Need of Intensified Watershed Management Interventions in the Upper Catchment of GERD

Lakew Desta Biybone Consultants PLC Addis Ababa, Ethiopia

Outline of the Presentation

- 1. Background
- 2. Literature Review on GERD Sedimentation
- 3. Literature Review on d/s of GERD Sedimentation
- 4. Sediment Valuation
- 5. Prevailing Challenges in WM in Ethiopia
- 6. Framework Opportunities in Ethiopia for the Pursual of WM
- 7. The Way Forward /Recommendations

1. Background

- 1. The upper catchment of the GERD is **172,250** Km², it stretches up to 900km, hosts 31.9 million people (28%), and 39% LS,
- 2. Highland, steep slope, canyons, diverse agroecology, farming system, dense and fragmented holding, oxen plowing, free grazing, high rate of erosion it is as if all the rugged part is given, by nature, to Abbay Basin
- 3. Deep and wide gully dissections is a common phenomenon -10% of the sediment load comes from gullies
- 4. What is eroding is **fertile top soil** which otherwise would have been used for agriculture /cropping
- 5. We are **losing** the soil, seed, applied fertilizer, compost, manure, lime
- 6. Although, there is on-going re-greening and slope correction /terracing effort, it is a long way behind

2. Literature Review on Sedimentation u/s GERD

Nº	Original Figure	Unit	Conversion Unit	Actual Value	Rounded Value
1	207	Million Cubic Meter	1.0	207	207
2	245	Million ton	1.1	269.5	270
3	287	Million Cubic Meter	1.0	287	287
4	308.6	Million ton	1.1	339.46	340
5	473	Million ton	1.1	520.3	520
				Average	325 MCM

3. Literature Review on Sedimentation - d/s of GERD

N°	Name	Year Commissioned	Purpose	Storage Volume in BCM	Sediment Volume/tone	Source
1	Sennar	1925	Sed. Management, irrigation, hydropower	1	0.71 BCM, in 61 years	Belachew, 2013
2	Jabal Awlia	1933	Hydropower /Fishery	NA	Highly silted	
3	Rosaires	1966 /1971	Irrigation /Hydropower	7.4	2.7 BCM in 28 years	Belachew, 2013
4	Merwoe	2009	Hydropower	12.5	84 MCM	ENTRO, 2006
5	AHD	1968	Irrigation/Hydropower	162	136x10 ⁶ t TSS yr- 1	Shalash, 1982
6	Tekeze	2009	Hydropower	9	30MCM	*
7	GERD	Upcoming	Hydropower	74	207MCM/yr	Ethiopia
	*https://www.google.com/search?channel=trow2&client=firefox-b-d&q=tekeze+hydropower+project+pdf					

4. Sediment Valuation

- Valuing the annual soil /sediment lost at GERD, in financial terms
- Annual sediment volume is converted into hectarage of crop land having an assumed soil depth of 0.5m
- The equivalent area that could be cropped, every year, is 64,930ha.
- Cost-benefit analysis using the 10 Billion USD estimated cost for watershed management, at the current rate of wheat production of 27Qt ha-¹yr-¹, at 10% discount rate gives a NPV Present Value (NPV), changing to positive returns, at 29th year
- Taking the potential wheat yield of 50qt ha-¹yr-¹ the NPV, showing positive returns will be reduced to 15 years
- Practicing double cropping using irrigation and /or residual soil moisture the NPV can be under 10 years
- Biological SWC can give NPV changing into +ve in the 2nd year of investment
- Physical SWC measures give NPV changing into +ve in the 6th year of investment

5. Prevailing Challenges in WM in Ethiopia

1. Land degradation

- 2. Absence of national land use policy and tenure security
- 3. Lack of **long-term** reliable financing for watershed /land management programs /project
- 4. Short life span of land management-based projects /programs
- 5. Lack of applying **quality** SWC measures
- 6. Soil erosion is a threat to lime application
- 7. Overlying of fertile agricultural lands and infrastructural facilities with **less fertile** subsoils and debris
- 8. Infestation with **invasive** and exotic plants
- 9. Poor or no involvement of the **private sector**
- 10. Lack of adequate community **ownership**
- 11. Limited research
- 12. Inefficient documentation, reporting, and M&E system.

6. Framework opportunities in Ethiopia for the pursual of WM

- 1. Presence of **diverse** landscapes, agroecology, and farming system
- 2. Presence of extensive extension on NRM, SWC and WM
- 3. The presence of solidly founded **past experience** to pursue WM
- 4. Existence of community mobilized WM initiatives
- 5. Presence of strong policy and strategy on WM approaches
- 6. Presence of established planning unit at the community level

6. Framework opportunities in Ethiopia for the pursual of WM Continued...

WM units and hydrological characteristics

Planning unit	Typical area (KM2)	Example	Degree of coupling
Community /Micro-watershed	5	Typical watershed adopted by SLMP II (Ethiopia) – Agam	Very strong
Sub Watershed	20 to 60	An assemblage of 9 micro- watersheds Gumara	Strong
Major Watershed	60 to 200	An assemblage of 3 to 4 Sub watersheds	Moderate
Sub-basin	Up to 15,000	Lake Tana	Weak
Basin	Up to 172,250	Abbay Basin	Very weak

7. The Way Forward /Recommendations

- 1. Need of adequate resource mobilization
- 2. Formulation and enforcement of national land use policy
- 3. Do comprehensive watershed **classification and coding**
- 4. Scaling up of best practices
- 5. Establish labor support system
- 6. Acquire sufficient planting materials
- 7. Strengthen capacity building and knowledge management

Kes (Mr.) Guadie Assefa, Working on gully plugging in Farta District, Maynet Kebele, Zefie Community Watershed, in the Lake Tana Sub-basin

Watershed Management in the "Before" and "After" – this happened in 1.5 years time – picture is in Farta District, Lake Tana Sub-basin, Maynet, Kebele Administration a proof that WM works, if applied correctly and timely

Thankyou!!!