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77 1. The Nile River Basin

v" The Nile River Basin includes portions of 11 countries:
Ethiopia, Eritrea, Burundi, Democratic Republic of Congo, Kenya,

Rwanda, Tanzania, Uganda, South Sudan, Sudan, and Egypt.

v' Area coverage: 3.18 x 106 km?

v' The average monthly flow of the White Nile ranging from 580 to 1,270 m3/s at Malakal
in South Sudan. 15% of the annual Nile discharge. Fairly stable flow throughout the

year

v' The average monthly flow of the Blue Nile ranging from 150 to 5,600 m3/s at
the Soba gauging station in Khartoum. 85% of the annual Nile discharge. Highly

seasonal.
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Water resources development in the Nile River Basin

The Low Aswan Dam (1902) in Egypt across the main Nile
The Sennar Dam (1925) and Jebel Aulia Dam (1937) in Sudan across the Blue Nile and
White Nile, respectively.

A 1959 agreement between Egypt and Sudan initiated the construction of the
Roseries Dam (1966) and Khashm El Girba Dam (1964) in Sudan.
The High Aswan Dam (1970) in Egypt.

Sudan’s modern expansion: The Merowe Dam (2009), the Upper Atbara and Setit
Dam complex (2016), and the heightening of the Roseries Dam (2013).

Ethiopia’s major project: The Finchaa (1973, expanded in 2012), Tekeze Dam (2009),
and the Tana-Beles hydropower project (2010).



Motivation: why is the water demand growing in the Nile basin?

v" This is due to climate change and population growth

Temperature

showed that the wet (dry) spells are
projected to significantly decrease

(increase).

»

evaporation

1

o The climate projection over Ethiopia ~ Z_'%

»

water scarcity
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ABSTRACT

Keywards:

o However, the climate projection also  g=uem...

Drought
Flood

showed the increase in extreme =
precipitation amount above the 95th
percentile, which may cause floods in

Sudan and Egypt.

The projection of precipitati is of signi importance for the relisble management of regional
water resources. Thus, this study explores the potential response of the popularly used precipitation extreme
indices to the global warming for near future (2011-2040), middle future (2041-2070) and far future
(2071-2100) periods, based on the CO: ional climate Do ling EXperiment (CORDEX) Africa
experiment outputs over Ethiopia. The results show that the wet (dry) spells were projected to significantly
decrease (increase) over most parts of Ethiopia, with relatively longer (shorter) dry (wet) spells projected over
the northem parts of Ethiopia. Conversely, the projected changes in extreme precipitation amount above the
95th percentile showed a substantial increase over maost parts of Ethiopia, with higher values projected to be in
the southern region. The result implies that extreme and heavy precipitation events are likely to be more intense,
and could amplify the probability of flood risks, particularly over the southern region. The total and extreme
precipitations generally show a strong positive correlation, indicating the increase in extreme precipitation i
responsible for the increase in total wet-day precipitation amount in Ethiopia In general, climate change will
have high negative impacts on the dynamics of precipitation patterns over Ethiopia, which could result in more
long dry seasons and shorter rainy seasons over most parnts of Ethiopia. Thus, the food and water security
situation in the region is highly vulnerable due to the projected changes in the intensity and frequency of climate

ughts and floods). , the increase in precipitation extremes could have the potential to
enhance the dry season agricultural productivity of most of the regions in Ethiopia using efficient irrigation
systems through excess water harvesting in the rainy season. This can also reduce flood occurrences and hence
xunonut damnga lngmeral it is of great imp to discuss the soci ic impacts that could resultif

as well as the i ing) trend of length of the dry

(wet) q)ells continue in the future.

Nile Basin needs more water infrastructures!!!



2272 2. Statement of the problem
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The water resources development in Ethiopia would likely to provide a wide-range
of benefits for Sudan and Egypt. For example, the Grand Ethiopian Renaissance

Dam (GERD) is likely to provide:

Sediment Flood
reductions management
[ ® ® ® Sudan
Hydropower Agricultural
uplift development
Sediment Less water
reductions evaporation
O O O O Egypt
Flood Increases reliability

management of water availability



Sustainable water resources management of the Nile river

Establish Nile Basin wide cooperative framework agreement

NS

The water resources assessment and management approach need to be reviewed and updated
on a regular basis

NS

Assess the outcomes for various users in the region under a range of different development,
allocation, and hydrological scenarios

NS

The multi-objective evolutionary and/or direct policy search algorithms need to be considered to
search solutions along the Pareto frontier with an aim to satisfy various actors in the region




nnnnn

Zz7: 3. Water resources assessment from both the gauged and ungauged basins
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Automation of Integrated hydro-
climatological models

Standardized R
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Three augmented versions of
reliability ensemble averaging were
proposed to achieve reliable
precipitation projections over South
Korea

« The spatiotemporal variability of

climate model skills within a
multimodel approach improved the
overall reliability of precipitation
projections

« The spatiotemporal reliability

ensemble averagmg ourperbrmed
all versions of rel
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3.2 Water resources assessment in the ungauged basins

» Ungauged hydrology
= Arithmetic mean
= Physical similarity
= Spatial proximity
= Catchment runoff

response similarity

ELSEVIER

journal homepage: www .elsevier.com/locate/jhydrol

Journal of Hydrology

Research papers

Modelling ungauged catchments using the catchment runoff response

similarity

i

Getachew Tegegne® ™", Young-Oh Kim®

*Dep of Givil and

Enginerring, Seoul Nasonal University, Gwanak ro 1, Gwanak-gu Seaul 151-742, Republic of Korea

"In_wmt of Health and Environmenst, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 151742 Republic of Korea

ARTICLE INFO

ABSTRACT

This manuscript was handled by Marco Borga,
Editor-inChief, with the assistance of Eylan
Shamir, Associate Editor

Keywords:
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Various types of regionalization approaches have been proposed in the last several decades for predictions in
ungauged basins. The most commonly used methods are based on the proximity of catchment centroids and
physiogmaphic and/or climatic diti ofthe h s He , the proximity of the catchment centroids
and catchment physical attributes do not necessarily translate into similarities in hydrologic behavior. It is also
difficult to identify the key aurlbms that favor hydrologic similarity. Therefore, in this study, we proposed a
new method called hy P similarity (CRRS), in the view of reducing the hydrologic process
predictive uncertainty and to solve the problem of the key attributes identification that favor hydrologic simi-
larity. The CRRS has a two-step appmach: 1) the commonly used regionalization approach is used to temporarily
transpose the calibrated model parameter from gauged to ungauged catchments, and 2) the munoff response of
each smaller delineated subbasin of the gauged and ungauged basins are obtained based on the parameter value
computed in the firststep. The similar subbasins of the gauged and ungauged basins are then identified based on
their runoff response similarity. The final parameter value in the ungauged subbasins are determined based on
the notion that smilar subbasins with runoff responses to similar input minfall could have similar model
structure settings. The applicability of the proposed approach was verified for the Geum River Basin (GRB) of
South Korea and the Lake Tana Basin (LTB) of Ethiopia. Leave-one-out evaluations of the proposed parameter

» Catchment runoff response similarity (CRRS)
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4. Water resources management: multi-objective reservoir operation
» Mathematical formulation of a multi-objective reservoir operation

a. Objective functions b. Constraints

= Storage continuity
Sn(t+1) = Sne + Int — (IRnt + Ry + Epe + Ont)
vt=1,2,..,12 ,andVn=1,2, ...

= Minimize the total squared
deviations (TSD) for irrigation

annually = Storage limits
. 12 Snmin < Snt < Snmax
2 Snmin < Sn(t+1) < Snmax
TSD = z Z(Dnt —IR,,) vt=1,2,..,12,andVn =1,2, ...
n=1 Lt=1

=  Maximum power production limit

p(RntHnt) S Hanax
® |rrigation demands
0<IR, <Dy
= Downstream requirement

n 12
HP = Z z P(RyHye) DR,; > MDR,,
n=1 Lt=1 = Spill

= Maximize annual hydropower
production (HP)

0<0,
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Representing inflow uncertainty for the development of monthly reservoir =
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operations using genetic algorithms
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Genetic Algorithms (GAs) have been commonly applied in the last two decades as a substitute for the traditions
mathematical programming algorithms in searching for optimal operating rules of resarvolr systems. Howeve
only a few GA studies related to resarvoir oparations addressed the inflow uncertainty. In this study, the n
servoir opemtion miles were developed and evaluated by reflecting the uncertainty of reservoir inflows using th
non-dom inated sorting GA Il algorithm (NSGA-11) through the following procedure (1) the historical inflow dat
were cdassified into four clusters using the self-organizing map (SOM) clustering technique; (2) NSGA-l semche
for an optimal release rule in each duster with all the inflow data of the corresponding duster; (3) a rdea
response function was then derived for each duster by regressing the calculated optimal release data against €
storage at the beginning of the month and the inflow during the month; and (4) finally, the derived release n
for each cluster were tested with three pefformance indices. namelv. reliabilitv. resilience. and vulnerability. 7




Example: Reservoir operation with simple approach
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zzz: 5, Water resources planning and development in the Nile region

nnnnn

2222 v Planning of new water infrastructures in the Nile basin should be carefully

nnnnn

S evaluated with ROBUST and ADAPTIVE decision making perspectives.

nnnnnn

= v" Robust: an alternative performs satisfactorily over a wide range of scenarios

Sy v Adaptive: reduction of risk over time (flexibility)

nnnnnn

nnnnn

Sy Real Option Analysis (ROA) Discounted cash flow?

nnnnnn

Z77%: v/ ROA spread risks over time using options

A o which is consistent with the adaptive perspective.

nnnnnn

Zzzz v ROA can also consider uncertainty in a modelling framework

nnnnn

Sy o which is consistent with the robust perspective.

nnnnnn
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Proposed adaptation plans for Egypt due to further upstream development

4 )
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