

August 2020

Introduction

- World's climate changing & expected to continue in the coming century
- Africa most vulnerable to climate change and variability
- The Nile basin, the largest basin in Africa – high topographic and climatic variability
 - Increase vulnerability

Introduction **Problem statement and objectives** Materials and methods **Results and discussion Conclusion and recommendations**

Problem statement

- high development on the Nile, i.e. construction of the Aswan Dam, Sennar, and Rosieres reservoirs for irrigation and hydropower generation
- increased demand for irrigation and hydropower Ethiopia
 GERD
- high vegetation degradation in Ethiopia, i.e. deforestation, results in land use change
- ecosystem degradation due to massive utilization of river waters in Sudan and Egypt, eg. loss of biodiversity
- increasing water demand upstream + climate change and land use change

Objectives

- Assessing the dynamics of climate in the Basin
- Projecting basin hydrology using climate change and land use change scenarios to assess their impacts

Study area

Blue Nile (in Amharic Abbay/in Arabic the Al Bahr al-Azraq)

- 1529 km long (longest in the world)
- elevation of the basin varies from 4000m (little Abbay) to 700m at foot of the plateau
- contribute for 60 % flow of Nile
- crucial for thesurvival of downstream countries

Study area cont'd

Land use/cover

Study area cont'd

- Climate varies from humid to semiarid
 - Kiremt ...(Jun-Sept)
 - Bega(Oct-Jan)
 - Belg(Feb-May)
- For the year 1961-1990,

Annual preciptation was1200mm to1600mm

Annual temprature-was
18.3°C (2°C seasonal variation)

Materials

Climate change scenario data

- Source: IPCC data distribution centre
- SRES-AR4 scenario runs of six AOGCMs were chosen
 - BCM2_BCCR ... abbreviated as BCM2 (Norway)
 - > CSIRO_MK3 "
 - INMCM3 "
 - > GISAOM "
 - > MIROC3_2HI "
 - > MIROC3_2MED.. "

- " CSMK3 (Australia)
- " INCM3 (Russia)
- " GIAOM (USA)
- " MIHR (Japan)
- " MIMR (Japan)
- Preciptation and Temprature projections for 2020, 2055 and 2090 were analysed for storylines A1B and B1

- Land use and cover (LUC) change scenario data
 - Two hypothetical LUC scenarios for 2080 assuming <u>+</u> 10% change on savana forest
 - It has also been assumed that change in SAVA (savana) cover will be compensated by CRDY (crop land/ dry land)

> LUS-1..... Land use scenario 1 - 10% increase in SAVA
> LUS-2 « « « 2 - 10% decrease «

Change in land use percentage

Methods

Approaches

- Model evaluation
- Climate change anaysis
- Land use and cover (LUC) change analysis
- Land use change analysis coupled with climate change

Results

- Model evaluation
- Climate change anaysis
- Land use and cover (LUC) change analysis
- Land use change analysis coupled with climate change

Annual yield

	Period	Preciptation	Annua	Discrepancy	
	i chou	(mm)	Actual	SWAT	%
Rosieres					
Calibration	1973-1978	866.4	251.1	252.4	-0.5%
Validation	1979-1982	971.2	199.0	180.1	9.5%

Statistical indices

	Annual	mean flow (m³/s)	Varia		20	
	Actual	SWAT model	Actual	SWAT model	INSE	n
Rosieres						
Calibration	1509.4	1516.9	41.7	42.7	0.89	0.89
Validation	1196.5	1082.3	38.3	33.5	0.83	0.86

Model predictive range

- Model evaluation
- Climate change anaysis
- Land use and cover (LUC) change analysis
- Land use change analysis coupled with climate change

Analysis of the impact of land use change and climate change on Blue Nile river using SWAT

Analysis of the impact of land use change and climate change on Blue Nile river using SWAT

GCM uncertainty

Bias

	BCM2	CSMK3	INCM3	GIAOM	MIMR	MIHR
Bias (kg/m²*s)	0.22	-0.80	-0.85	-1.01	0.44	0.36
RMSE	2.45	2.55	2.41	2.70	2.48	2.43

Water yield

GCM	Scenario	Anual water Yield (mm)			ΔΡ	ΔTav		
GCIVI		Baseline	2020	2055	2090	(%)	(°C)	ΔWYLD %
BCM2	A1B	252.4	223.4	186.3	165.7	-4.8	2.3	-24
	B1	252.4	215.5	208.7	190.7	0.1	1.7	-19
MIMR	A1B	252.4	298.7	307.6	391.4	6.4	1.5	32
	B1	252.4	304.9	281.5	311.0	3.2	1.2	19
MIHR	A1B	252.4	234.6	276.1	271.6	15.4	2.9	3
	B1	252.4	241.0	283.8	244.6	10.5	2.5	2

Average flow change

Average flow change

Average flow change

Seasonal flow change

Seasonal flow change

Seasonal flow change

- Model evaluation
- Climate change anaysis
- Land use and cover (LUC) change analysis
- Land use change analysis coupled with climate change

Annual yield change

Land-use Scenario	Annual WYLD (mm)	Change in Savana forest %	ΔWYLD %
Baseline (1961-90)	223.4	0	0
LUS-1 (2080)	189.6	10	-15
LUS-2 (2080)	249.9	-8	12

Seasonal flow change

- Model evaluation
- Climate change anaysis
- Land use and cover (LUC) change analysis
- Land use change analysis coupled with climate change

Annual yield change

GCMs	LUS	Climate Change		Land use Change	Annual WYLD	ΔWYLD %
		ΔΡ%	ΔΤ%	ΔSAVA%	(mm)	,,,
DCM2	1	0.1	1.7	10	158.9	-37.0
BCIVIZ	2	0.1	1.7	-8	216.5	-14.2
MIMR	1	3.2	1.2	10	276.7	9.7
	2	3.2	1.2	-8	337.1	33.6
MIHR	1	10.5	2.5	10	207.8	-17.6
	2	10.5	2.5	-8	274.2	8.7

Seasonal flow change

Conclusion

- The SWAT model has been successfully evaluated
 - Satisfactory performance minimum NSE=0.7
 - But high flow predictions were not as good as low flow predictions
- Land use and climate change scenarios helped to better understand the impact of climate change and land use change on Blue Nile river
- It has been proven that land use and cover (LUC) changes as well as climate change has resulted in significant changes (either by increasing or decreasing) in the hydrology of the basin

Recommendations

- use of long time series and good quality data in the hydrologic models
- investigate the reasons of underestimation of peak flows for Blue Nile
- It will be of great importance to incorporate other factors in the assessment like, sediment transport and water quality analysis.
- Incorporating the newly constructed dam by Ethiopia (GERD) in the already built hydrologic model and analyzing the impact (on development)

Thanks for listening!