Nile and GERD Conference

Advances in Water Resources Assessment and Optimal Management of Multipurpose Cascade Reservoirs in the Nile River Basin

Getachew Tegegne (Ph.D.)

Hydraulic, Hydrologic and Water Resources Engineering

Assefa M. Melesse (Ph.D.) Professor of Water Resources Engineering

Florida International University

Contents

- 1. The Nile River Basin
- 2. Statement of the problem Motivation
- 3. Water resources assessment from both the gauged and ungauged basins
- 4. Water resources management under emerging scenarios
- 5. Water resources planning and development

1. The Nile River Basin

The Nile River Basin includes portions of 11 countries:

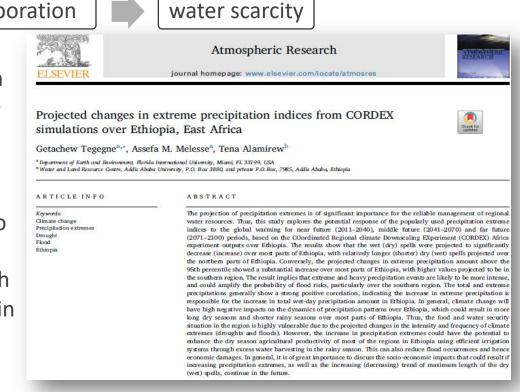
Ethiopia, Eritrea, Burundi, Democratic Republic of Congo, Kenya,

Rwanda, Tanzania, Uganda, South Sudan, Sudan, and Egypt.

- Area coverage: 3.18×10^6 km²
- The average monthly flow of the White Nile ranging from 580 to 1,270 m³/s at Malakal in South Sudan. 15% of the annual Nile discharge. Fairly stable flow throughout the year
- The average monthly flow of the Blue Nile ranging from 150 to 5,600 m³/s at the Soba gauging station in Khartoum. 85% of the annual Nile discharge. Highly seasonal.

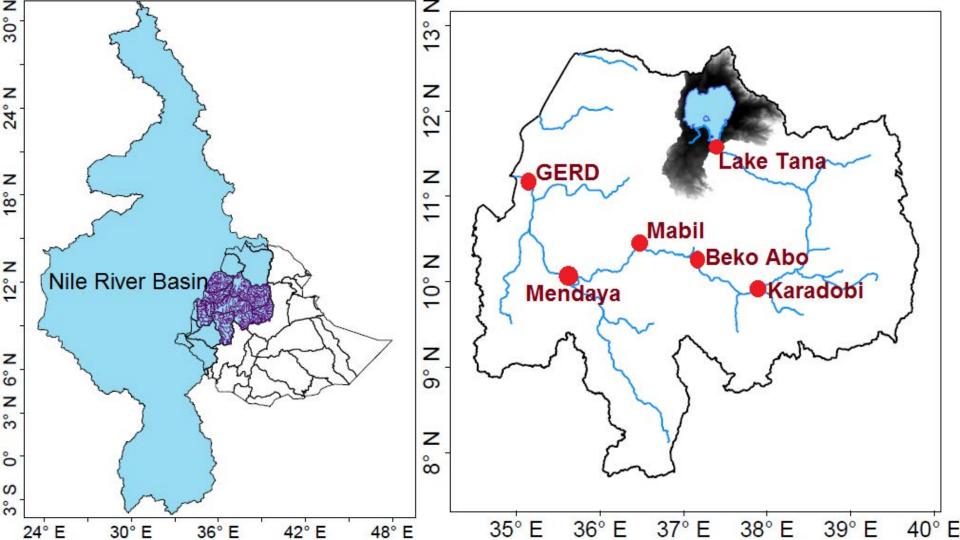
Water resources development in the Nile River Basin

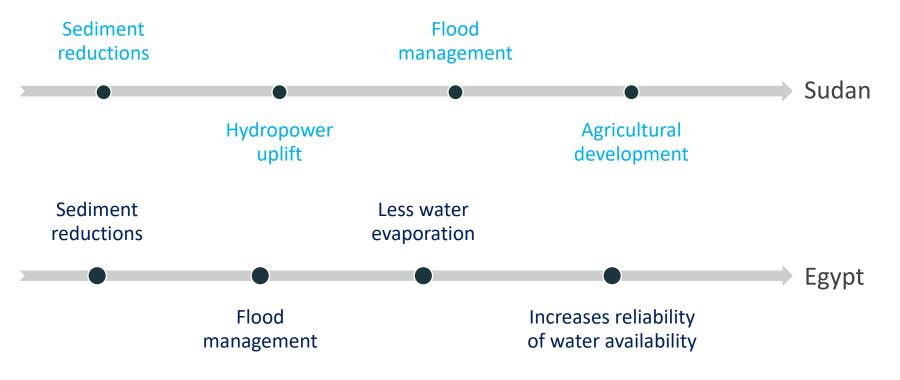
- The Low Aswan Dam (1902) in Egypt across the main Nile
 The Sennar Dam (1925) and Jebel Aulia Dam (1937) in Sudan across the Blue Nile and White Nile, respectively.
- ✓ A 1959 agreement between Egypt and Sudan initiated the construction of the Roseries Dam (1966) and Khashm El Girba Dam (1964) in Sudan.
 ✓ The High Aswan Dam (1970) in Egypt.
- ✓ Sudan's modern expansion: The Merowe Dam (2009), the Upper Atbara and Setit Dam complex (2016), and the heightening of the Roseries Dam (2013).
- Ethiopia's major project: The Finchaa (1973, expanded in 2012), Tekeze Dam (2009), and the Tana-Beles hydropower project (2010).


Motivation: why is the water demand growing in the Nile basin?

This is due to climate change and population growth

Temperature


- The climate projection over Ethiopia showed that the wet (dry) spells are projected to significantly decrease (increase).
- However, the climate projection also showed the increase in extreme precipitation amount above the 95th percentile, which may cause floods in Sudan and Egypt.


Nile Basin needs more water infrastructures!!!

2. Statement of the problem

Lack of sufficient water storage	Poor water use efficiencies in agriculture	Insufficient knowledge on the hydrology of the Nile system	Lack of cooperation for mutually beneficial mechanisms				
Climate change - I Climate change - II Impact							
Temperature increases15% increase in flowIncreasing the riskevaporation increasesamount – 50% increase in flow variabilityof flooding and droughts							
Problem	S	Solution	How much?				
The inter-annual flow variability reduces reliability of maintaining flows	additi	nplement ional storage eservoir	55% additional storage capacity to achieve existing levels of reliability				

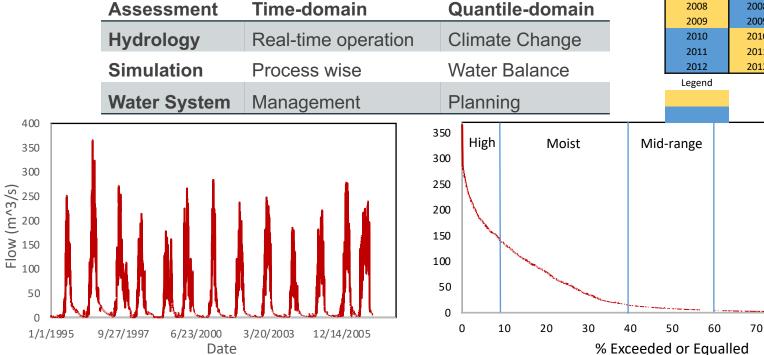
 The water resources development in Ethiopia would likely to provide a wide-range of benefits for Sudan and Egypt. For example, the *Grand Ethiopian Renaissance Dam (GERD)* is likely to provide:

Sustainable water resources management of the Nile river

Establish Nile Basin wide cooperative framework agreement

The water resources assessment and management approach need to be reviewed and updated on a regular basis

Assess the outcomes for various users in the region under a range of different development, allocation, and hydrological scenarios


The multi-objective evolutionary and/or direct policy search algorithms need to be considered to search solutions along the Pareto frontier with an aim to satisfy various actors in the region

3. Water resources assessment from both the gauged and ungauged basins

3.1 Hydrologic model parameterization in the gauged basins

k-fold cross-validation: k = 4 folds, 9 yrs = calibration and 3 yrs = validation

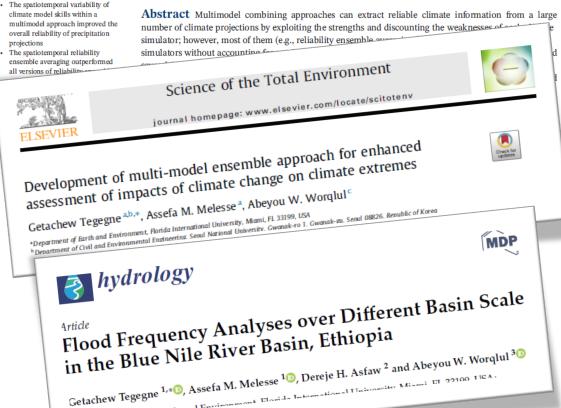
ged basins		Fold-I	Fold-II	Fold-III	Fold-IV			
		2001	2001	2001	20	001		
		2002	2002	2002	20	002		
		2003	2003	2003		003		
tion		2004	2004	2004		004		
		2005	2005	2005		005		
		2006	2006	2006	-	006		
		2007	2007	2007		007		
e-domain		2008	2008	2008		800		
		2009	2009	2009		009		
Change		2010	2010	2010		010		
_		2011	2011 2012	2011 2012)11)12		
alance		2012	2012	2012	20	717		
		Legend	0.1	bratica				
				Calibration				
			Validation					
Moist	Mid	-range	Drv	Dry				
			, Flow		Low			
			1101					
b .								
WAR DAME SILL AND								
Constant and a second								
The second second								
						I		
20 30	40	50 60) 70	80 9	0 1	00		

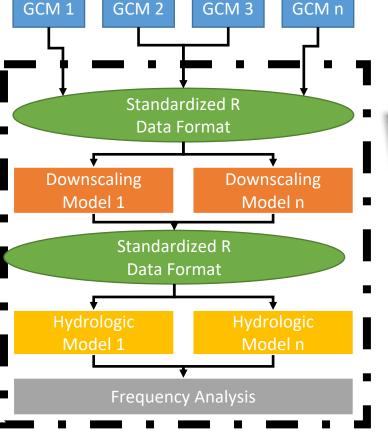
Automation of Integrated hydroclimatological models

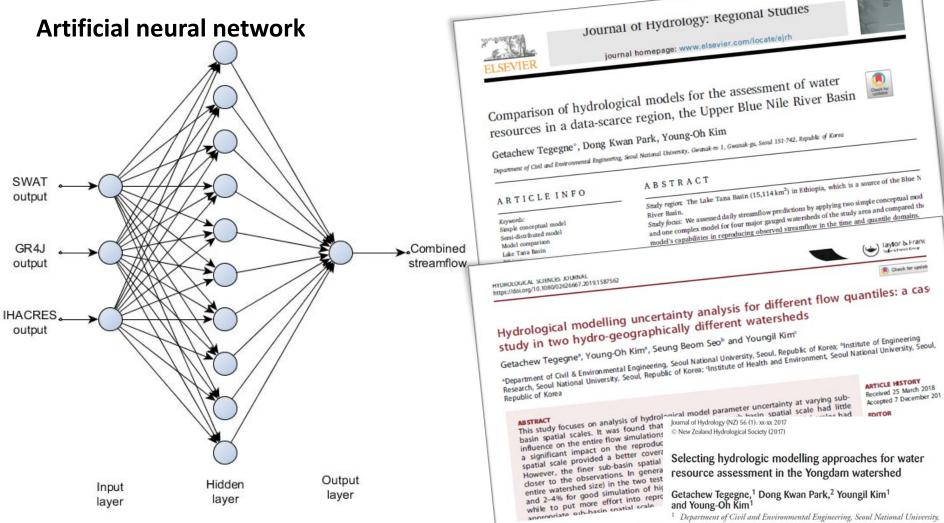
Geophysical Research Letters

RESEARCH LETTER

10.1029/2019GL083053


Key Points:


- · Three augmented versions of reliability ensemble averaging were proposed to achieve reliable precipitation projections over South Korea
- climate model skills within a overall reliability of precipitation projections
- The spatiotemporal reliability all versions of reliability


Spatiotemporal Reliability Ensemble Averaging of Multimodel Simulations

Getachew Tegegne¹, Young-Oh Kim¹, and Jae-Kyoung Lee²

¹Department of Civil and Environmental Engineering, Seoul National University, Seoul, South Korea, ²Innovation Center for Engineering Education, Daejin University, Pocheon, South Korea

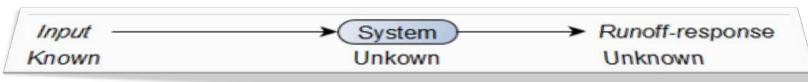
Gwanak-ro 1, Gwanak-gu, Seoul 151-742, Republic of Korea.

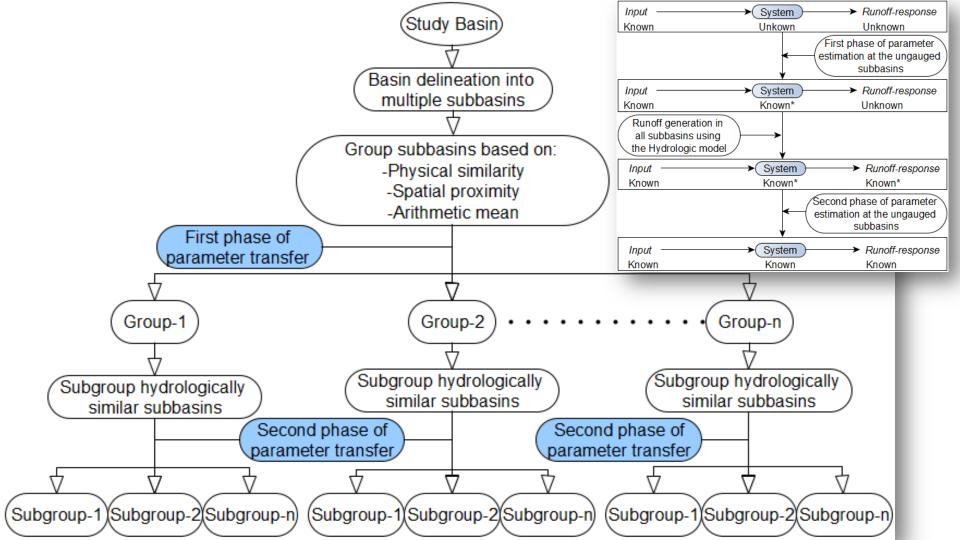
3.2 Water resources assessment in the ungauged basins

Ungauged hydrology

- Arithmetic mean
- Physical similarity
- Spatial proximity
- Catchment runoff

response similarity




This manuscript was handled by Marco Borga, Editor-in-Chief, with the assistance of Eylon Shamir, Associate Editor

Keywords: Parameter transfer Ungauged catchment Catchment runoff-response similarity Geum River Basin Lake Tana Basin

Various types of regionalization approaches have been proposed in the last several decades for predictions in ungauged basins. The most commonly used methods are based on the proximity of catchment centroids and physiographic and/or climatic conditions of the catchments. However, the proximity of the catchment centroids and catchment physical attributes do not necessarily translate into similarities in hydrologic behavior. It is also difficult to identify the key attributes that favor hydrologic similarity. Therefore, in this study, we proposed a new method called catchment nunoff-response similarity (CRRS), in the view of reducing the hydrologic similarity. The CRRS has a two-step approach: 1) the commonly used regionalization approach is used to temporarily transpose the calibrated model parameter from gauged to ungauged catchments, and 2) the nunoff response of each smaller delineated subbasin of the gauged and ungauged basins are obtained based on the parameter value computed in the first step. The similar subbasins of the gauged and ungauged basins are determined based on the intoin that similar subbasins with runoff responses to similar input minfal could have similar model structure settings. The applicability of the proposed approach was verified for the Geum River Basin (GRB) of South Korea and the lake Tana Basin (LTB) of Ethiopia. Leave-one-out evaluations of the proposed parameter

Catchment runoff response similarity (CRRS)

4. Water resources management: multi-objective reservoir operation

> Mathematical formulation of a multi-objective reservoir operation

a. Objective functions

 Minimize the total squared deviations (TSD) for irrigation annually

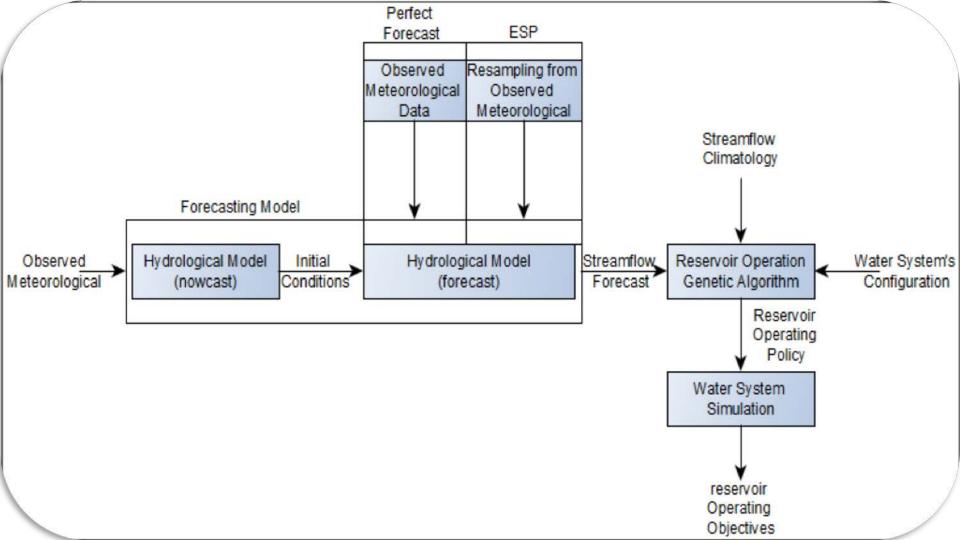
$$TSD = \sum_{n=1}^{n} \left[\sum_{t=1}^{12} (D_{nt} - IR_{nt})^2 \right]$$

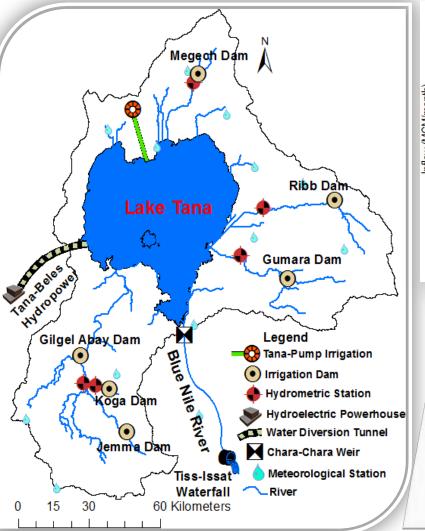
 Maximize annual hydropower production (HP)

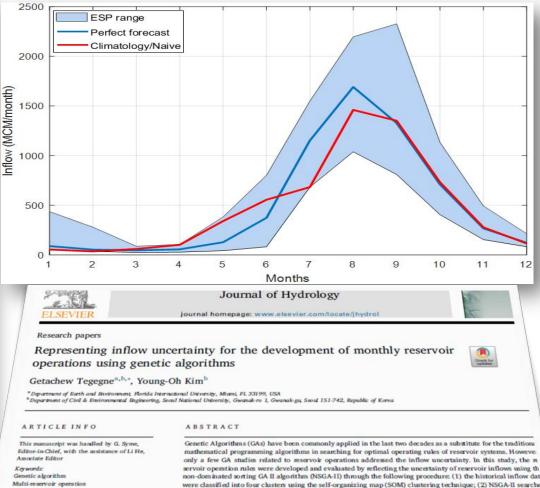
$$HP = \sum_{n=1}^{n} \left[\sum_{t=1}^{12} p(R_{nt}H_{nt}) \right]$$

b. Constraints

- Storage continuity $S_{n(t+1)} = S_{nt} + I_{nt} - (IR_{nt} + R_{nt} + E_{nt} + O_{nt})$ $\forall t = 1, 2, ..., 12$, and $\forall n = 1, 2, ...$
- Storage limits
 - $S_{nmin} \leq S_{nt} \leq S_{nmax}$ $S_{nmin} \leq S_{n(t+1)} \leq S_{nmax}$ $\forall t = 1, 2, ..., 12$, and $\forall n = 1, 2, ...$
- Maximum power production limit

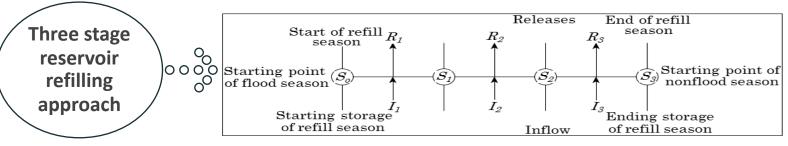

 $p(R_{nt}H_{nt}) \leq HP_{nmax}$


Irrigation demands


 $0 \leq IR_{nt} \leq D_{nt}$

- Downstream requirement
 DR_{nt} ≥ MDR_{nt}
- Spill

 $0 \leq O_{nt}$



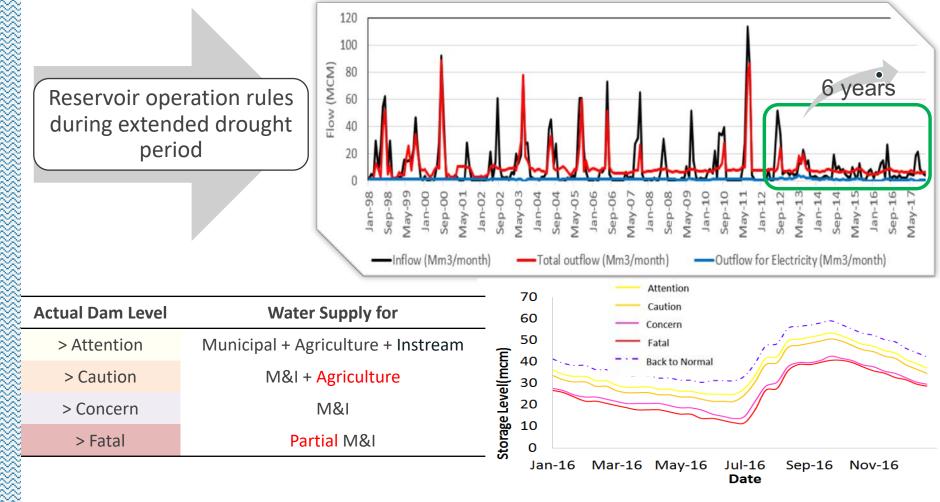
Genetic algorithm Multi-reservoir operation Inflow uncertainty Cluster

Optimal release

for an optimal release rule in each cluster with all the inflow data of the corresponding cluster; (3) a releas response function was then derived for each cluster by regressing the calculated optimal release data against storage at the beginning of the month and the inflow during the month; and (4) finally, the derived release for for each cluster were tested with three performance indices, namely, reliability, resilince, and vulnerability.

Example: Reservoir operation with simple approach

a. Objective function: Minimization problem


$$f(R,S) = \omega \left[\left(\frac{R_1 - D_1}{D_1} \right)^2 + \left(\frac{R_2 - D_2}{D_2} \right)^2 + \dots + \left(\frac{R_{12} - D_{12}}{D_{12}} \right)^2 \right] + \left(1 - \omega \right) \left[\left(\frac{S_9 - S_9^T}{S_9^T} \right)^2 \right]$$

b. The Lagrangian function of the formulated reservoir operation problem

$$L = \omega \left[\left(\frac{R_1 - D_1}{D_1} \right)^2 + \left(\frac{R_2 - D_2}{D_2} \right)^2 + \dots + \left(\frac{R_{12} - D_{12}}{D_{12}} \right)^2 \right] + \left(1 - \omega \right) \left[\left(\frac{S_9 - S_9^T}{S_9^T} \right)^2 \right] + \lambda_1 \left(A_{12} - R_1 - R_2 - R_3 - R_4 - R_5 - R_6 - R_7 - R_8 - R_9 - R_{10} - R_{11} - R_{12} \right)$$

c. The Karush-Khun-Tucker (KKT) conditions

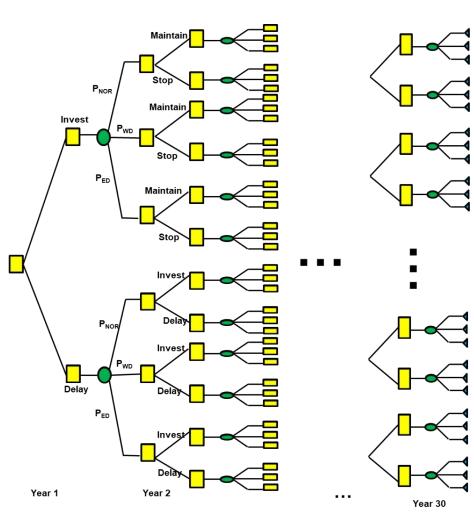
$$\frac{\partial L}{\partial R_1} = 0 = \frac{2\omega R_1}{D_1^2} - \frac{2\omega}{D_1} - \lambda_1 \qquad \frac{\partial L}{\partial R_2} = 0 = \frac{2\omega R_2}{D_2^2} - \frac{2\omega}{D_2} - \lambda_1 \qquad \bullet \bullet \bullet \quad \frac{\partial L}{\partial R_{12}} = 0 = \frac{2\omega R_{12}}{D_{12}^2} - \frac{2\omega}{D_{12}} - \lambda_1 \qquad \frac{\partial L}{\partial S_9} = 0 = \left(1 - \omega\right) \left(\frac{2S_9}{S_9^{T^2}} - \frac{2}{S_9^T}\right) - \lambda_1 = 0$$

Demand = Agricultural supply + Municipal supply + Environmental supply

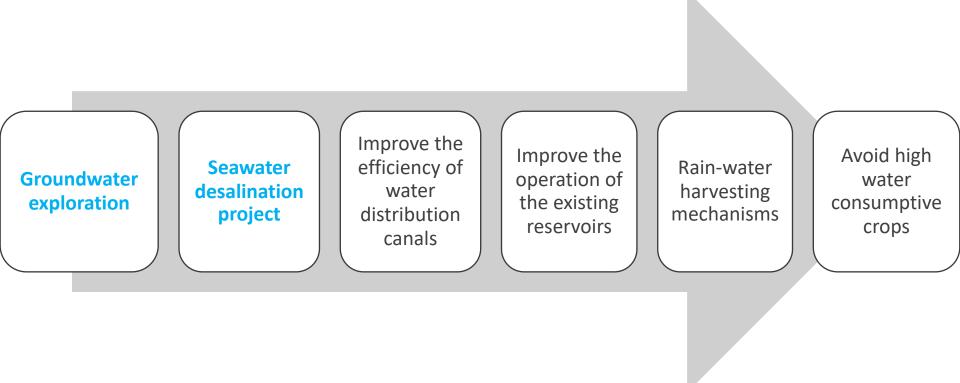
5. Water resources planning and development in the Nile region

- ✓ Planning of new water infrastructures in the Nile basin should be carefully evaluated with *ROBUST* and ADAPTIVE decision making perspectives.
- *Robust*: an alternative performs satisfactorily over a wide range of scenarios
- ✓ Adaptive: reduction of risk over time (flexibility)

Real Option Analysis (ROA)


Discounted cash flow?

- ✓ ROA spread risks over time using options
 - which is consistent with the adaptive perspective.
- ✓ ROA can also consider uncertainty in a modelling framework
 - \circ $\,$ which is consistent with the robust perspective.


Planning Period: 30 years

No of Nodes: (4*3)¹²

- Decision node: 4 options
 Invest, delay, stop, and maintain
- Chance node: 3 Scenarios
 Normal, moderate drought, and severe drought

Proposed adaptation plans for Egypt due to further upstream development

Getachew Tegegne (Ph.D.)

<u>gdamtew@fiu.edu</u> <u>hydro@snu.ac.kr</u>

Thank You!

Without water, the earth would look like the moon