Understanding the potential impact of the Grand Ethiopian Renaissance Dam on floods in Sudan

Mohammed Basheer
Presentation outline

1. Introduction
2. Assessment method
3. GERD role in 2020 Nile floods
4. GERD potential long-term impacts on riverine floods
5. GERD potential downstream environmental impacts
6. Conclusions
1- Introduction

Grand Ethiopia Renaissance Dam (GERD)

- GERD has a hydropower capacity of 5,150 MW.
- Mean annual energy generation of around 15,000 GWh.
- Will increase Ethiopia’s electricity generation twofold.
1- Introduction

- The Nile flow has high inter-annual variability.

- The Blue Nile flow is highly seasonal with around 80% of the flow occurring from July to October.
1- Introduction

Types of floods in Sudan

- Riverine floods
 - Occurs due to river overflow outside the river channel to the floodplains.

- Flash floods
 - Caused by intense local rain.
 - Occurs in most parts of Sudan.
GERD’s long-term operation would reduce the risk of riverine flooding in 6 of the 18 states of Sudan.
1- Introduction

Sudan (18 states)

- 6 states affected by GERD
 - Flash floods
 - Riverine floods

- 12 states not affected by GERD
 - Flash floods
 - Riverine floods
2- Assessment method

Modelling framework:

- A daily suit of models for the Eastern Nile
- The model is calibrated and validated over the period 1983-2017
2- Assessment method

- 27 inflow nodes
- 9 storage dams
- 21 water withdrawal locations
- 13 stage-discharge gages
- 252 operating rules
2- Assessment method

- Rating curves are used to translate river flows to river water levels.

- The generated water levels are used to calculate the number of days within each of three flood alarm categories.
2- Assessment method

Roseires Dam

Sennar Dam

Khartoum Gage

Tamaniat Gage

Hassanab Gage

Jebel Aulia Dam

Khashm Elgirba Dam

Dongola Gage

High Aswan Dam
2- Assessment method

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Metric value</td>
<td>Ranking</td>
<td>Metric value</td>
</tr>
<tr>
<td>Flow</td>
<td>Roseires Dam</td>
<td>MEP</td>
<td>0.76</td>
<td>Excellent</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NSE</td>
<td>0.97</td>
<td>Excellent</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R²</td>
<td>0.97</td>
<td>Excellent</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MEPE</td>
<td>−1.81</td>
<td>Excellent</td>
</tr>
<tr>
<td>Sennar Dam</td>
<td></td>
<td>NSE</td>
<td>0.95</td>
<td>Excellent</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R²</td>
<td>0.95</td>
<td>Excellent</td>
</tr>
<tr>
<td>Khartoum Gage</td>
<td></td>
<td>MEPE</td>
<td>−0.20</td>
<td>Excellent</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NSE</td>
<td>0.91</td>
<td>Excellent</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R²</td>
<td>0.91</td>
<td>Excellent</td>
</tr>
<tr>
<td>Tamaniat Gage</td>
<td></td>
<td>MEPE</td>
<td>4.68</td>
<td>Excellent</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NSE</td>
<td>0.92</td>
<td>Excellent</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R²</td>
<td>0.93</td>
<td>Excellent</td>
</tr>
<tr>
<td>Hassanab Gage</td>
<td></td>
<td>MEPE</td>
<td>12.86</td>
<td>Very good</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NSE</td>
<td>0.86</td>
<td>Excellent</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R²</td>
<td>0.86</td>
<td>Excellent</td>
</tr>
<tr>
<td>Khashem Dam</td>
<td></td>
<td>MEPE</td>
<td>34.23</td>
<td>Poor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NSE</td>
<td>0.79</td>
<td>Very good</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R²</td>
<td>0.80</td>
<td>Very good</td>
</tr>
<tr>
<td>Dongola Gage</td>
<td></td>
<td>MEPE</td>
<td>13.04</td>
<td>Very good</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NSE</td>
<td>0.92</td>
<td>Excellent</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R²</td>
<td>0.93</td>
<td>Excellent</td>
</tr>
<tr>
<td>Water level</td>
<td>Jebel Aulia Dam</td>
<td>MEPE</td>
<td>0.01</td>
<td>Excellent</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NSE</td>
<td>0.94</td>
<td>Excellent</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R²</td>
<td>0.94</td>
<td>Excellent</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MEPE</td>
<td>−0.88</td>
<td>Excellent</td>
</tr>
<tr>
<td></td>
<td>High Aswan Dam</td>
<td>NSE</td>
<td>0.76</td>
<td>Very good</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R²</td>
<td>0.98</td>
<td>Excellent</td>
</tr>
</tbody>
</table>

3- GERD role in 2020 Nile floods

13 April 2020 to 22 July 2020

Flow to Sudan

Day

1-Jan
12-Jul
22-Jul
31-Dec

Inflow

560 masl

Low block (560 masl)

Bottom outlets

Turbines

Diversion outlets

4 diversion outlets
4- GERD potential long-term impacts on riverine floods

- Index-sequential method used to generate 34 river flow sequences, each 34 years long

- The GERD is operated to target 38.4 GWh/day (Wheeler et al., 2018)

- Perfect downstream knowledge on GERD releases is assumed
4- GERD potential long-term impacts on riverine floods

- Simulation assumptions
 - GERD's long-term operation starts with reservoir storage of 49.3 bcm
 - Roseires, Sennar, and Merowe dams are operated at high levels and are allowed to drop only to meet the water or energy demands
4- GERD potential long-term impacts on riverine floods

- GERD would reduce the annual number of days in each of the three flood alarm categories.

- There remains a riverine flood hazard, especially at Khartoum.
4- GERD potential long-term impacts on riverine floods

- Inter-annual variability of the Blue Nile flow results in fluctuation in GERD storage.

- When the GERD level is close to the full supply level the likelihood of too intense downstream releases increase.
4- GERD potential long-term impacts on riverine floods

- The inundated area in Khartoum State decline by 68% when the GERD reservoir starts the year at 595 masl.

- The inundated area in Khartoum State decline by 10% when the GERD reservoir starts the year at 625 masl.

Legend:
- Khartoum State
- Nile River
- GERD
- Other dams
- National boundary

Riverine flood inundation area in Khartoum State:
- Baseline without GERD (inundation = 363 km\(^2\))
- With GERD starting the year at a low level (inundation = 125 km\(^2\))
- With GERD starting the year at a high level (inundation = 352 km\(^2\))
4- GERD potential long-term impacts on riverine floods

4- GERD potential long-term impacts on riverine floods

- Coordinated operation and planning are necessary to mitigate the remaining riverine flood hazard.

- Tough trade-offs on flood management lay ahead, requiring to in advance agreement.

- Raising public awareness on the remaining riverine flood hazard.
5- GERD potential downstream environmental impacts

- Floods provide social, economic, and environmental benefits.

- GERD-induced alterations would:
 - Reduction in oxygen content
 - Increase in water salinity
 - Alteration to water temperature
 - Loss of floodplains
6 - Conclusions

- GERD operation aiming to achieve a 90% power reliability reduces the riverine flood hazard in 6 states in Sudan.

- How to mitigate the remaining riverine flood risk?
 - Seasonal coordination and planning on GERD operation
 - Raising public awareness on the remaining riverine flood hazard

- Floods provide social, economic, and environmental benefits.
Publications on GERD

Thank you for your attention!