

LAND RESILIENCE IN ETHIOPIA - THE IMPORTANCE OF A COMMON UNDERSTANDING BETWEEN FARMERS, SCIENCE AND POLICY

Jan Nyssen

INTRODUCTION

- Effects of large dams
 - On-site
 - Downstream
 - Most interventions in this conference
 - Watch out also for the work by Sofie Annys and colleagues

INTRODUCTION

- Effects of large dams
 - On-site
 - Downstream
 - Most interventions in this conference
 - Watch out also for the work by Sofie Annys and colleagues
 - Upper catchment
 - Water delivery
 - Example: Tana-Beles sugar plantation will consume the water of GERD
 - Sediment delivery
 - The "technical" viewpoint
 - The upstream croplands: still the lion share of Ethiopia's food production
 - Hence, this focus on soil erosion and upland communities

RESEARCH METHODOLOGIES

- Field-based!
- Geomorphological analysis

(Frankl et al., 2012)

Hydrological measurements

(Etefa et al., 2017)

AGRICULTURAL SYSTEM WELL ADAPTED TO THE ENVIRONMENT

Korem (Frankl et al., 2013)

$$C_f = p^2/P_y$$

p = average monthly precipitation (mm) during the wettest month

 P_y = average yearly precipitation (mm).

(Nyssen et al., 2014)

LAND DEGRADATION

- If uncontrolled, soil loss can reach up to 200 t / ha / y
- 2/3 sheet and rill erosion; 1/3 gully erosion

(Korem)

HUMAN SETTLEMENT, CHANGE IN LAND USE AND LAND COVER

Deforestation

- Very old phenomenon (2000 – 4000 y)

- Cyclic, not linear

- Increase of eucalyptus forests

- Decrease of semi-natural forests

(Etefa, 2017)

LAND USE AND TENURE SINCE

Example in Menkere

1937 © AOI Archives, Firenze (I.)

Fig. 106. – Mosaico di fotogrammi aerei. Riva del Lago Ascianghi. Marzo 1936.

SOCIAL AND HISTORICAL IMPULSES OF LAND USE AND COVER CHANGES

- Human impact (changes in land use and cover)
 - Agricultural stagnation over centuries
 - Macroeconomic decisions
 - Immediate returns at the expense of environmental degradation
 - Land distribution (Gini coefficient 32.5)

Reference: Crummey, D., 2000. Land and society in the Christian kingdom of Ethiopia, from the thirteenth to the twentieth century. Addis Ababa University Press, 373 p.

GRAZING

- Stocking rates in excess of optimum
- Stubble grazing
- Increased runoff, because:
 - decreased surface roughness
 - soil compaction; increased bulk density
 - decreased soil organic matter content
 - soil structure decay and decreased hydraulic conductivity

LAND REHABILITATION

AGRICULTURAL INTENSIFICATION

- Improved climatic conditions
- Human interventions (society reacts with innovative process)
 - -Integrated SWC
 - -Exclosures
 - -Fertiliser (not always mineral)
 - -Irrigation
 - -Extension, seed selection, credit, etc.

(Nyssen et al., 2018) (data http://faostat.fao.org)

DEFORESTATION AND REFORESTATION

(Nyssen et al., 2014)

DECISION MAKING

- Process guided by authorities
- Largely interiorised by population
- Participation

- 20 days free work per year
- Enhanced by remunerated activities
- People work in areas where benefit for the whole community is obvious
- "EthioTrees" == voluntary carbon market

EFFECTS

- Soils, biomass, ecology,
 ecosystem services (Muys et al., 2014)
- Runoff, scale of 30 runoff plots
 (Descheemaeker et al., 2006)
- Runoff, scale of a 5200 km²
 catchment (Etefa et al. 2018)

EFFECTS

- Soils, biomass, ecology,
 ecosystem services (Muys et al., 2014)
- Runoff, scale of 30 runoff plots
 (Descheemaeker et al., 2006)
- Runoff, scale of a 5200 km²
 catchment (Etefa et al. 2018)
- Springs improve = lessdrudgery for women
- From "misery" to "poverty"

CONCLUSIONS

- Environmental conditions: pronounced degradation
- Indigenous environmental knowledge
- Vision: vast transformation of landscape
- Characteristics of the communities
 - Equity
 - Mass mobilisation
 - Participation
- Accessible technology
- Scientific support
- Contribution expected from the "Hydropower-Urban conglomerate"

