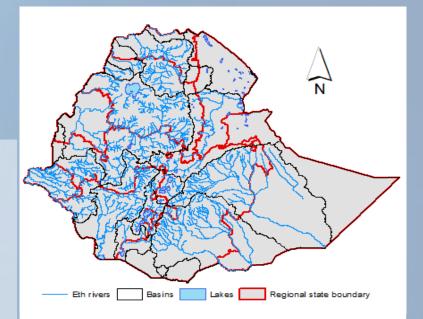

Water Resources account of Egypt vs Ethiopia's Nile Sub-Basins: The Utility of the Water Budget Model

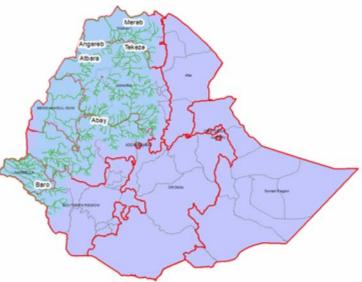
> By Tekleab S. Gala Associate Prof. Geomatics Chicago State University

2020 International Conference on the Nile and Grand Ethiopian Renaissance Dam: Science, Conflict Resolution and Cooperation

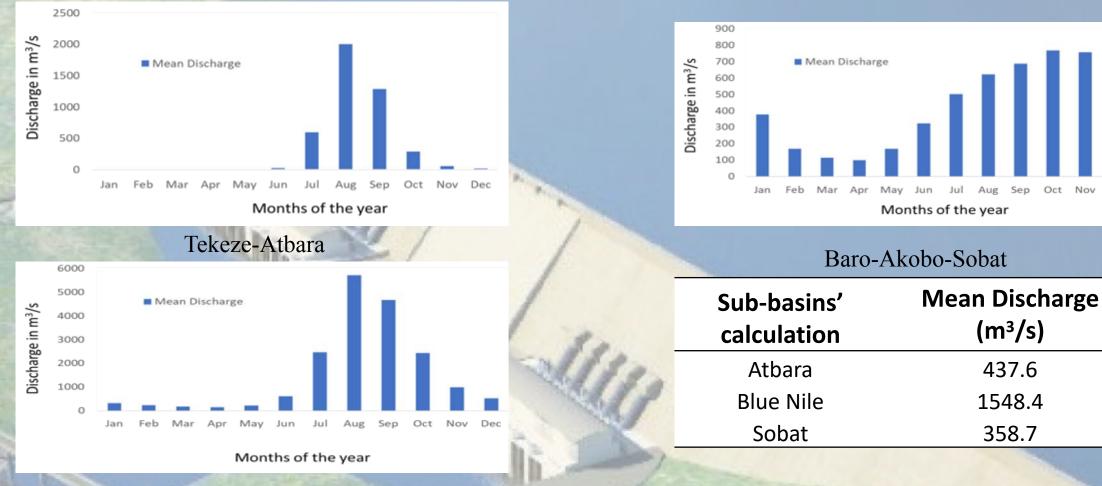
Ethiopia: Water Tower of Africa

- There is an overwhelming perception of Ethiopia's plentiful water resources.
- Ethiopian highlands obtain rainfall as high as 2000 mm per annum, in comparison to Egypt annual average rainfall, which in the order 200mm.

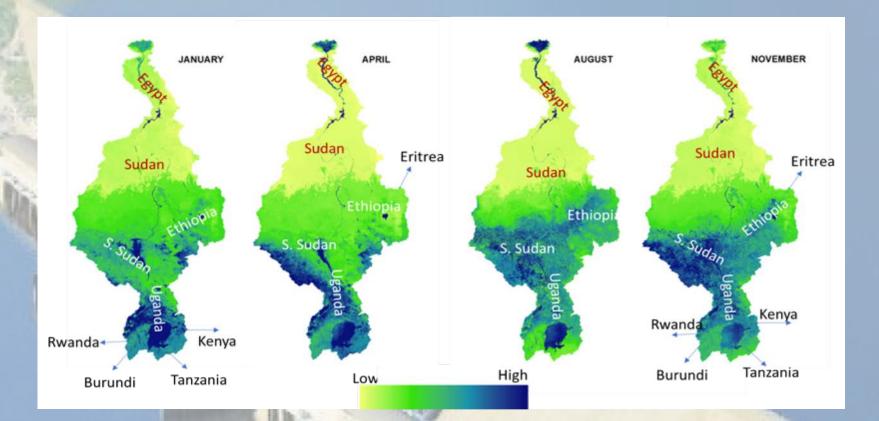



Rainfall is not the only sources

- Several hydrologic inputs are available for a watershed or country to gain water resource. These are:
 - Surface water Inflow
 - Extraction of Groundwater
 - Applied water reuse
 - Return (recycled) water flow
 - Imported water
 - Subsurface water inflow and
 - Desalinization
- The fates of inputs can be run-off, evaporation, and infiltration into soils


Stream outflows

- 97% of these streams/rivers are transboundary, and only 3% remains within the country
- The western Ethiopian highlands, source of Nile river accounts for 70% of the overall stream water resources of the country.


Hydrographs Showing Stream Discharge

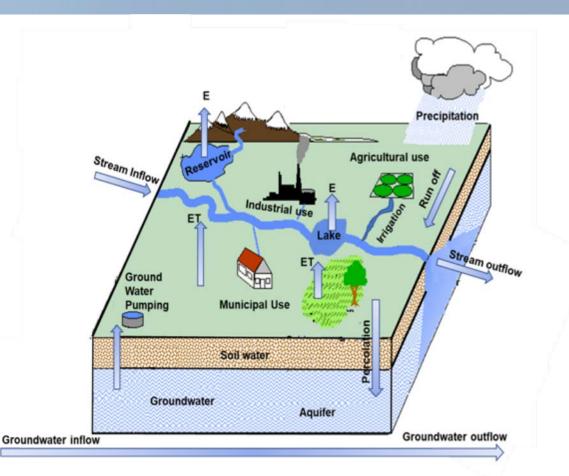
Blue Nile

(Source: University of New Hampshire - Global Runoff Data Centre)

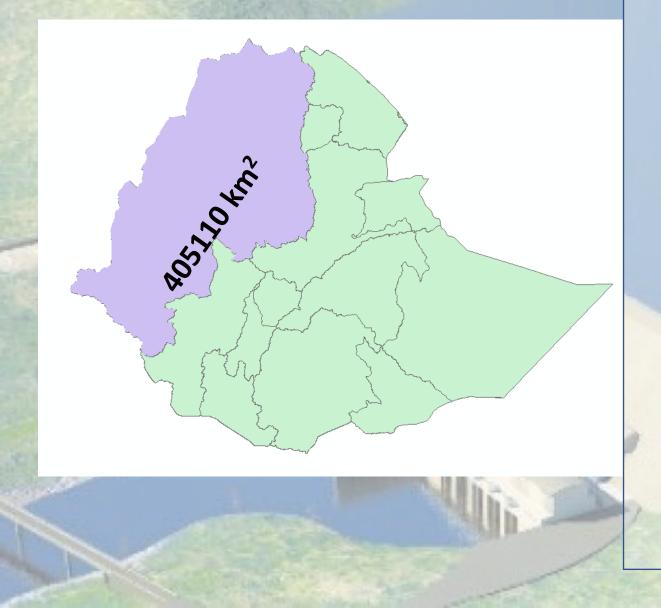
Evapotranspiration

Direct evaporation and evapotranspiration (ET) of January, April, August, and November from the Nile river basin (Source; Nile basin water resource Atlas).

Objectives


- Therefore, given these prevailing hydrologic processes, there is a need:
 - a) to conduct detailed and dynamic water resources inventories in the Nile basin in these two countries.
 - b) to verify if indeed Ethiopia has plentiful alternative freshwater resources, and Nile water is the Egypt's sole freshwater source and the dam is an existential threat.

Water Budget Concept


- This study uses the concept of water budget, a hydrologic tool used for measuring water movement in between hydrologic regimes (atmosphere, surface and the subsurface).
- It also involves measurement of the quantities of water storages in each component, particularly, the surface and subsurface.
- Watershed managers use this tool for evaluating sustainable qualities and quantities of water supplies; watershed best practices, and watershed planning and management thereof.

Water Budget Concept

- The water budget concept applies the law of conservation of mass/matter.
- The law states that matter or mass can't be created or destroyed but can change from one form to another,
- such that the total mass of the matter on the reactant is equal to the total mass of the matter on the product side.

Sub-basins

According to FAO report 1997, out of the total inhabited area of 77,041 km²; cultivated area is 46200 km².

Result: Sources of Water Resources

Table 1 Ethiopian vs Egypt rivers of Nile Sub-basins and their Hydrologic inputs							
Role	Country	Types of Hydrologic Inputs	Volume in BCM	Total in BCM			
No.							
	Ethiopia			456.6 BCM			
1		Precipitation	456.0				
1		Groundwater extraction	0.6				
	Egypt			106.0 BCM			
1		Precipitation	12.0				
2		Stream Inflow	84.0				
3		Groundwater extraction	9.0				
4		Desalinization	1.0				

Result: Stream outflow

Table 2 Ethiopian vs Egypt rivers of Nile Sub-basins and their outflows

Role	Country	River system	Major tributaries	Average	Surface	Total
No.				Water loss		
	Ethiopia					81.0 BCM
1		Atbara	Tekeze, Angereb, Ataba and	12.0 BCM		
			Mereb			
2		Blue Nile	Abbay, Jamma, Muger,	54.4 BCM		
			Guder, Didessa, Beles, and			
			Dabus			
3		Sobat river	Boro, Bako and Akobo	13.6 BCM		
	Egypt					13 BCM
1		Nile river	Nile River	13 BCM		

Result: Evapotranspiration

Table 3 Ethiopian vs Egypt Nile Sub-basins and their total ET loses							
Role		Surface	Mechanism of loses	Amount	of ET	Total Loss	
No.				losses			
	Ethiopia					362.3 BCM	
1		Crops/Vegetation	ET loses	357 BCM			
2		Lake Tana	Evaporation	5.3 BCM			
	Egypt					51 BCM	
1		Irrigated agriculture	ET loses	39 BCM			
2		Lake Nassir	Evaporation	12 BCM			

Result: Net Change in storage

Table 4: Change in water storage of Ethiopian vs Egypt Nile Sub-basins

Ethiopia's Nile sub-basin	Egypt's sub-basin			
$\Delta S = (P) - (E + ET + OF)$	$\Delta S = (P + IF + GWE + Dsal) - (E + ET)$			
Where:	Where:			
ΔS = Net storage	ΔS = Net storage			
P = Precipitation (i.e., Rainfalls)	P = Precipitation (i.e., Rainfalls)			
E = Evaporation	IF = Inflow			
ET = Evapotranspiration	<i>GWE</i> = Groundwater extraction			
OF = Outflow	Dsal = Desalinized water			
	E = Evaporation			
	ET = Evapotranspiration			

Result: Net Change in storage

Table 4: Change in water storage of Ethiopian vs Egypt Nile Sub-basins, cont.

Ethiopia's Nile sub-basin	Egypt's sub-basin
ΔS	ΔS
= (456.0 BCM) - (5.3 BCM)	= (12.0 BCM + 84.0 BCM + 9.0 BCM)
+357.0 BCM + 81.0 BCM)	+ 1.0 BCM) - (12.0 BCM + 39.0 BCM)
ΔS = (456.0 BCM) – (5.3 BCM + 357.0 BCM + 81.0 BCM)	ΔS = (12.0 BCM + 84.0 BCM + 9.0 BCM + 1.0 BCM) - (12.0 BCM + 13.0 BCM + 39.0 BCM)
$\Delta S = (456.0 BCM) - (442.0 BCM)$	$\Delta S = (106.0 BCM) - (64.0 BCM)$
$\Delta S = 14 BCM$	$\Delta S = 42 BCM$

Result: Surface Water

Table 5: Water stored on the surfaces of Egypt's and Ethiopia's Nile river basin

		Lakes	Elevation	Surface	Average	Volume of	Total
				area	depth	water	(BCM)
				(km^2)	(m)	(BCM)	
-	Egypt						~138
		Lake Nassir	183	5370	25	132	
		Lake Idku	5	63	79	5.5	
	Ethiopia						~30
		Lake Tana	1788	3047	9	28.2	
		Lake Fincha	2,302	239	2	0.7	

Groundwater Reserve

- Egypt is among the African countries' that has a huge groundwater reserve. It ranks 4th among the African countries; only Libya, Algeria, and Sudan have more groundwater reserve than Egypt.
- There are three major aquifers for storing the groundwater in Egypt, namely: the Nubians sandstone aquifer, the Moghara aquifer, and the Nile aquifer storing an estimated total groundwater storage of 63,200 BCM.
- On contrary Ethiopia ranking 14th, among the African countries, 9 ranks below Egypt and has an estimated groundwater reserve is in the order of 12,700 BCM of water.

Coastline water

- A direct interface between Egypt's Nile sub-basin and Mediterranean coastal water is about 300km.
- This is a gateway for access to coastal water reserve, from which infinite freshwater can be harvested, through desalinization

Conclusion

- The water budget concept has assessed a comprehensive analysis and assessment water resources and water movements in the Nile river sub-basins of two countries.
- The net annual water storage for Egypt is, therefore, 42 BCM, indicating a clear water resource advantage over Ethiopia's 14 BCM.
- Secondly, there is 108 BCM more surface water reserve in Egypt's sub-basin compared to Ethiopia.
- Thirdly, Egypt's groundwater reserve is approximately, 400% higher than Ethiopia's.
- Lastly, Egypt has an infinite access to coastal water, which up on desalination can provide unlimited domestic water supply, compared to landlocked Ethiopia
- Therefore, it is verified that Egypt has an overwhelming water resource advantage, and that Nile water is not the only freshwater source, and so the dam is not remotely Egypt's existential threat.
- The perception pushed by Egypt that Ethiopia has a plentiful water to share Nile and/or Egypt would cease to exist with Ethiopia's dam, is mendacious.