Modelling seasonal river export of nutrients to Lake Tana, Upper Blue Nile

Goraw Goshu,^{a, b} M. Strokal,^c C. Kroeze,^c A.A. Koelmans,^a J.J.M de Klein^a

^a Aquatic Ecology and Water Quality Management Group, Wageningen University &Research

^b College of Agriculture and Environmental Sciences and Blue Nile Water Institute, Bahir Dar University

^c Water Systems and Global Change Group, Wageningen University & Research

WAGENINGEN UNIVERSITY & RESEARCH

2020 International Conference on the Nile and Grand Ethiopia Renaissance Dam

> 20-21 August,2020, Florida International University, USA

Introduction

- Water resources all over the world are under pressure
- Eutrophication is one of the environmental problems
- It is caused by excess loads of N and P
- N and P come from diffuse and point sources

Introduction...

Consequences of eutrophication

- Algal blooming
- Reduced water transparency
- Depletion of dissolved oxygen
- Toxins

Impacts of eutrophication

Public and ecosystem health

Introduction...

- **Seasonality of eutrophication**
- Cycles of N and P
- N and P loading
- Hydrology, climate and human activities
- In the seasonality in the effects and the feed-backs (Janssen et al., 2019)

Introduction... Some of N and P modelling tools in WUR

Fig. 1 Modelling tools in WUR. Source: Adapted from Strokal and Goraw, 2018. Modelling nutrient export to lakes. Water Science for Impact, October 2018, Wageningen, The Netherlands

Objective

 To assess the seasonality and sources of dissolved inorganic N (DIN) from sub-basins to Lake Tana

sub-basin scale approach of Strokal et al. (2016)
seasonal approach of McCrackin et al. (2014)
we validated the results in the same area.

Methodology

Lake Tana Basin

- Area 15,046 km²
- Economic corridor
- About 4,5 m people
- 20 sub-basins
- Lake Tana
- Area 3111 km²
- Unique biodiversity
- Source of Blue Nile
- The largest fresh water resource
- > 6 perineal rivers, >40 seasonal

Methodology...

Lake Tana basin

Fig. 3 Some of the human activities in Lake Tana.

Modelling approach

Fig.4 Modelling approach of seasonal DIN export model for Lake Tana. Source: Goraw et al.,(2020)

Methodology...

Definition of seasons

- Rainy: July, August and September (JAS),
- Post-rainy: October, November and December (OND)
- Dry: January, February and March (JFM).
- Pre-rainy: April, May and June (AMJ),

Step 1: Quantifying inputs of N from diffuse and point sources to land and rivers

Sources of N

- Animal manure
- Synthetic fertilizer
- Human waste
- Biological fixation
- Atmospheric deposition

Animal manure - WSdifN.man.y.j.S

N excretion rate

- No. of animals
- Loss through denitrification, N₂O, NH₃

Human waste - WSdif_{N.hum.uncon.y.j.s}

- Housing units without toilet facilities
- Faeces and urine generation rates
- N content in produced faeces and urine
 N loss through ammonia is corrected

Synthetic fertilizer - WSdifN.fe.y.j.S

- Sum of N inputs from (DAP) and Urea
- Rates of DAP and Urea application
- Area of land where DAP and Urea applied
- N content in DAP and Urea.

Biological N₂ fixation- WSdifN.fix.ant y.j.s

- Biological N₂ fixation agri + Biological N₂ fixation natural
- Biological N₂ fixation agri
 - Legumes- Biomass harvested
 - Non-legumes-5 kg N ha⁻¹
 - Rice-25 kg N ha⁻¹

Atmospheric N deposition - WSdif_{N.dep.ant.j.s} and WSdif_{N.dep.nat.j.s}

- Depostion rates over agr. Area and

natural area

- Depostion rates from global News model
- Average seasonal rainfall

Step 2: Quantifying DIN inputs to rivers from diffuse and point sources

Equations (goraw et al., 2020)

(eq.1) $M_{\text{DIN.y.j}} = \sum M_{\text{DIN.y.j.S}}$ $M_{DIN,y,j,S} = RS_{DIN,y,j,S} \cdot FE_{riv,DIN,outlet,j,S} \cdot FE_{riv,DIN,mouth,j,S}$ (eq.2) (eq.3) $RSdif_{DIN.v.j.S} = WSdif_{N.v.j.S} \cdot G_{N.j.S} \cdot FE_{WS.DIN.j.S}$ (eq.4) $FE_{ws.DIN.j.S} = FE_{ro.j.S} \cdot (1 - F_{temp.j.S})$ (eq.5) $FE_{ro.i.S} = b \cdot (Rnat_{i.S} * 4)^a$ (eq.6) $F_{temp} = d(T_{j,S}/100)^c$

Step 3:Quantifying river export of DIN from subbasin outlets to river mouths

(eq.8) $FE_{riv.DIN.outlet,j.S} = (1 - D_{DIN,j.S}) \cdot (1 - L_{DIN,j.S}) \cdot (1 - FQrem_{j.S})$

(eq.9)

$$D_{DIN,j,i} = 0.8845 \times \left(\frac{h_{j,i}}{\Delta \tau_{R,j,i}}\right)^{-0.3677}$$

(eq.10)

$$L_{\text{DIN},j,S} = (0.0605 \times \ln(\text{Area}_j) - 0.0443) \cdot Q_{10} \frac{(T_{j,S} - T_{\text{average},j})}{10}$$

 $FQrem_j = 1 - Q_{act.j.S}/Q_{nat.j.S}$

(eq.11)

Calibration and validation

- Model setup for the year 2017
- DIN load and yield
- Monthly DIN data
- Model performance metrics
 - R²P, R²NSE, RSR

(eq.12)
$$L = rac{\sum_{i=1}^m Q_{i\cdot}}{m} \cdot rac{\sum_{j=1}^n Cj}{n}$$

(De Vries and Klavers, 1994)

Results and Discussion

Calibration and Validation

UNIVERSITY & RESEARCH

Results and Discussion...

Fig. 6 DIN export to Lake Tana by source and season for the year 2017.

Results and Discussion...

Results and Discussion...

Table 1. Modelled N inputs to Land by source and season for Lake Tana in 2017 (kg Km-2S-1)

Sources	Rainy	Post-rainy	Dry	Pre-rainy
Animal manure	201-2,904	201-2,904	201-2,904	201–2,904
Synthetic fertilisers				
Human waste	37-249	37-249	37-249	37-249
Biological N ₂ fixation*				
Atmospheric N deposition*	131–196	10-24	2-6	43-77

Results and Discussion....

Fig. 7 Total N input to land (kton)(left panel) and the share of the sub-basins in the total N input to land (%) (right panel) for Lake Tana basin in 2017.

Take home messages

- We adapted and applied a model to Lake Tana to capture seasonality in the river export of nitrogen.
- We modelled nutrient exports to Lake Tana, showing good agreement with measured loads.
- We found that river export of nitrogen to Lake Tana is highest in rainy and lowest in dry seasons.
- We found that animal manure is the dominant source of nitrogen in rivers in all seasons

Future research outlook

Lake Tana and GERD

- Monitor N and P concentrations in rivers and GERD
- Conduct sensitivity and uncertainty analysis
- Apply the model to other sub-basins
- Setting critical thresholds
- Mapping hotspots of N and P losses
- Study impact of SDG instruments
- Water quality and ecosystem modelling under different dam filling scenarios

Acknowledgment

WURBDUNUFFIC

Thank YOU!!!

