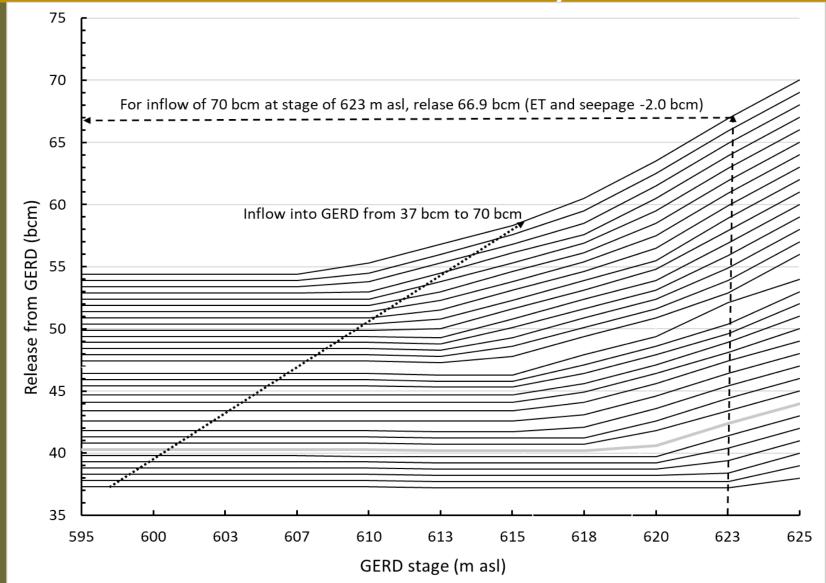
Washington D.C. Negotiations – Guaranteed Flow Mitigation Mechanism for Drought, Prolonged Drought and Prolonged Periods of Dry Years (Annex A)

Drought		Filling	Long-T	erm Operation		
	Inflow (Q _i)	Minimum Release (Q _r)	Inflow (Qi)	Minimum Release (Q _r)	Blue Nile Flow Frequency and Data Non-Stationarity (El Diem1965 – 2009)]
Drought (Annual)	Q _i < 37 bcm	Q _r = Q _i + From Reservoir (Annex A)	Q _i < 37 bcm	Q _r = Q _i + From Reservoir (Annex A)		-
Prolonged Drought (4- yr Average)	Q _i (4-yr Avg.) < 37 bcm	Q _r = Q _i + 62.5% of Storage Above 603 m a.s.l.), the Following 4 years*	Q _i (4-yr Avg.) < 39 bcm	Q _r = Q _i + 100% of Storage Above 603 m a.s.l)., the Following 4 years*	0.8 0.7 0.7 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	
Prolonged Period of Dry Years	Q _i (4-yr Avg.) < 40 bcm	Q _r = Q _i + 50% of Storage Above 603 m a.s.l.), the Following 4 years	Q _i (5-yr Avg.) < 40 bcm	Q _r = Q _i + 100% of Storage Above 603 m a.s.l.), the Following 5 years**	0.7	-
Q _i = inflow int	to reservoir and	l Q _r is Reservoir releas	e in a year (July	y 1 to June 30)	0.2 39 bcm 40 bcm 30%	
* minimum ar	nnual release ir	a year from reservoir	is 1/8 of total		0.1	
** minimum a	annual release	in a year from reservo	ir is 1/10 of tot	al	20.00 25.00 30.00 35.00 40.00 45.00 50.00 55.00 60.00 65.00 70.	.00
Releases from reservoir are obligated even if year is wet					Blue Nile annual flow at El Diem (bcm)	
Releases from	drought, prolo	onged drought and pro	olonged dry pei	riods are additive		
Annex A (Figure 20.6)					Environment Consulting	

Annex A (Exhibit A)– Drought Conditions Release Matrix


Annex B - GERD Stage I Filling

Stage I Filling (to 595 m a.s.l level of GERD	Incremental Retention		
Hydrological Year 1	4.9 bcm		
Hydrological Year 2	13.5 bcm (18.5 bcm total)		
Definition of Drought	31 bcm		
Release Rule	Lower of 31 bcm or Flow		
Postponement of Stage I	If Flow less than 31 bcm, Stage I will be postponed		


Stage Based Filling of GERD (Annex C, Table 1)

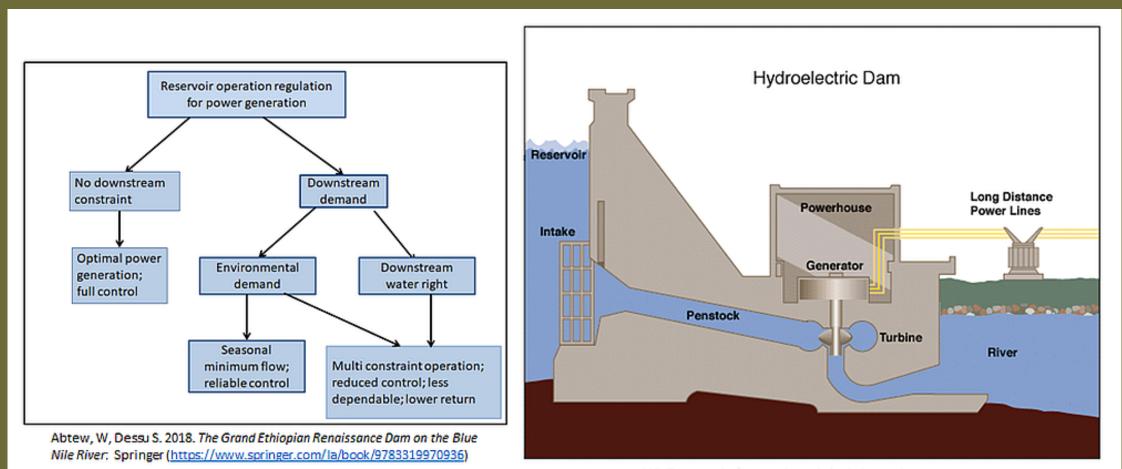
Stage	Target Level of Stage in GERD (m)	Incremental Retained Water at the end of June (BCM)	Cumulative Retained Water at the end of June (BCM)	
	565	4.9	4.9	
1	595	13.5	18.4	
2	608	10.5	28.9	
3	617	10.4	39.3	
4	625	10	49.3	

GERD Inflows and Prescribed Releases and Retentions during Filling at Given Water Levels (Annex C, Table 2)

GERD Inflows and Prescribed Releases during Normal Operation and Refilling at Given Water Levels (Annex D for flows from 37 to 70 bcm)

GERD Filling Simulation with D.C. Plan (18 years)

Yea r	Inflow	4-yr inflow avg.	5-yr inflo w avg.	Rain- ET	Release	Release from Reserv oir	Retaine d	Cumulat ive storage	Stag e	Area	Release Decision
	BCM	BCM	BCM	BCM	BCM	BCM	BCM	BCM	m a.s.l.	km²	
1979	38.13			0.19	33.23	0.00	4.90	4.71	571	260	Annex B
1980	42.50			0.47	31.00	0.00	11.50	16.21	597	650	Annex B
1981	42.77			0.38	40.76	0.00	2.00	18.21	590	522	Annex B
1982	34.33	39.43		0.51	34.23	0.00	0.10	18.31	600	700	Annex B
1983	39.53	39.78	39.45	0.57	37.00	0.00	2.53	20.84	604	781	Annex C
1984	29.73	36.59	37.77	0.60	28.60	0.00	1.13	21.98	606	823	Annex C
1985	45.11	37.18	38.29	0.75	37.00	0.00	8.11	30.08	615	1030	Annex C
1986	34.58	37.24	36.66	0.75	35.40	0.00	0.00	29.27	615	1030	Annex C
1987	33.41	35.71	36.47	0.70	34.80	0.00	0.00	27.87	612	954	Annex A
1988	64.48	44.39	41.46	0.95	49.70	1.45	14.78	42.65	625	1304	Annex A
1989	32.83	41.32	42.08	0.87	36.20	1.45	0.00	37.83	621	1192	Annex A
1990	37.99	42.18	40.66	0.79	37.00	1.45	0.99	32.33	617	1082	Annex A
1991	45.38	45.17	42.82	0.79	38.80	1.45	6.58	32.41	617	1082	Annex C
1992	44.21	40.10	44.98	0.89	37.80	0.00	6.41	32.31	622	1220	Annex C
1993	56.10	45.92	43.30	0.87	53.00	0.00	3.10	30.36	621	1190	Annex C
1994	52.51	49.55	47.24	0.95	46.00	0.00	6.51	36.87	625	1304	Annex C
1995	37.13	47.49	47.06	0.97	37.00	0.00	0.13	37.00	626	1333	Annex C
1996	56.06	50.45	49.20	0.97	56.00	0.00	0.06	37.06	626	1333	Annex C

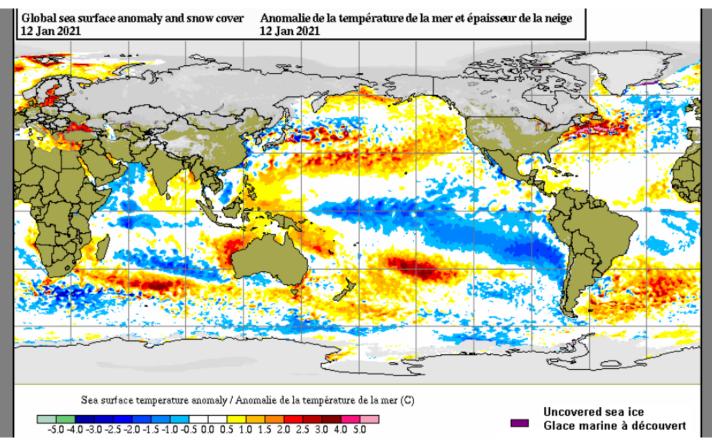

GERD Normal Operation with the D.C. Plan (9 years)

Year	Inflo w	Relea se	4-yr avg. inflow	5-yr avg. inflow	Rain- ET	From reserv oir	Cum. Storg e	Stage	Assumed operation start at 625 m a.s.l.
	BCM	BCM	BCM	BCM	BCM	BCM	BCM	m a.s.l.	Annual operational release (BCM)
1979	38.13	38.00			0.95		42.20	625	Annex D
1980	42.50	42.50			0.95		41.25	625	Annex D
1981	42.77	42.77			0.93		40.32	624	Annex D
1982	34.33	37.00	39.43		0.87	2.67	34.10	619	Annex D
1983	39.53	37.70	39.78	39.45	0.81		35.13	619	Annex D
1984	29.73	32.61	36.59	37.77	0.75	2.88	28.62	613	5-yr drought (< 40 bcm)
1985	45.11	47.99	37.18	38.29	0.70	2.88	22.16	606	5-yr drought (< 40 bcm)
1986	34.58	37.46	37.24	36.66	0.65	2.88	15.75	597	5-yr drought (< 40 bcm)
1987	33.41	36.29	35.71	36.47	0.64	2.88	9.35	585	5-yr drought (< 40 bcm)

GERD Storage Loss during Maximum Inflow of 70 bcm (Annex D) Loosing Storage/Stage during Extreme High Flow

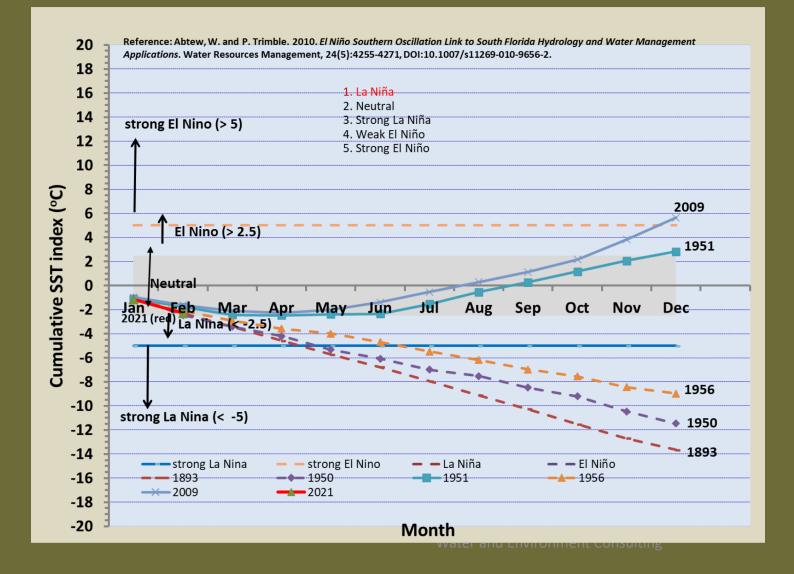
Stage m	Inflow	Release	Area	Evap.	Seepage	Change in
a.s.l.	(bcm)	(bcm)	(km²)	(bcm)	(bcm)	storage (bcm)
625	70	70	1304	0.95	1.01	-1.97

Downstream Demand Impact on Hydropower Reservoir Operation



US Energy Information Administration

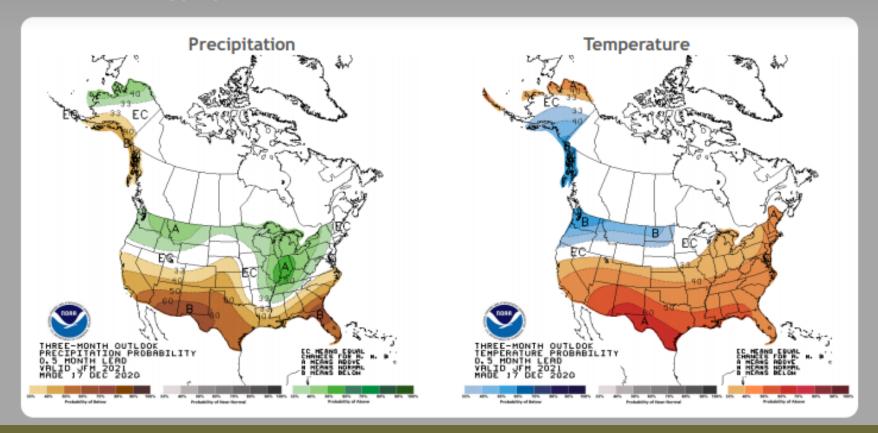
Flexibility in Dam Operation and Operation Plan


- Dam Safety and Emergency Operation
- Dam Maintenance
- Climate Prediction and Dam Operation
- Power Demand and Dam Operation
- Irrigation Needs and Dam Operation

Climate Teleconnection, Climate Prediction, and Dam Operation

- El Nino Southern Oscillation (ENSO)
- Inter Tropical Convergence Zone (ITCZ)
- Indian Ocean Dipole (IOD)

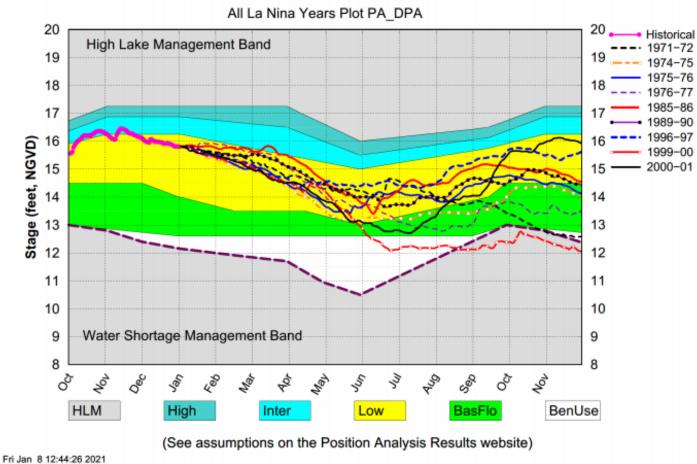
El Nino and La Nina Tracking for Reservoir Operation Decision Making



U.S. 3-Month Precipitation and Temperature Outlook Used For Dam Operation in South Florida

U. S. Seasonal Outlooks

January - March 2021


The seasonal outlooks combine the effects of long-term trends, soil moisture, and, when appropriate, ENSO.

Climate Prediction Application to Reservoir Operation

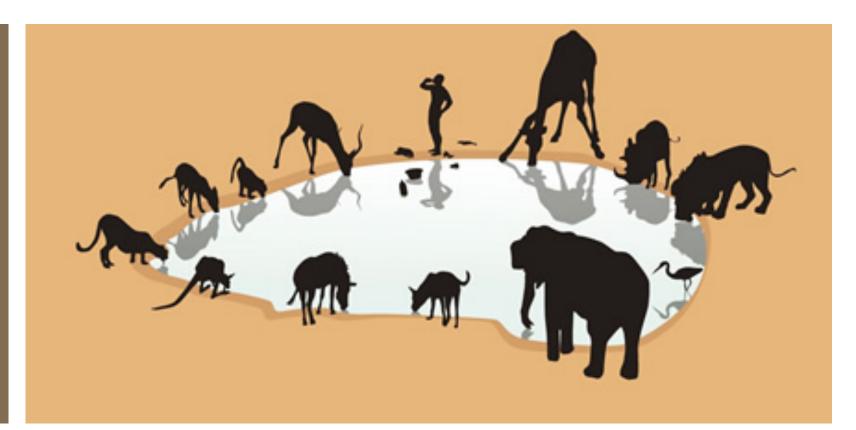
En	WMD pirical ethod ²	La Ni	ampling of na ENSO rears ³	Sub-sampling of AMO Warm + La Nina ENSO Years ⁴		
Value (ft)	Condition	Value (ft) <u>Condition</u>		Value (ft)	<u>Condition</u>	
0.41	Dry	-0.17	Dry	0.13	Dry	
2.93	2.93 Wet		Normal	2.08	Normal	

Lake Okeechobee SFWMM Jan 2021 Position Analysis

What is the Future of GERD Negotiations

- Negotiations will drag and may not end
- Insertion of binding legal clause that indirectly limits Ethiopia from using its water share for irrigation upstream of GERD and guaranteed downstream flow will remain main reasons of disagreement
- AU mediation/moderations in 2021
 - African Union Chairperson for the Year February 2021 to January 2022
 - President Félix Antoine Tshisekedi Tshilombo
 - Congo announces its support towards Egypt on GERD issue (<u>https://egyptindependent.com/congo-announces-its-support-towards-egypt-on-gerd</u> issue, /), 20 September 2020, Egypt Independent
 - Such stated position makes neutrality questionable
 - Why does Sudan insist on the expansion of the role of AU technical staff
 - Cornerstone of current negotiations should be no direct or implied water share right acquisition or denial
 - GERD filling and operation plan that meets the objectives of the dam accommodating reasonable downstream concerns should be the subject of negotiation

What Should A GERD Filling and Operation Plan Agreement Contain?


- The GERD shall be operated to generate optimal power as determined by the dam owner Reservoir operation guideline should be developed with maximum flexibility
- Climate forecast is essential to introduce in dam operation knowing uncertainty in prediction
- Mutual cooperation in dam safety, data sharing, and management of extreme conditions is beneficial
- Minimum environmental releases can be accommodated
- The agreement shouldn't directly or indirectly set water share for any country as Nile water and benefit sharing should be determined through a basin wide agreement with all riparian countries
- Water share question should be raised every time legally binding GERD operation agreement is demanded
- Proposal for Nile Basin water sharing should be initiated by Cooperative Framework Agreement signing members of Nile raparian countries
- Avoid legally binding energy production and delivery agreements as it converts energy to flow volume indirectly

Finally: What is the Long-term outcome of Downstream Countries Hostility to Upstream Countries with Current Population Explosion?

 Pakistan pins big hopes on small dams to help farmers beat drought (Reuters 1/25/2021)

• Population pressure will increase upstream abstraction

Questions

UN Water – World Water Day 2013 – International Year of Water Cooperation

