

A Blueprint for Adapting High Aswan Dam Operation to Challenges of Filling and Operation of the Grand Ethiopian Renaissance Dam

Hisham Eldardiry^{*} and Faisal Hossain

Department of Civil and Environmental Engineering University of Washington, Seattle *Email: dardiry@uw.edu

Nile River Basin (NRB)

Transboundary river

Population growth

₩ 🚱

Increasing food/energy demand

Climate variability

Planned dams

Dams in NRB

- > 11 existing dams
- > 35 planned hydropower dams
- > 4 dams under construction

Grand Ethiopian Renaissance Dam (GERD)

currently under construction in Ethiopia

- controlling the Blue Nile (Political Tensions)
- **the largest hydropower dam in Africa**
- 74 km3 of reservoir storage

6 times Grand Coulee dam in Washington~ 12 km3

Overarching Goal

The overarching goal is to **derive adaptive reservoir operating policy** under the combined impacts from climate variability, planned transboundary dams and population pressures.

ResearchHow can existing reservoirs adapt their operation to intrinsicQuestionand extrinsic transboundary challenges?

Rank ¢	Name of dam 🔶	Reservoir ¢	River \$	Country ¢	Year ♦	Nominal volume km ³
1	Kariba Dam	Lake Kariba	Zambezi River	Zambia and 🛌 Zimbabwe	1959	180.6
2	Bratsk Dam	Bratsk Reservoir	Angara River	Russia	1964	169
3	Akosombo Dam	Lake Volta	Volta River	🚾 Ghana	1965	150
4	Daniel-Johnson Dam	Manicouagan Reservoir	Manicouagan River	I ◆I Canada	1968	141.851
5	Guri Dam	Lake Guri	Caroní River	👝 Venezuela	1986	135
6	Aswan High Dam	Lake Nasser	Nile River	Egypt	1971	132
7	Grand Ethiopian Renaissance Dam		Blue Nile River	Ethiopia	under construction	79
ð	W. A. C. Bennett Dam	Williston Lake	Peace River	I ●I Canada	1967	74.3
9	Krasnoyarsk Dam	Krasnoyarsk Reservoir (ru)	Yenisei River	Russia	1967	73.3
10	Zeya Hydroelectric Station (ru)	Zeya Reservoir	Zeya River	Russia	1978	68.4

Wikipedia Ranking of Reservoirs by Volume

HAD: High Aswan Dam

(existing downstream dam in Egypt) **GERD: Grand Ethiopian Renaissance Dam**

(planned upstream dam in Ethiopia)

Satellite-Based Blueprint

* Eldardiry, H., & Hossain, F. (2019). Understanding Reservoir Operating Rules in the Transboundary Nile River Basin Using Macroscale Hydrologic Modeling with Satellite Measurements. Journal of Hydrometeorology, 20(11), 2253-2269.

* Eldardiry, H., and Hossain, F. (In revision). A Blueprint for Adapting High Aswan Dam Operation in Egypt to Challenges of Filling and Operation of the Grand Ethiopian Renaissance Dam, Journal of Hydrology.

GERD Filling Scenarios

- > Filling scenarios of GERD (from 2- to 12-years)
- > Using the historical inflow (1981-2017) simulated by the VIC model.
- Less impacts downstream for filling scenarios of greater than 7 years.

Median Flow=47.5 km³/year Reservoir Storage=74 km³

- Lower stress levels are noticed in the summer months (opportunities to adapt)
- > Insufficient supply of HAD releases is encountered by relying on rainfall or groundwater

HAD Level during GERD Filling Scenarios

Testing different filling scenarios (Upstream conditions) Testing different stress scenarios (Downstream Conditions)

- > A significant drop in the HAD level when assuming a 3-year filling scenario.
- > A flatter pattern is noticed for 7-year filling scenario with negligible trends.

HAD Level during GERD Filling Scenarios

UNIVERSITY of WASHINGTON

HAD Recovery during GERD Operation

Recovery: How long it will take for HAD to recover its normal operation level?

HAD Recovery during GERD Operation

Recovery: How long it will take for HAD to recover its normal operation level?

Assessment of GERD/HAD

Location	Factor	Scenario		
	GERD Inflow	Dry vs Normal vs Wet		
	GERD Storage Capacity	74 vs 80		
a	GERD FSL	640 vs 650		
D P	GERD Filling	3 vs 7 Years		
)) (GERD Starting Filling Month	January vs August		
Upstream Planned Dam (GERD)	GERD HP Demand	Uniform vs Varying (Demand Curve)		
rea	GERD HP Load Factor	LF=0.3 vs 0.4 vs 0.5		
Upst	GERD Starting Operation Climate	Dry vs Normal vs Wet		
	GERD Filling Strategy	Summer vs Yearly vs Agreed Outflow		
ε	Sudan Share	0.75 vs 0.70 vs 0.60		
Da	White Nile inflow	Low vs Average vs High		
tin g	HAD Starting Level	Low vs Average vs High		
D)	HAD HP	By-product vs Optimization		
am Exi (HAD)	HAD HP Load Factor	CF=0.3 vs 0.45 vs 0.6		
Downstream Existing Dam (HAD)	HAD HP Demand	Uniform vs Varying (Demand Curve)		
Dow	HAD DS WaSSI	Status Quo WaSSI vs Predefined WaSSI		

Key Findings and Future Pathways

- > Filling scenario (> 7-year) has less impacts on HAD operation.
- > HAD can adapt to GERD filling in summer months.
- > Forecast-based Adaptive Reservoir Operation (FARO).
- > Foster negotiations to agree upon a long-term framework that explicitly accounts for the impacts of transboundary projects.

The leaders of Egypt, Ethiopia and Sudan all gathered in Khartoum to sign the agreement of principles in 2015 (Source: BBC).

Thank You!

"Egypt is the Gift of the Nile" Greek Historian Herodotus (440 BC)

Sunset on the Nile Aswan, Egypt (August 2007)

If interested

3-day workshop on using satellite remote sensing in the Nile River Basin

http://staff.washington.edu/dardiry/SR2020/ Email: dardiry@uw.edu