

Implication of GERD to Sudan and **Prospects of Long-Term Resolution for** Conflicts Around the Eastern Nile

Yosif A. Ibrahim (Ph.D., P.E,)

August 21, 2020
2020 International Conference on the Nile and GERD : Science Conflict Resolution and Cooperation

Content

- ☐ Context: Exploring Ethiopia Irrigation and Hydropower Development Plans
- ☐ Options for Accommodating Ethiopia Future Water Needs and the path forward for Sharing the Nile Water
- ☐ GERD Positive and Negative Impacts to Sudan
- ☐ Key Issues that needs immediate attention

Blue Nile: Ethiopia Irrigation Potential

Blue Nile: Ethiopia Power Potential

	Storage	Evaporation	Dam	Total Cost	Installed	Generated	Energy Tariff	Annual Revenue
Scheme	(BCM)	(BCM/Yr)	Height (m)	(MUS\$)	Capacity (MW)	Energy (GWh)	(USC/KWhr)	(MUS\$)
R2: Karadobi Dam	40.2	0.29	260	1824	1600	8761	7.1	622
R3: Beko Abo Dam	31.7	0.31	282	2994	1940	12815	7.4	948
R4: Mendaya Dam	48.1	0.62	200	2705	2000	12119	7.4	897
R5: Didessa Dam	8.2	0.12	165	1230	550	2843	7.4	210
R7: GERD	74.0	1.53	150	4630	4800	16043	7.4	1187
Ethiopia Hydropower Blue Nile	202.2	2.9		13383	10890	52581	7.4	3864.7

Atbara: Ethiopia Irrigation Potential

			Total			
Scheme	Area	GWR	Investment	Net Revenue	B/C	Employment
	(1000Ha)	(BCM/Y)	Cost (MUS\$)	(MUS\$/Year)	Ratio	(1000 People)
D20: Small Scale Traditional Tekeze	141.5	1.5	1561.2	29.6	2.0	1516.1
D21: Humera Irrigation Demand	43.0	0.4	529.7	9.0	2.0	460.3
D22: Angreb Irrigation Demand	16.5	0.2	182.4	3.5	2.0	177.2
D23: Metema Irrigation Demand	11.6	0.1	100.2	2.4	2.0	123.9
Ethiopia Irrigation Tekeze Atbara	0.2	2.2	2.4	44.5	2.0	2.3

BAS: Ethiopia Irrigation Potential

BAS: Ethiopia Irrigation Potential Continue

			Total			
Scheme	Area	GWR	Investment	Net Revenue	B/C	Employment
	(1000Ha)	(BCM/Y)	Cost (MUS\$)	(MUS\$/Year)	Ratio	(1000 People)
D26: Baro from Gambella Right Bank Demand	67.8	0.7	408.1	14.9	13.2	725.9
D27: Baro from Gambella Left Bank Demand	57.0	0.6	343.5	12.5	13.2	611.0
D28: Baro from Itang Right Bank	128.5	1.4	774.3	28.3	13.2	1377.2
D29: Baro from Itang Irrigation Demand Left Bank	168.0	1.8	1012.0	36.9	13.2	1800.0
C46: Reduction in Machar Marshes Spill		-2.3				
D29: Baro from Itang Irrigation Demand Left Bank	16.0	0.2	99.3	3.2	14.0	171.4
D32: Alwero Left Bank Irrigation Demand	10.4	0.1	64.5	2.3	13.2	111.4
D33: Gilo1 Right Bank Irrigation Demand	46.9	0.5	291.0	10.3	13.2	502.5
D34: Gilo1 Left Bank Irrigation Demand	34.5	0.4	213.8	7.6	13.2	369.2
D35: Gilo2 Right Bank Irrigation Demand	61.3	0.7	380.5	13.5	13.2	657.1
D36: Gilo2 Left Bank Irrigation Demand	33.9	0.4	210.1	7.4	13.2	362.8
Ethiopia Irrigation Baro-Akobo-Sobat	0.6	4.5	3.8	136.9	13.3	6.7

Summary of Ethiopia Demand

			Total			
Cub basin	Area		Investme			
Sub-basin	(Million	GWR	nt Cost	Net Revenue	B/C	Employment
	Ha)	(BCM/Y)	(BUS\$)	(MUS\$/Year)	Ratio	(Million)
Blue Nile +Dinder+Rahad	0.6	4.9	2.6	68.1	3.9	6.0
Tekeze Atbara	0.2	2.2	2.4	44.5	2.0	2.3
Baro-Akobo_Sobat	0.6	4.5	3.8	136.9	13.3	6.7
Existing Uses	0.7	2.9				
Ethiopia Irrigation Needs	1.4	8.7	8.8	249.4	6.4	14.9

				Installed		
Scheme	Storage	Evaporation	Total Cost	Capacity	Generated	Annual Revenue
	(BCM)	(BCM/Yr)	(MUS\$)	(MW)	Energy (GWh)	(MUS\$)
Ethiopia Hydropower Blue Nile	202.2	2.9	13383	10890	52581	3864.7

Total Investment Portfolio= 22.183 Billion US\$

Total Irrigation Potential =1.4 Million Ha

Total Water Requirements = 8.7 BCM (Excluding Evaporation Losses)

Anticipated Net Revenue Generated = 249 (Irr.)+3865 (Hydro)=4.11 Billion/Yr

Water Value for Hydro= 1.33 US\$

Water Value for Irrigation=2.86 Cents

Total Employment Generated Irrigation=14.9 Billion

Eastern Nile Multi-Sector Opportunity Analysis

Recent Changes in the Mean flow of Nile river

Source: Siam and Eltahir, 2017, Nature Climate Change

A PATH FORWARD FOR SHARING THE NILE WATER:

SUSTAINABLE, SMART, EQUITABLE, INCREMENTAL

BY ELFATIH A. B. ELTAHIR

WITH CONTRIBUTIONS FROM: Timothy Adams, Catherine Nikiel Mohamed S. Siam, Alexandre Tuel

ospect for Long-Term Solution (Prof. Eltahir) Increase in Yield → 5 BCM (Blue Nile) + 2 BCM (Atbara)
Allow Ethiopia to Fully Exploit Hydro-BN
Allow Ethiopia to Fully Exploit Irrigation
Incremental Basin Approach
Start with Agreement Around BN + Atabara
Negotiation Around BAS Shall Involve South Sudan
Terms of Agreement Shall be based on Decadal Yield because of Large Interannual variability; i.e. ☐ Egypt Measured at H.A.D=555 BCM/10-Yrs ☐ Sudan Measured at H.A.D=185 BCM/10Yrs-☐ Ethiopia Measured at H.A.D= 70 BCM/10Yrs

Potential Benefits of GERD?

- ☐ Regulation By Default Help in:
 - Addressing flood impact
 - ❖ Avail water for irrigation year around → Irrigation intensification (Facilitate Irrigation of .5 Million Ha)
 - ❖Reduce Sedimentation → Reduction in Sediment load by 85% and cost of dredging by USD 50 million/year
 - ❖ Improve performance of existing hydropower plants
 → increase in hydropower generation will account for 2,000 GWh/Year, amount to about 23 million USD annually (Mordos et al., 2018)
 - Access to clean and cheap source of energy (Thermal is no longer an option)
 - Navigation

GERD Concerns....

- □ Coordinated operation of the GERD to maximize benefit and minimize negative impacts →
- ☐ Impact of GERD during filling
- ☐ Reduction in soil fertility;
- ☐ Impact to Recession Agriculture
- ☐ Risk of dam failure
- ☐ Revisiting Power Trade Agreement as Part of GERD Negotiation

Environmental and Socio-Economic Impacts

- ☐ Recession Agriculture (Social): The Regulation of the Blue Nile will reduce the recession agri. Irrigated land by about 50%
- ☐ Brick making activities (Social)
- ☐ Sediment Reduction → Lost in soil fertility (Fertilizers)
- ☐ Loss in hydropower generation capabilities during filling
- ☐ Morphological changes (Env.)
- ☐ Changes in river water quality
- ☐ Fisheries

Key Issues Short Term....

- ☐ Coordinated and Joint operation of GERD during both Filling and long-term operation
- ☐ Dam Safety: Reduce Risk of Failure and Demand transparency from Ethiopia to release all Reports that Pertain to Dam Safety
- ☐ Environmental Impact Study that address recession agriculture, loss in fertile land and other losses in ecosystem benefits and socioeconomic benefits with options for mitigations and compensation
- ☐ Power Trade Agreement to be part of GERD Negotiations
- ☐ Have a legally binding agreement and institute some sort of mechanism for operationalization

Key Issues: Middle to Long Term

- □ Sudan should have a plan to fully utilize its share of 18.5 BCM → Upgrade conveyance system for irrigation; irrigation modernization for existing schemes etc.
- Improve agriculture productivity and water use efficiency (Adoption of Technology and best practices e.g. improved use of fertilizers, advanced irrigation system)
- ☐ Work with the Egypt and Ethiopia to have long-term water sharing and Benefit sharing agreement that could potentially acknowledge legal water rights per 1959 and at the same time accommodate the development plans for Ethiopia
- ☐ Augment hydro-generation through enhancing operation of existing scheme and runoff-river hydro plants
- ☐ Horizontal expansion in irrigated agriculture

Thank You Questions