Averting Degradation in the Abbay/GERD Basin: current trends, potential interventions and investment needs

Essayas Ayana, Semu Moges and Liya WeldeGebriel

Overview

- Degradation in the Abay basin (by Essayas Ayana)
- Reverting the trend (by Liya Weldegebriel)
- Cost of rehabilitation (by Semu Moges)

Degradation in the Abbay basin

Essayas Ayana (Ph.D.)

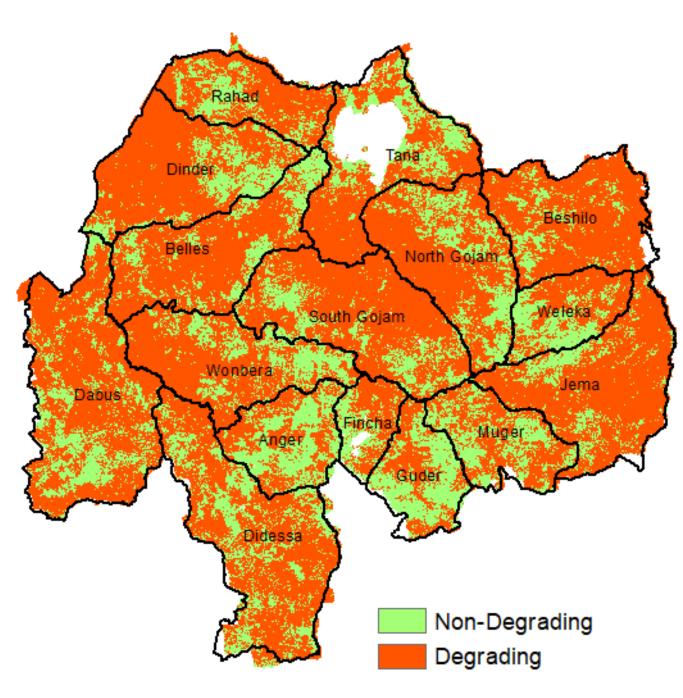
Degradation in Abay Basin

- Sheet, rill, and gully erosion
- Watersheds suffers from severe or very severe erosion risk ranging from 80 t/ha/yr to 125 t/ha/yr (Bewket & Teferi, 2009)
- Average soil loss rate of 27.5 t/ha/yr and a gross soil loss of ca. 473
 Mt/ha/yr (Haregeweyn et. al. 2017)
- Land use/Land cover change as main driver
- Significantly affected soil quality (Organic matter and bulk density) (Teferi, Bewket & Simane, 2016)

The metrics

Sustainable Development Goal (SDG) 15

"Protect, restore and promote sustainable use of terrestrial ecosystems, sustainably manage forests, combat desertification, and halt and reverse land degradation and halt biodiversity loss"

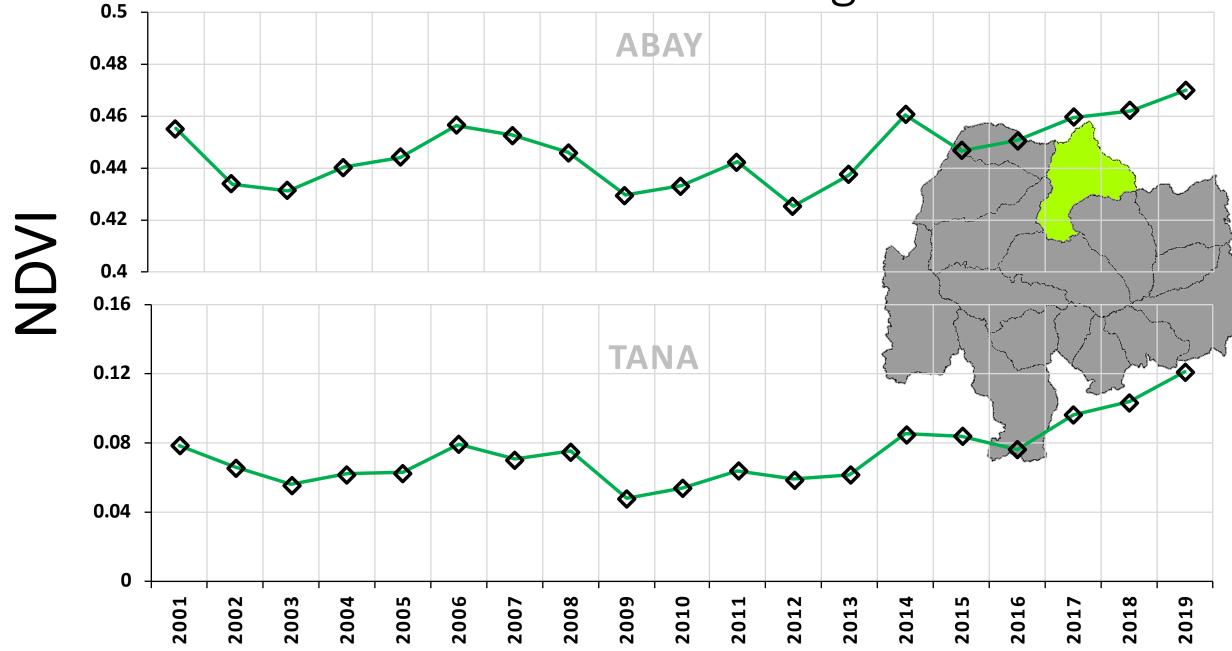

Target

"By 2030, combat desertification, restore degraded land and soil, including land affected by desertification, drought and floods, and strive to achieve a land degradation-neutral world"

3 sub-indicators: Vegetation productivity, Land cover, Soil organic carbon

Vegetation productivity

- Using a trend fit on MODISFPAR in GEE
 - 71% of the basin area
 currently in a degradation
 trend

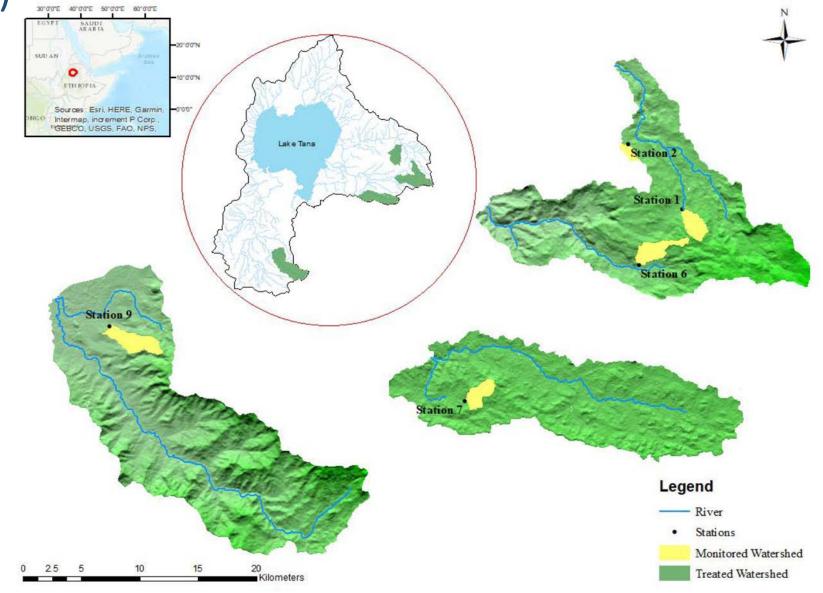


The degradation metrics

Level of Degradation

Vegetation cont'd...

Current forest cover


https://www.globalforestwatch.org/

Subbasin	Forest (Kha)	Non-forest (Kha)
Abay	3370	16700
Anger	260	535
Beles	438	988
Beshilo	4.48	1330
Dabus	796	1310
Didessa	888	1090
Dinder	201	1290
Fincha	6.42	405
Guder	20.4	685
Jema	2.29	1590
Muger	2.3	822
North Gojam	2.03	1450
Rehad	11.6	819
South Gojam	85.6	1600
Tana	0.497	1210
Woleka	0.135	646
Wonbera	655	646

Reverting Degradation Trend: Lessons learned from soil and water conservation (SWC) projects in Lake Tana basin

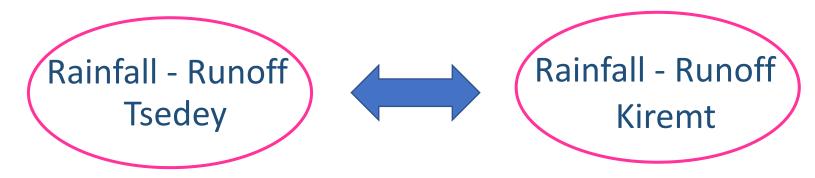
Liya Weldegebriel, PhD Candidate Ecohydrology UC Berkeley

Tana Beles Integrated Water Resource Development Project (TBIWRDP)

SWC practices implemented in TBIWRDP

Detail of stones terrace

Gabion check-dam


Terraced hillslopes with agroforestry

Detecting short term impact of SWC practices

1. Using Stage as a proxy to assess change in runoff ratio

- *Stage height* data lacks complete stage-discharge rating curve to asses impact of SWCPs on *Discharge* and *Runoff ratio*.
- Logarithmic linear regression of *Stage height* and *Rainfall* results in an intercept term, *K*, that includes Runoff ratio.

2. Separating rainfall-runoff relations by season

Impact of SWC practices on runoff ratio

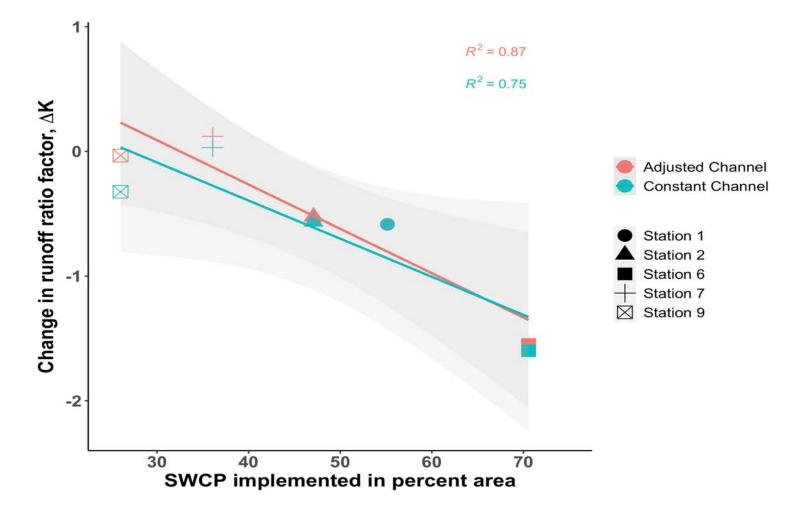


Figure 1. Density of SWC practices vs change in runoff ratio factor between 2010 and 2012 in Kiremt (wet) season

Impact of SWC practices on sediment concentration

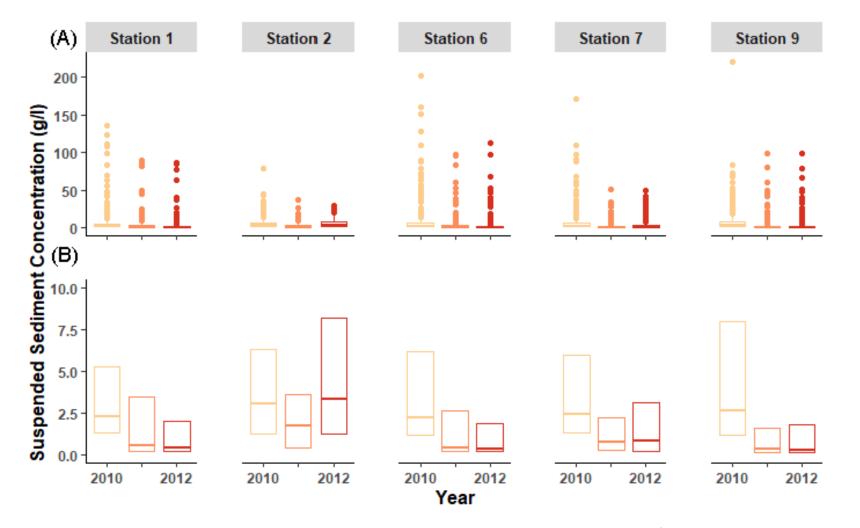


Figure 2. Suspended sediment concentration (g/l) for Kiremt season from 2010 to 2012. (A) including outliers, (B) without outliers

Long term impact of SWC practices on land

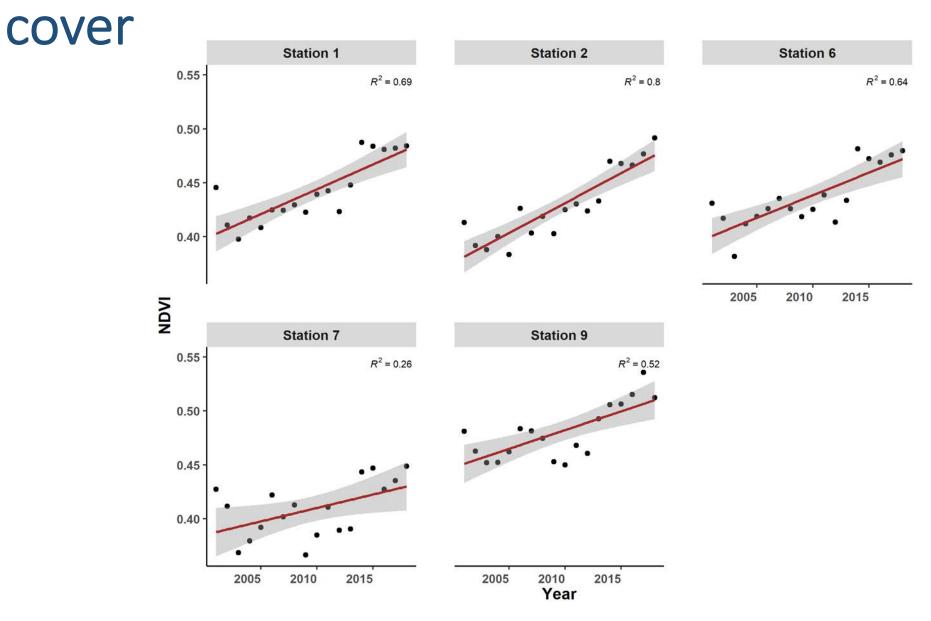


Figure 3. NDVI trend from 2001 to 2018

Lessons learned from TBIWRDP Project

- Stage height, sediment concentration and vegetation indices (NDVI) can be used to detect impact of SWC practices
- Terraces, check dams and agroforestry has shown positive short-term impact by reducing runoff and soil erosion in small scale watersheds
- "No free grazing" policy has increased vegetation cover in the long term

Cost of rehabilitation

Semu Moges (Ph.D.)

Guidelines for watershed rehabilitation and cost breakdown for a standard watershed – 500ha for five years (Zeleke, 2014)

No	Major Activities with % contribution of communities	Cost (USD)	% of the to- tal cost	No	Major Activities with % contribution of communities	Cost (USD)	% of the to- tal cost	No	Major Activities with % contribution of communities	Cost (USD)	% of the to- tal cost
1	Participatory Watershed Development Planning	16,000	5	6	Gulley rehabilita- tion (40% cont)	30,080	9.4	11	Shallow wells for Irri- gation linked to Home- steads (50% cont)	9,600	3
2	Preparation for implemen- tation including equip- ment & initial training	17,600	5.5	7 °	Spring & shallow well dev. For water supply (20% cont)	9,600	3	12	Ponds, Roof Water Harvest- ing & SS-dams (20% cont)	17,920	5.6
3	Area closure with HT, T (up to 70% comm. cont)	17,600	5.5	8	Nursery (20% cont)	50,560	15.8	13	Irrigation diversions and canals (20% cont)	16,000	5
4	SWC on cultivated lands (70% comm. cont)	16,000	5	9	Woodlot and other plan- tations (65% cont)	9,600	3	14	On the job training for ED activities	11,200	3.5
5	Feeder roads (60%)	18,240	5.7	10	Homestead Dev. (60% cont)	64,000	20	15	ME and operation costs	16,000	5

Cost of rehabilitation of degradation

Non Degrading	Degrading	Non Degrading	Degrading	Cost of Rehabilitation,	
Non-Degrading	Degrading	Non-Degrading	Degrading	Billion USD	Research indicates
1905	11209	15%	85%	0.717	
2770	13076	17%	83%	0.837	watershed rehabilitation
3789	13239	22%	78%	0.847	
3500	11581	23%	77%	0.741	cost in Ethiopia is
3615	10831	25%	75%	0.693	
5387	15385	26%	74%	0.985	320000 USD/500 ha
4158	10512	28%	72%	0.673	320000 032/300 Ha
2407	6040	28%	72%	0.387	(Zeleke, 2014)
3830	9315	29%	71%	0.596	(2CICIC; 201+)
5767	13530	30%	70%	0.866	
3707	8324	31%	69%	0.533	
2680	3853	41%	59%	0.247	Total rehabilitation cost
1598	2293	41%	59%	0.147	
3508	4627	43%	57%	0.296	~ 9 Billion USD
4100	3909	51%	49%	0.25	
3865	2924	57%	43%	0.187	_
5658	35 14064 9	9 1972	.33	9.002	2

Conclusion and Recommendations

- Abay basin suffers from severe soil erosion
- Diverse SWC approaches need to be integrated to reverse land degradation
- Monitoring impact of SWC is essential for sustainable and appropriate upscaling of interventions
- Rehabilitation of the Abay basin could extend the useful life of GERD but requires significant research and investment

References

- Bewket, W., & Teferi, E. (2009). Assessment of soil erosion hazard and prioritization for treatment at the watershed level:
 case study in the Chemoga watershed, Blue Nile basin, Ethiopia. Land Degradation & Development, 20(6), 609–622.
- Gete Zeleke (2014). Exit Strategy and Performance Assessment for Watershed Management: A Guideline for Sustainability. WLRC, Addis Abeba, Ethiopia
- Haregeweyn, N., Tsunekawa, A., Poesen, J., Tsubo, M., Meshesha, D. T., Fenta, A. A., Nyssen, J., & Adgo, E. (2017).
 Comprehensive assessment of soil erosion risk for better land use planning in river basins: Case study of the Upper Blue Nile River. Science of the Total Environment, 574, 95–108.
- Teferi, E., Bewket, W., & Simane, B. (2016). Effects of land use and land cover on selected soil quality indicators in the headwater area of the Blue Nile basin of Ethiopia. Environmental Monitoring and Assessment, 188(2), 83.